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ABSTRACT

We propose a technique for improving the robustness of time-lapse full wave-
form inversion by reducing numerical artifacts that contaminate inverted model
differences. More specifically, we demonstrate that simultaneously inverting for
baseline and monitor models in combination with a Tikhonov regularization ap-
plied to the model difference can reduce acquisition-related repeatability issues
and spurious numerical artifacts arising in separate baseline and monitor inver-
sions. We demonstrate our method using a synthetic model problem and describe
a simplified “cross-updating” approach that can be applied to large-scale time-
lapse industrial problems using the existing FWI inversion tools.

INTRODUCTION

Time-lapse full waveform inversion (FWI) (Watanabe et al., 2004; Routh et al., 2012)
is a promising technique for time-lapse seismic imaging where production-induced
subsurface model changes are within the FWI resolution. However, like alternative
time-lapse techniques, time-lapse FWI is sensitive to repeatability issues (Asnaashari
et al., 2012). Non-repeatable acquisition geometries (e.g., slightly shifted source and
receiver positions), acquisition gaps (e.g., due to previously absent obstacles), different
source signatures and measurement noise — all contribute to differences in the data
from different survey vintages. Differences in the input datasets due to repeatability
issues may easily mask out valuable production-induced changes. However, even
with the simple noise-free synthetic data in the absence of acquisition repeatability
issues, numerical artifacts may easily contaminate the inverted difference of monitor
and baseline when practical limitations are imposed on solver iteration count. We
propose a computationally feasible and robust time-lapse FWI that minimizes model
differences outside of areas of production-induced change by simultaneously inverting
for multiple models, and imposing a regularization condition on model differences.

THE METHOD

Full waveform inversion is defined as solving the following optimization problem
(Virieux and Operto, 2009; Plessix et al., 2010)

|Mu - d| — min (1)
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where M, d are the measurement operator and data, u is the solution of a forward-
modeling problem

D(m)u = ¢, (2)

where D is the forward-modeling operator that depends on a model vector m as a pa-
rameter, and ¢ is a source. The minimization problem 1 is solved with respect to both
the model m and source ¢, or just the model. In the frequency-domain formulation
of the acoustic waveform inversion, the forward-modeling equation 2 becomes

—wu— (2t M)A = P(w, 2t .. 2" (3)

where w is a temporal frequency, n is the problem dimension, v is the acoustic wave
propagation velocity. Values of the seismic velocity at all the points of the modeling
domain constitute the model parameter vector m. Rock density can be incorporated
in the problem but we omit it here for simplicity. Direct problem 2 can be solved
in the frequency domain, or in the time domain followed by a Fourier transform in
time (Virieux et al., 2009). Inverse problem 1 is typically solved using a multiscale ap-
proach, from low to high frequencies, supplying the output of each frequency inversion
to the next step.

FWTI applications in time-lapse problems seek to recover production-induced changes
in the subsurface model (Barkved and Kristiansen, 2005) using multiple data sets from
different acquisition vintages. For two surveys sufficiently separated in time, we call
such datasets (and the associated models) baseline and monitor.

Time-lapse FWI can be carried out by separately inverting the baseline and mon-
itor models (parallel difference) or inverting them sequentially with e.g. the baseline
supplied as a starting model for the monitor inversion (sequential difference). Another
alternative is to apply the double difference method, with a baseline model inversion
followed by a monitor inversion that solves the following optimization problem

(M0, — Miwg) — (M, dy — Miydy) || — min (4)

by changing the monitor model (Watanabe et al., 2004). The subscripts in equation
4 denote the baseline and monitor surveys, d denotes the field data, and the Ms
are measurement operators that project the synthetic and field data onto a common
grid, the superscript s denotes the measurement operators applied to the synthetic
data. Although the double difference method offers potential advantages for tackling
acquisition-related repeatability issues, it was shown to be more sensitive to uncorre-
lated noise (Asnaashari et al., 2012) in addition to requiring data projection onto a
common grid.

In all of the described techniques optimization is carried out with respect to a
single model, albeit of different vintages at different stages of the inversion. In our
method we propose to invert for the baseline and monitor models simultaneously by
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solving the following optimization problem:

a[Myu, — dy|| + B[ Mp i, — dia||” + (5)

7 (M5, u — Mywy) — (Mypdy, — Medy) [|* + (6)
[W R (my, — my OR)[[2 (7)

W R (m, — my O [ (8)

[WR(m,, — my — Am"®O®)||2 - min, (9)

with respect to both the baseline and monitor models m, and m,,. The terms 5
correspond to separate baseline and monitor inversions, the term 6 is the optional
double difference term, the terms 7,8 are optional separate baseline and monitor
inversion Tikhonov regularization terms (Aster et al., 2012), and the term 9 represents
Tikhonov regularization of the model difference. The R and W denote regularization
and weighting operators respectively, with the subscript denoting the survey vintage
where applicable.

A joint inversion approach was proposed earlier in applications to the linearized
waveform inversion (Ayeni and Biondi, 2012). In this work, we propose a simulta-
neous full waveform inversion with special emphasis on the regularization of model
difference in equation 9. Constraining the model difference where production-induced
changes are expected to be negligible while simultaneously solving for both baseline
and monitor models can be expected to reduce both spurious numerical artifacts and
non-repeatable acquisition related artifacts in the model difference. The traditional
sequential and double difference methods, on the other hand, make artifact reduction
less effective by allowing only one model to change.

