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ABSTRACT

We apply an adaptation of the least-squares reverse time migration (LSRTM)
algorithm to the 3D Deimos ocean bottom field data set from the Gulf of Mex-
ico. A simple data-fitting objective function may not be sufficient when apply-
ing LSRTM in practice. Some challenges arise because the recorded field data
depart from the theory and assumption of the LSRTM operator. To optimize
the inversion with the field data set, we include Laplacian preconditioning, salt-
dimming data weighting, extended domain noise filtering, and regularization onto
the LSRTM algorithm. Results from the 3D Deimos ocean bottom field dataset
show an improvement when using joint LSRTM of primary and mirror signals
over conventional imaging.

INTRODUCTION

Depth migration images are often distorted by uneven subsurface illumination from
acquisition geometry, complex overburden and band-limited wavefields. To correct
for the effects of uneven illumination, the imaging problem can be posed as a linear
inverse problem. Depth migration is equivalent to the adjoint of the Born-modelling
operator. Instead of using the adjoint operator, we use the pseudo-inverse of the
Born-modeling operator to optimally reconstruct the reflectivity. This inversion-based
imaging method is also widely known as least-squares migration (LSM) (Lambare
et al., 1992; Nemeth et al., 1999; Ronen and Liner, 2000) or linearized wavefield
inversion (Clapp, 2005; Valenciano, 2008a).

In addition to least-squares migration, being able to co-image different types of
seismic data can often add value to the image. In the case of ocean-bottom data,
Wong et al. (2010) showed that using both primary (up-going) and mirror (down-
going) signals can improve subsurface illumination. The mirror image has wider
illumination. Depending on the offset range and the ocean-bottom depth, primary
signal can often illuminate the subsurface at a wider reflection angle (Figure 1). This
translates to higher image quality in the region illuminated by the primary. Instead
of treating the primary image and the mirror image separately, we can combine the
information from the two sets of data coherently by joint least-squares reverse-time
migration (LSRTM)
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Figure 1: (a) shows the reflection angle (θ1) by the primary reflection and (b) shows
the reflection angle (θ2) by the mirror reflection at the same sub-surface image location
for ocean bottom node acquisition geometry. Given a survey with limited offset, the
primary signal can often illuminate the subsurface at a wider reflection angle. [NR]

LSM in general can boost up the signal for the true reflector and suppress noise.
When applied to a field data set, the quality of the inversion can be compromised by
various factors. As a result, adaptation and conditioning of the inversion is needed
when applying to the field data set. We will point out a few of the challenges con-
cerning the 3D Deimos ocean bottom data set and show some ways to address these
issues. Some of the techniques include Laplacian preconditioning, salt-dimming data
weighting (Wong et al., 2010), extended domain noise filtering, and a regularization
that impose continuity along the subsurface-angle axis.

In this paper, we will apply joint up-going (primary) and down-going (mirror)
least-squares reverse-time migration (LSRTM) on the 3D Deimos ocean bottom node
field data set. I will show some of the improvements as compared to conventional
imaging.

THEORY

Least-squares reverse-time migration (LSRTM)

In reverse-time migration (RTM), the migration image is a linear operator applied to
the recorded data,

mmig(x) =
∑

xr,xs,ω

U∗
s (xs,x, ω)G∗(x,xr)d(xr,xs, ω),

= L′d, (1)
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where ω is frequency and m(x) represents reflectivity at the image point x. Addition-
ally, Us(xr,x, ω) = ω2fs(ω)G(xr,x) is the source-side or incident wavefield. G(x1,x2)
is the Green function that solves the two-way acoustic constant density equation. Of-
ten time, deconvolution is performed on the input data d(xr,xs, ω) and an appropriate
waveform fs(ω) is used to generate the source-side wavefield. Note that the ω depen-
dence in G is suppressed. The RTM operator can be abbreviated into the operator
form L′ acting on the data d. In practice, the Green function is calculated using
finite-difference time domain technique and the multiplication in frequency domain
is replaced by a zero-lag cross-correlation in the time domain.

To obtain a better reflectivity image, we can go beyond migration by formulating
the imaging problem as a least-squares inversion problem. The solution minv(x) is
obtained by minimizing the objective function S(m), which is defined as the least-
squares difference between the forwarded modeled data dmod and the observed data
dobs.

S(m) = ‖dmod − dobs‖2 = ‖(Lm + do)− dobs‖2 (2)

The modeled data dmod can be broken down into two components: the linearly
modeled data Lm and the background data do. The background data is the full
wave-equation modeling of the data using the (background) migration velocity model.
do does not get updated, and remains the same over all iterations in the least-squares
migration algorithm.

In LSRTM, the linear forward modeled data is defined to be the Born approxima-
tion of the linearized acoustic wave equation,

dmod(xr,xs, ω) =
∑
x

Us(xs,x, ω)m(x)G(x,xr),

dmod = Lm, (3)

It is important to point out that the forward modeling operator L is the adjoint of
the reverse-time migration operator L′.

