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ABSTRACT

We estimate the excitation of the Scholte waves using a new formulation of the
surface-wave eigenproblem. We adapt the Rayleigh-wave case for solid media to
accommodate the fluid shear-free condition and successfully calculate the Scholte-
wave excitation. We detail here the derivation and numerical implementation,
along with preliminary results for simple fluid-over-solid cases. We verify our
results by comparing our phase velocity dispersion curve to the numerical solution
of the dispersion relation for a fluid layer above an elastic half-space.

INTRODUCTION

A modal representation of interface waves can be used to construct waveform solutions
to the wave equation. Free air-to-solid interface waves are commonly called Love and
Rayleigh waves, solid-to-solid interface waves are usually called Stoneley waves, and
fluid-to-solid interface waves, the focus of our interest, are referred to as Scholte waves.
The excitation of these interface waves can be reduced to a generalized eigenproblem
in the frequency domain. Denolle et al. (2012) solve this problem using a Chebyshev
collocation method and successfully define the Rayleigh- and Love-wave modes for
the single- and multi-layer solid cases. In this work, we generalize the code from
Denolle et al. to handle a fluid layer at the surface in order to construct solutions
for Scholte waves. We first expand on the implementation of boundary conditions at
the fluid-to-solid interface in the generalized eigenproblem case. We then show the
resulting eigenvalues and eigenfunctions for a simple two-layer, fluid-solid medium,
which we validate against known algorithms.

INTRA-LIQUID FORMULATION

We first need to formulate the interface-wave eigenproblem with the proper boundary
conditions to accommodate the fluid layer. Referring to the classic literature, e.g.
Ewing et al. (1957), the behavior of waves in a fluid is correctly modeled by setting
the shear modulus µ to zero in the equations for an isotropic elastic medium. In
cylindrical coordinates, this makes equation 3 in Denolle et al. reduce to

1 Chang, Dahlke and Martin are the main authors on the paper. Denolle and De Ridder led the
summer mini seminar and authored the code and its modification respectively.
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u = [r1(k, z, ω)Sm
k (r, φ) + ir2(k, z, ω)Rm

k (r, φ)] e−iωt . (3Den)

In this formulation, Sm
k (r, φ) is the gradient with respect to the radial and an-

gular directions (holding depth constant) of Jm(kr)eimφ, and Jm(·) is a mth order
Bessel function. Rm

k (r, φ) is equal to −Jm(kr)eimφ. In other words, we project our
solution on those vectors that describe modal solutions of the wave equation in cylin-
drical coordinates. The scalar stress-displacement values for the Rayleigh waves are
(r1, r2, r3, r4), and (l1, l2) for the Love waves. For reference, explicit expressions for
the Rayleigh wave r3 and r4 components are

r3 = σrz = µ

(
dr1

dz
− kr2

)
and

r4 = iσzz = kλr1 + (λ + 2µ)
dr2

dz
.

Equation 5 becomes

−ρω2l1 = 0

−ρω2r1 = −k2λr1 − kλ
dr2

dz

−ρω2r2 =
d

dz

[
λ

dr2

dz
+ kλr1

] , (5Den)

and equation 9 reduces to

R3 = kλr1 + λ
dr2

dz
. (9Den)

Equation 8 yields
L2 = [−iσrφ] = 0 , (8Den)

and equation 10 becomes
R4 = 0 . (10Den)

These last two equations are intuitive when coupled with l1 = 0 from equation
5, as ideal liquids do not support shear waves. As a result, all nondiagonal stresses
(particularly σrφ and σrz) are thus zero. The free-shear condition also presumes that
the Love waves do not exist in the upper fluid layer. In other words, ignore the fluid
when solving for Love wave modes.
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For the Rayleigh eigenproblem, where ρ is the medium density, and λ and µ are
the Lamé parameters, we can set µ and R4 to zero from equation 12 to get

0 − d
dz

1
λ

0
d
dz

0 0 −1
0

ρω2 0 0 d
dz

0 −ρω2 − d
dz

0




r1

r2

R3

0

 = k


r1

r2

R3

0

 . (12Den)

