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ABSTRACT

Segmentation of seismic images using a Distance Regularized Level Set Evolution
(DRLSE) scheme maintains numerical stability of our implicit surface without
the expense and accuracy issues associated with reinitialization approaches. In
this work I apply the DRLSE algorithm to the Sigsbee salt model as well as an
offshore salt data set. I then apply a modified energy functional which includes
a Frobenius norm term that further improves the segmentation results. These
applications of DRLSE demonstrate promising results using a very simplified
energy functional.

INTRODUCTION

Delineating the boundaries of salt bodies is important to sub-salt depth imaging as
well as inversion schemes such as Full Waveform Inversion (FWI). Explicit parametriza-
tion approaches such as “Snakes” (Kass et al., 1988) and “Intelligent Scissors” (Mortensen
and Barrett, 1998) methods encounter difficulty when changes of topology are neces-
sary, or if there is a need to adapt to sharp corners and cusps on an object boundary.
The implicit approach of the level set method avoids these issues (Lee, 2005), but
requires a mathematically regular implicit surface to be successful (no sharp edges
or “creases”). Standard level set evolution schemes lack an intrinsic regularization
of the implicit surface itself. When the level set equation is derived from a varia-
tional approach, an energy functional is used which can accommodate a single or
double-potential well term. Including this term maintains regularity of the implicit
surface, without having to resort to reinitialization schemes as in standard level set
algorithms. Furthermore, the variational approach to deriving the level set evolution
equation allows for a conceptually straight-forward framework for adding additional
terms to guide the surface evolution. In this work, I begin by analyzing the short-
comings of explicit parametrization approaches as well as the standard level set for-
mulation. Next, I derive the DRLSE evolution equation using a variational approach.
After that, I explain the use of a Frobenius norm term as particularly suited to salt
body delineation. Last, I show the results of applying the Distance Regularized Level
Set Evolution (DRLSE) algorithm to a salt model and salt data set, followed by a
discussion of future work.
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LEVEL SET FUNDAMENTALS

Explicit methods of parametrizing curve boundaries expose us to a number of nu-
merical problems. These include node distribution, evolving curves at sharp corners
and cusps, as well the challenge of preventing evolving curve fronts from overlapping.
By adding an extra dimension to the optimization problem, we can eliminate these
issues, which is the main attraction behind using level set methods. In the case of
segmenting a 2D object, level set methodology expands the optimization space from
a 2D (explicitly defined) curve to a 3D surface (which implicitly defines a curve). We
evolve a surface ¢ such that the curve represented by the contour at ¢ = 0 (the zero
level set) is the boundary of the object that we wish to segment (Osher and Fedkiw,
2003). We choose force functions to evolve this surface in order to meet this end.
These force functions are designed to conform the surface such that it delineates the
segmentation object at ¢ = 0. Equation 1 shows us the standard form of the level set
equation, with F' representing a directional force applied to the implicit surface ¢.

99
= = |Fvgl (1)
Since this equation lacks an intrinsic means to maintain regularity, irregular or
sharp features can form on the surface as it evolves, causing further evolution to
be unstable. One approach to remediating this is to periodically reinitialize to a
regular surface (Adalsteinsson and Sethian, 1995). When the implicit surface begins
to become unstable (develops very sharp or flat shapes), the function is reinitialized
by solving

99 — sign(é0)(1 - 70]) 2)

However, this approach is not always very accurate, especially when the implicit
surface is not smooth or if there is a strong difference between the signed distance
function and the surface being reinitialized. Furthermore, the question of how often
reinitialization should be applied makes such approaches ad-hoc at best, and often
expensive to implement well. For these reasons, the simplicity and robustness of
deriving the evolution equation from a variational approach is a very attractive option.

DISTANCE REGULARIZED LEVEL SET EVOLUTION

The DRLSE method is derived using a variational method. In our case, we intend to
find the stationary value (minimum) of an energy functional. A standard approach
to minimizing an energy functional is to find the steady state solution to the gradient
flow equation

)
ET )
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From this, we substitute £ with an energy functional that we minimize, as de-
scribed in the next section. Because F is an energy functional derived using calculus
of variation, the partial derivative shown in equation 3 becomes a Gateaux derivative.
The Gateaux derivative is a generalization of directional derivative, and is used to
formalize the functional derivative used in calculus of variations.