An implementation of the proposed simultaneous inversion algorithm requires
solving a nonlinear optimization problem of twice the data and model dimension
of problems 1 and 4. To allow an immediate practical application of the proposed
methodology using the existing single-model solvers, we propose a cross-updating
technique that offers a crude but remarkably effective approximation to minimizing
the objective function 5 and 9. This cross-updating technique consists in one standard
run of the sequential difference algorithm, followed by a second run with the inverted
monitor model supplied as the starting model for the second baseline inversion

myyr — BASE INV — MON INV — BASE INV — MON INV, (10)

and taking the difference of the latest inverted monitor and baseline models. Process
10 can be considered an approximation to minimizing 5 and 9 because non-repeatable
footprints of both inversions are accumulated in both models, canceling out in the
difference. In both the full simultaneous inversion and cross-updating methods, we
expect the models to be brought closer together wherever either of them cannot be
reliable resolved. Note that this process is not guaranteed to improve the results of
the individual inversions but is only proposed for improving the model difference.
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RESULTS

We demonstrate our proposed simultaneous inversion method and its cross-updating
approximation 10 on a one-dimensional model problem. We are trying to recover
the difference between the true baseline and monitor models, as respectively shown
in Fig 1(b), 1(a). Equation 3 is discretized on the equispaced grid of 32 points
spanning the modeling interval [0,1]. We use different baseline and monitor source
wavelets (see Fig 2) and use a multiscale inversion from 0.2Hz to 1Hz with a .2Hz
step, solving the optimization problems 1 and 5,9 using the hybrid Fletcher-Reeves-
Polar-Ribier method (Nocedal and Wright, 2006). In the first experiment the data is
noise-free and receivers are located at every node of the computational grid. In the
second experiment we add 5% high-wavenumber noise to the data and allow receiver
positions to shift randomly by up to half the grid step. No prior model or model
difference was used in the objective function 5,9.

True Baseline Model True Monitor Model
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(a) (b)
Figure 1: True baseline and monitor models for 1D simultaneous inversion test. [CR]

To demonstrate that the improvements delivered by the cross-updating procedure
10 are not simply due to the increased number of iterations, we use the following
procedure for “iterated” sequential inversion:

mpr — BASE INV — MON INV — MON INV
mpr — BASE INV — BASE INV. (11)

Note that process 11 uses the same number of full waveform inversions as 10. We
compare method 11 with the cross-updating 10 and the simultaneous inversion by
optimizing the objective function 5,9. In our tests, we set the terms 6-8 to zero and
use only a model difference regularization. We use Laplacian as the regularization
operator R, and the weighting operator W is a simple mask zeroing out the area of
expected model change.

Fig 3(a), 4(a), 5(a) show the results of the three algorithms for the noise-free
experiment. Both the simultaneous inversion result and the cross-updating approxi-
mation exhibit fewer artifacts outside of the area of production-induced changes than
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Figure 2: Sources used for generating synthetic baseline and monitor surveys. [CR]
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Figure 3: Inverted baseline: (a) no noise (b) 5% noise and .5Az random receiver

mispositioning. [CR]
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does the sequential approximation. Fig 3(b), 4(b), 5(b), 6(b) show the results of the
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Figure 4: Inverted monitor: (a) no noise (b) 5% noise and .5Az random receiver
mispositioning. [CR]

second experiment with added noise and receiver mispositioning. The improvement
achieved by the simultaneous inversion and cross-updating methods is quite dramatic,
with the simple cross-updating method still delivering a good qualitative picture of
the model difference. One key feature of the plotted models of Fig 3(b), 4(b) is
that the inverted models seem to inherit each other’s peaks and deviations from the
true model even though different random noise is added to the baseline and monitor
data. This confirms our conjecture that the model-difference regularization will bring
the models closer together where either model cannot be reliably resolved. Similar

Inverted Model Difference
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Figure 5: Inverted model difference: (a) no noise (b) 5% noise and .5Az random
receiver mispositioning. Note that the result of simultaneous inversion is closest to
zero outside of the area of “production-induced” change. The cross-updating result
is a good qualitative approximation to simultaneous inversion. [CR]
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results have been achieved for multiple alternative noise realizations, with the simulta-
neous inversion always delivering the best model difference result and cross-updating
providing a good qualitative approximation.
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Figure 6: Smoothed inverted model difference: (a) no noise (b) 5% noise and .5Az
random receiver mispositioning. Even after smoothing the simultaneous inversion
and its cross-updating approximation are superior to the result of iterated sequential
inversion. [CR]

CONCLUSIONS AND WAY FORWARD

We propose a new technique for time-lapse full waveform inversion that can provide a
robust alternative to the existing methods. Applying the method to a one-dimensional
test problem achieved a significant reduction of artifacts in the model difference. How-
ever, choice of the weighting operator W is determined by prior knowledge of where
production-induced velocity changes are likely to occur. In the absence of such prior
knowledge, a frequency-dependent weighting of the model difference regularization
term may have to be used to achieve a balance between the accuracy of data fitting
and the desired properties of the model difference (Aster et al., 2012). In such a
case, our proposed cross-updating method would offer an attractive alternative to the
regularized simultaneous inversion as it delivers qualitatively accurate results without
the need to specify regularization parameters.

The cross-updating technique does not require the development of any new tools
and, in principle, can be applied to time-lapse FWI problems of any scale and com-
plexity. The simultaneous inversion based on optimizing the objective function 5-9
can be applied to regularized time-lapse velocity inversion using a prior model differ-
ence derived from geomechanical studies (Maharramov, 2012).

We did not apply the regularized simultaneous inversion to the double difference
method (i.e., with a nonzero term 6 in the objective function) and this will require
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further study. In our next work we intend to apply the simultaneous time-lapse
FWI and cross-updating methods to field data, and study the feasibility of using
geomechanical model-difference priors.
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