In order to have a system of three equations to solve for three unknowns, we eliminate
a row of the matrix. Because of the singularity that arises in the second row of the
matrix, we eliminate this equation, leaving the 3x3 system: 0 − d

dz
1
λ

ρω2 0 0
0 −ρω2 − d

dz

 r1

r2

R3

 = k

 1 0 0
0 0 1
0 0 0

 r1

r2

R3

 . (12Den)

FLUID-SOLID BOUNDARY CONDITIONS

For the Scholte waves, the fluid couples to the top of the elastic model with the
continuity of vertical displacement and normal stress (Ewing et al., 1957; Aki and
Richards, 1980). Following Denolle et al., this translates to the continuity of r2 and
(λ+2µ)dr2

dz
+ kλr1, in addition to R4 = 0. For the free surface, λdr2

dz
+λkr1 = 0 is the

appropriate free shear boundary condition.

At the fluid-solid interface, we want continuity of (λ + 2µ)dr2

dz
+ λkr1, and can use

equation 9 from Denolle et al. to translate this to a condition on R3:

(λ + 2µ)
dr2

dz
+ λkr1 =

λ + 2µ

λ
(R3 − k(λ + 2µ)r1) + λkr1

=

(
1 +

2µ

λ

)
R3 + k

(
λ− (λ + 2µ)2

λ

)
r1 .

IMPLEMENTATION

We strove to keep the implementation as simple as possible. To this end, our code
alters the boundary conditions for the surface and fluid-solid interface as described
above and selects only a subset of the equations within the liquid layer.

For both the Love- and Rayleigh-wave eigenvalue problems, we can write the
eigenvalue system generally as Ax = kBx, where B is mostly an identity matrix
except for a few entries altered for boundary conditions. We create the matrices A
and B as though modeling solid layers for which µ just happens to equal zero in the
top layer, as described in Denolle et al. (2012). Then we apply matrices to the left
and right of these to select the relevant rows and columns so that we solve a new
eigenvalue problem, LrALcx = kLrBLcx.
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For the Love waves, we remove both of the equations related to the water layer
since we know the solution will be zero in a liquid. For example, consider a liquid
layer above a solid layer with constant parameters within each layer. In this case, the
matrices selecting rows and columns are

Lr = L∗c =

[
INs 0Ns 0Nl

0Nl

0Ns INs 0Nl
0Nl

]
,

where Ns and Nl are the number of points in the solid and liquid layer, respectively,
0n represents the zero matrix of size n×n, and In represents the n×n identity matrix.

For the Rayleigh wave we have a set of four equations. In the liquid layer, we set
the shear wave speed to zero. Equation 12Den shows that we select only the first,
third and fourth rows and the first, second and third columns of the matrices’ liquid
section. Looking again at the example of a liquid layer above a single solid layer, we
achieve this by choosing our row and column selection matrices as follows

Lr =


I4×Ns 0 0 0 0

0 INl
0 0 0

0 0 0 INl
0

0 0 0 0 INl

 , Lc =


I4×Ns 0 0 0

0 INl
0 0

0 0 INl
0

0 0 0 INl

0 0 0 0

 .

RESULTS

We display results from the modified code for a fluid-solid interface. The model
parameters that we used are shown in Figure 1. For our calculations, both layers
contain 50 collocation points. We assume that the solid is a Poisson medium when
computing our associated Lamé parameters.

Figure 1: Profile of our 1D model
of a fluid layer over a solid. Left:
P-wave (red) and S-wave (blue)
velocities with depth. Right: Den-
sity with depth. [CR]
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Figure 2 shows the computed fundamental-mode Scholte displacement eigenfunc-
tions for the previously described 1D medium. We show the Scholte-wave eigen-
functions for three frequencies: 0.05, 0.10, and 1.00 Hz. We see that the horizontal
displacement (r1) is discontinuous at the fluid-solid interface and that the vertical
displacement (r2) is continuous, which are the boundary conditions that we imposed.
We also see that the eigenfunction is more sensitive to the interface at higher fre-
quencies than at lower frequencies. This makes sense, since lower frequencies have
longer wavelengths that will be less affected by the interface. Figure 3, computed
using the Haskell matrix codes of Herrmann (2010), further confirms the validity of
our modifications.
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Figure 2: Displacement eigenfunctions for the described fluid-solid 1D medium. For
Scholte waves: (a) 0.05 Hz, (b) 0.10 Hz, and (c) 1.00 Hz. r1 is the horizontal dis-
placement and r2 is the vertical displacement. [CR]