External Energy

The energy functional that I use in this work can be represented very simply as the
sum of a regularization term coupled with an external energy term

E(¢) = Bp(¢) + Eet(9) - (4)

The external energy term can be defined to include any term that utilizes infor-
mation pertinent to the data of interest. We begin with a simple external energy
term that is based on an active contour model, utilizing edge-based information, and
composed of two terms that work in conjunction

Eezt(¢) = AL9(¢) + aA9(¢> . (5)

L, is an “edge” term acting to direct the curve evolution towards areas of strong
contrast, while A, is an “area” term that acts to accelerate the curve evolution by
providing a ballooning or shrinking force (depending on how « is chosen). The “edge”
term computes a line integral of the function ¢ along the zero level set contour,

Ly(9) = / 46.(6) V9| da | (6)

while the “area” term (equation 7) computes a weighted area of the region inside the
zero level set contour

Ay(¢) = / gH(~¢)dr . (7)

Within the external energy functional terms (equations 6 and 7), I use a function
g as the actual edge indicator

1

SIL VG, DP (8)

9

In this case I is the amplitude of a pixel in the image we are segmenting, and G is
a Gaussian smoothing function. By taking the gradient of this convolution, g tends
to have smaller values at edge boundaries, acting as a very simple edge indicator
function.
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To detect the zero level set curve in our energy functional, it is necessary to
construct a modified Dirac delta function that smoothly indicates the boundary

66(96):{%(1“08(”—;0)), ] < e -

0, lz| > €

We use € to set the window over which our smoothed Dirac delta function is applied.

For the area term as well as the Frobenius norm term (described later), we inte-
grate g over the area enclosed by the zero level set. As with the Dirac delta function,
I use a modified Heaviside function to smoothly indicate the boundary of the zero
level set within a window defined by e

s(L+ 24 2sin(72)), Ja| <e
H(z)=<1, r>e . (10)
0

: T < —¢

Regularization Term

To maintain numerical stability, we need to define the regularization term R, such
that it maintains the property of a function that is mathematically regular. For
example, the signed distance function is very commonly used to initialize our level
set algorithm because of its simplicity, but more importantly because it represents
a regular implicit surface. Within the energy functional (equation 4) I include a
regularization term in order to maintain the signed distance property of our surface
as we evolve it

Ry(6) = / p(|vé))da - (11)

The signed distance function has the property of having a constant gradient (equal
to one). For this reason, I construct a potential-well function

p(199l) = 5(199] ~ 17 (12)

such that R, is minimized when |V¢| = 1 (Li, 2010).

However, while using equation 12 allows us to maintain the signed distance prop-
erty (and consequently regularity of the implicit surface), this formulation is not
necessarily stable when we take the Gateaux derivative of R, and incorporate it into
the gradient flow equation. Taking the Gateaux derivative of equation 11, we get

OR,

0 —div(dy(|Vo[) V) , (13)
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where div is the divergence operator, d, is a function defined by

4,(9)) = % | 14)

and p’ is the first derivative of function p. With our choice of single-well potential
function, equation 14 is simplified to d,(|V¢|) = 1 — ﬁ. As a result, in the case
where |V¢| = 0, our evolution becomes unstable since d, = —oo. For this reason, in
order to avoid instability in areas where |V¢| gets close to zero, I modify the potential
function to have two wells; one at |[V¢| = 1 as before, and a well at |V¢| = 0. This

motivation leads us to define a double well equation

#)2(1 —cos(2m|V))), if [V <1

(
L(ve| - 172 if (7] > 1 (15

p2(|Vol]) = {

When the regularization and external energy terms are included together in equa-
tion 4, we derive the following complete energy functional

E(6) = u /Q pa(| V)i + A /Q 96.(6) V9| dz + o /Q gH.(~¢)dz . (16)

The constants u, a and \ act as weights for each of the terms in our energy functional.