Joint LSRTM of up/down-going P wave

Joint inversion of up- and down-going signals for ocean-bottom data can potentially be
a better imaging technique than migrating either signal alone, because it combines
information from both sets of signals. Ocean bottom data are first separated into
acoustic up- and down-going components above the seafloor. The decomposed signals
are then inverted to yield one optimally combined reflectivity image. The objective
function for such an inversion is:

S(m) = ‖(L↑m + d↑
o)− d↑

obs‖
2 + ‖(L↓m + d↓

o)− d↓
obs‖

2 (4)

where L↑ and L↓ are modeling operators that linearly model the up- and down-going
data. Two modified grids are used to forward model the lowest order of up- and
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Figure 2: Forward modeling of (a) primary-only and (b) mirror-only data. The
algorithm involves cross-correlating the source wavefield (Us) with the reflectivity
model (m) to generate the receiver wavefield (Ur). Reciprocity is used here where the
data, in common-receiver domain, is injected at the source location while the source
wavelet is injected at the receiver location. Cross-correlation is done only with grid
points below the seabed. [NR]

Figure 3: RTM of (a) primary-only and (b) mirror-only data. The algorithm involves
cross-correlating the source wave field (Us) with the receiver wave field (Ur) to gener-
ate the reflectivity model (m). Cross-correlation is done only with grid points below
the seabed. [NR]
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down-going signals, namely the primary and the mirror reflection. The formulation
of the modeling operator is summarized in Figure 2 and 3

Although LSM in general can boost up the signal for true reflectors and suppress
noise, the quality of the inversion may compromised when applied to a field data set.
As a result, adaptation and conditioning of the inversion is needed when applying to
the field data set. We will point out a few of the challenges and show some ways to
address those issues.

Laplacian Preconditioning

It has been observed that using the conventional cross-correlation imaging condition
produces strong low-frequency migration artifacts in reverse-time migration. These
artifacts result from the forward-scattered energy off sharp contrast in the velocity
model. In LSRTM, a successive sequence of adjoint and modeling operations is re-
quired to iteratively change the initial solution into the inverted one. As a result,
when the adjoint operation is used in LSRTM, the forward-scattering artifacts also
exist in the gradient. Such artifacts hamper the convergence because unwanted en-
ergy is introduced into the gradient at every iteration. One way to suppress these
artifacts is to apply a Laplacian filter to the stacked RTM image. Zhang and Sun
(2009) have showed that applying the Laplacian filter (along with a 1/ω2 filter onto
the data) is equivalent to applying a cos2θ weight to the angle gather. This cosine
factor down-weights contributions from large angles and effectively suppresses the
forward-scattered artifacts when θ = 90o. A straightforward incorporation of this
idea in LSRTM is to use the Laplacian filter as a preconditioner in the inversion.
This can be done by doing a simple change of variable,

p = Am, (5)

where A represents the Laplacian operator and p is the preconditioned variable. Note
that the Laplacian operation is self-adjoint. The objective function in terms of the
preconditioned variable p then becomes:

S(p) = ‖(L↑Ap + d↑
o)− d↑

obs‖
2 + ‖(L↓Ap + d↓

o)− d↓
obs‖

2 (6)

After inverting for pinv, the inverted model is then recovered by applying the inverse
of the Laplacian operator,

minv = A−1pinv. (7)

The inverse of the Laplacian operator is singular. In practice, we applied a pseudo
inverse in the wavenumber domain by multiplying a 1

k2
z+ε

filter with a small ε constant.



Wong 6 Deimos LSRTM

Salt Dimming

The objective function in equation 2 requires the background data term do to be
subtracted from the observed data. Essentially, do is the forward modeling using the
migration velocity model. In most cases when the velocity is smoothly varying, this
term is negligible and we can just ignore it in the inversion. When the velocity field
has a sharp contrast, this term is non-trivial. However, subtracting the background
data term is actually a difficult task. The theory that generates the background
data is just an approximation to the complex Earth mechanism that generates the
observed data. This makes following equation 2 impractical. Salt-dimming (Wong,
2013) is introduced as a way to work around this problem.

Salt-dimming aims to down-weight the salt reflection energy in the data space so
that the inversion can minimize other regions in the model. This corresponds to the
following objective function:

S(m) = ‖Ws(Lm− dobs)‖2,

where Ws is the data weighting function that down-weights the salt reflection energy.
This can be done by forward-modeling the salt reflection using the migration velocity.
The next step is to calculate an envelope around the salt energy. The data weighting
function can then be defined by assigning a small value to the salt reflection envelope.
The objective function with preconditioning and salt-dimming then becomes:

S(p) = ‖W↑
s(L↑Ap− d↑

obs)‖
2 + ‖W↓

s(L↓Ap− d↓
obs)‖

2. (8)

Figure 4a shows the forward modeling of one common-receiver gather in the syn-
thetic Sigbees model. The salt reflection is then used to derive an envelope region
to be down-weighted. The resulting weighting function is shown in Figure 4b. As
shown in Figure 4b the down-weighted region (blue) corresponds mostly to the salt
reflector.