Figure 4 shows the computed fundamental mode Scholte-wave stress eigenfunc-
tions. Again, we show the eigenfunctions for three frequencies: 0.05, 0.10, and 1.00 Hz.
We see that the shear stress (R3) is discontinuous at the interface, and that the nor-
mal stress (R4) is continuous across the interface. These observations are what we
expect. Also note that much like with the displacement eigenfunctions, sensitivity of
the stress eigenfunctions at the fluid-solid interface increases with frequency. Again,
this is likely related to lower frequencies having longer wavelengths and hence being
less sensitive to relatively shallow interfaces.
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Figure 3: 1.00 Hz displacement
eigenfunctions for the described
fluid-solid 1D medium computed
using the Haskell matrix method.
Except for the packaged choices
for overall normalization and the
sign for radial motion, this is in
good agreement with Figure 2.
[CR]
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Figure 4: Scholte-wave stress eigenfunctions for the described fluid-solid 1D medium
at (a) 0.05 Hz, (b) 0.10 Hz, and (c) 1.00 Hz. R3 is the shear stress and R4 is the
normal stress. Note that the scales on stress differ between each frequency. [CR]
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To view the eigenvalues (wavenumbers), we plot phase velocity dispersion curves
for Scholte waves in Figure 5. We obtain these curves by solving

cS =
ω

kS(ω)
, (1)

where cS is the Scholte-wave phase velocity, ω is angular frequency, and kS is wavenum-
ber as a function of frequency. To verify these results, we compare these dispersion
curves to the numerically calculated Scholte wave phase velocity, c, which is the solu-
tion to the dispersion relation for a finite fluid layer over an elastic half-space (Biot,
1952). The relation is given as

4

√
1− c

vs

2

−
(2− c

vs

2)2√
1− c

vp

2
=

ρf

ρs

c
vs

4√
c
vf

2 − 1
tan

[
kh

√
c

vf

2

− 1

]
for

c

vf

> 1 , (2)

4

√
1− c

vs

2

−
(2− c

vs

2)2√
1− c

vp

2
=

ρf

ρs

c
vs

4√
1− c

vf

2
tanh

[
kh

√
1− c

vf

2

]
for

c

vf

< 1 , (3)

where k is wavenumber, h is the depth of the fluid layer, ρf is the fluid density, and
ρs is the solid density. Furthermore, η1 = c

vs
, η2 = c

vp
, ηf = c

vf
, vp is P-wave velocity

in the solid, vs is the S-wave velocity in the solid, and vf is the velocity in the fluid.
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Figure 5: A comparison of phase velocity dispersion curves for a fluid-solid interface.
Blue: our code. Red: numerical solution of the analytically-derived dispersion relation
from Biot (1952). The solutions match up very well, suggesting that our modifications
are correct. [CR]

Figure 5 shows that the numerically calculated reference solution (red) and our
solution (blue) to the Scholte-wave dispersion relation match very well. The devia-
tion between the two solutions at frequencies below 0.1 Hz reflects our approximation
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of the half-space with a thick layer which has a rigid bottom boundary condition.
Therefore, at these lower frequencies, we are approaching wavelengths that are longer
than the domain of the model, causing our phase velocities to deviate from the nu-
merical solution. Regardless, there is a clear match for the higher frequencies, which
suggests that our calculated eigenfunctions and eigenvalues are indeed correct for
Scholte waves.

CONCLUSIONS

Denolle et al. (2012) obtained the Rayleigh- and Love-wave solutions to the elastic
wave equation by posing the problem in the generalized matrix eigenvalue framework.
Here we expanded this framework to also solve for Scholte waves, and added this
functionality to their code. We verified our theory and its implementation by finding
that our phase velocity dispersion curves match well with the numerical solution to
the dispersion relation for a finite liquid layer over an elastic half space of Biot (1952).
We also found that our displacement eigenfunctions match well with those from the
Haskell matrix codes of Herrmann (2010).
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