Combining the energy functional term above with the gradient flow equation
(equation 3) that our derivation is based on, we get an equation that represents
the evolution of our implicit surface, and can be directly implemented with a finite
difference scheme

o6 R
09 _ paiv(d, (761)76) + Mg, (0)div (gw) T ags(6) (a7)

Use of the Frobenius Norm for Salt Delineation

One attribute of salt that can be useful in segmentation is the lack of stratification
that is typically observed. A salt body as viewed in seismic data can usually be
characterized as having a chaotic image gradient in the interior. One way that we
can make use of this attribute in our DRLSE algorithm is by incorporating an appro-
priate term in our energy functional to quantify the chaos of the image gradient. By
calculating the structural tensor in a neighborhood around each pixel

S(p) B {Zz Iyz'[:vi Zz [inyi 7 <18)

and then applying a variation of the Frobenius norm on said tensor, we are able to
generate a map of values that represent the strength of stratification (Haukas, 2013).
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In the representation shown in equation 18, I, and I,, are the o and y gradient
values of the image at index ¢, where ¢ represents a pixel that exists in the neigh-
borhood surrounding pixel p. For some pixel p, a structure tensor is generated by
summing all m of the gradient multiplier elements, where m is equal to the number
of terms in the neighborhood stencil used. In this case the neighborhood is a square
image of size m = n X n centered around pixel p.

At this point, we can either calculate the eigenvalues E(S(p)) and perform the
proper Frobenius norm

IECS @D evor, = ZZ [E(S ()il (19)

or we can avoid the eigenvalue decomposition (and its added cost) and sum the
square of the diagonal elements of S(p) as an approximate measure. I choose the
latter approach for this work.

When we compare the stratification in the input data (Figure 1(a)) with the map of
the Frobenius norm values (Figure 1(b)), we can see that the term does prove useful
in identifying zones of salt.

EXAMPLES AND DISCUSSION

The DRLSE algorithm converges quite well to the Sigsbee salt model (Figure 2(a)).
This example demonstrates the effectiveness of the edge finding terms that our simple
energy functional includes. What can be noted is that the segmentation is unable
to differentiate between the salt body (that was “selected” using the initial surface)
and the water body layer above it. This energy functional as currently formulated
doesn’t utilize the pixels within the initialized area to help determine the evolution
of the level set. This is certainly an aspect that could be improved upon through
incorporating an appropriate term in equation 4.

One obvious need in the results from this formulation is the lack of smoothness in
the zero level set produced. Figure 3 demonstrates this lack of smoothness in the form
of a “sprinkled” scattering of small segmented areas. Currently my research includes
developing an effective smoothing term to add to the energy functional, namely by
minimizing the curvature of the zero level set (Caselles et al., 1997). A term based
on this attribute would mitigate the occurrence of “sprinkled” segmentation because
these “sprinkled” regions contribute heavily to the total curvature, but are only a
small part of the area within the zero level set.

A level set method, in particular the DRLSE method, is well suited to being
incorporated into the work-flow of FWI. The gradient of the objective function can be
used as a force to evolve the implicit surface (Lewis et al., 2012). When compared to
other segmentation methods such as combinatorial graph cuts, the level set approach
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Figure 1: (a) Initial salt body data input (b) Map of Frobenius norm values, rescaled
to binary representation. [ER]
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Figure 2: (a) Initial salt body model input (Sigsbee Model) (b) Level set output
(without Frobenius norm). [ER|]
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Figure 3: Level set output (with Frobenius norm term included). [ER]

is more appropriate for FWI adaptation since it doesn’t require an input of hard
constraints. The initialized surface that the algorithm uses as input can come from the
initial FWI velocity model, or from a human input. However, these initial zero level
sets are not hard constraints as in combinatorial graph cuts, and the accuracy of the
input relative to the true segmentation is not as critical to a successful segmentation.
Future extension of this work aims to incorporate the DRLSE algorithm into a FWI
work-flow for semi-automatic salt body segmentation.

CONCLUSION

The level set method provides distinct advantages over explicit parametrization ap-
proaches when applied to seismic imaging segmentation problems. When it is derived
with variational methods as a regularized algorithm, the problems associated with
maintaining numerical stability in the implicit surface are ameliorated. Furthermore,
this derivation provides us with a framework that allows us to further define our level
set evolution by adding additional terms to our energy functional, as demonstrated
by including a Frobenius norm term for salt delineation. Even with the very simple
energy functional used in this work, the ability of the DRLSE algorithm to delineate
salt bodies is evident in our results. Inclusion of additional external information, as
well as smoothing terms, would further refine the salt body segmentation that this
method can achieve.
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