Noise removal in the extended domain

Unwanted noise sometimes appears in the migrated images. For example, when in-
ternal multiples are not properly removed, migrating that energy with an operator
that only accounts for the kinematics of the primary would result in crosstalk noise
in the image. In ocean bottom data sets, imperfect PZ summation or up-down de-
composition can also result in artifacts in the migrated image. Another source of
noise comes from our attempt to invert elastic data with acoustic waves thoery. For
example, converted wave are in the data but are not accounted for in the modeling
and migration operator. Ideally, we want all unaccounted events to be removed in
the field data before migration or least-squares migration. LSRTM can be hampered
when noise energy remains in the data.
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Figure 4: (a) Background data created by forward modeling with the migration ve-
locity and (b) salt-dimming weight (Ws) generated with the background data. [CR]
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To make the algorithm more robust, we utilize the subsurface offset domain to
filter some of the unwanted noise in the image space. Figure 5 shows an offset-domain
common image gather (ODCIG) for one of the ocean bottom node. The front face
corresponds to the image at zero subsurface offset and the side face corresponds to
the depth-offset panel at a horizontal location. Notice how the energy in the depth-
offset panel is tilted based on its relative position from the source. In Figure 5a, the
horizontal position is less than xshot. In this case, the prominent energy in the depth-
offset panel is tilted with a negative slope. Similarly, in Figure 5c, the horizontal
position is greater than xshot. In this case, the prominent energy in the depth-offset
panel is tilted with a positive slope. When we examine the depth-offset gather at a
horizontal position that is close to the source, as shown in Figure 5b, the prominent
energy has near zero slope.

This characteristic can be used to discriminate some of the noise in the image
space. A filter was designed and applied for each ocean bottom node’s ODCIG before
summing together. For each ODCIG, we apply the Fourier transform of each depth-
offset slice into the kz−khx wavenumber space. In the wavenumber space, a dominant
dip energy range can be selected as signal while the other energy can be filtered out
as noise. The dip-range can be estimated based on the horizontal x position of the
kz−khx slice relative to the shot position xshot. We used a large dip range (60 degrees)
to avoid filtering out true reflector signal. Seismic waves are often severely distorted
and bent by the salt, which could result in true signal forming at various dip in the
z − h panel. We have used a different set of filtering criteria for the region beneath
the salt so that the true signal will not be filtered out.

Physically, filtering the dips in the depth-offset domain is equivalent to filtering in
angle domain. Recall the relationship that links the dips in the depth-offset domain
to the aperture angle (γ):

khx

kz

= − tan γ. (9)

We are making the assumption that, based on the horizontal distance between the
image point with xshot, signal can only be formed with a particular aperture angle
range.

Although equation 9 is only true in 2D, an equivalent expression in 3D that include
the reflector’s tilt exist. For this praticular dataset, the dipping along the crossline
direction is minimal. An equivalent filtering procedure involving khy can be applied
in 3D when the crossline dip is signicant.

Figure 6 shows the result of extended domain filtering on a single prestack sub-
surface offset image gather. Most of the noise is removed above the salt reflection at
z = 4000m. Figure 7 shows an enlarged section of Figure 6. The original prestack
RTM image (Figure 7a) is decomposed into the signal part (Figure 7b) and the noise
part (Figure 7c) by using extended-domain noise filtering. In our LSRTM algorithm,
the extended-domain filtering is used to remove some of the noise in the gradient. A
similar approach was used by Valenciano (2008b). Instead of filtering in the kz − khx
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space, Valenciano (2008b) filter out salt-related internal multiples in the kx − khx

wavenumber space.

Regularization that penalizes discontinuity along the reflec-
tion angle

We used the regularization term inClapp (2005) to penalize discontinuity along the
subsurface reflection angle axis. This can be done by multiplying the factor hx onto
the ODCIG. We represent the regularization operator with D as shown,

εDp = εhxp(x, y, z, hx). (10)

In LSRTM, it can be added as a regularization term to help focus the subsurface-
offset energy to zero-offset. The value of ε is chosen such that the model fitting
term is roughly about 5 percents of the data fitting term at the first iteration. As
the data-fitting residual decreases over iterations, the relative contribution from the
regularization increases. The final objective function looks like:

S(p) = ‖W↑
s(L↑Ap− d↑

obs)‖
2 + ‖W↓

s(L↓Ap− d↓
obs)‖

2 + ‖εDp‖2, (11)

where D represents the DSO operator. Notice that the DSO is acting on the precon-
ditioned variable p instead of the model m. By dampening on the preconditioned
variable p, the regularization term effectively penalizes large values in ‖εDA−1m‖2.
This effectively penalizes discontinuity at smaller reflection angle more than at larger
reflection angle.

RESULTS

Deimos 3D ocean bottom node dataset

The Deimos data set was recorded in an area approximately south-east of New Orleans
in the Gulf of Mexico. The field was discovered in 2002, with first oil production
in 2007 (Burch et al., 2010; Smit et al., 2008; Stopin et al., 2008). In 2007, Shell
Exploration and Production Company and their partner BP Americas commissioned
Fairfield Industries to conduct a 3D ocean bottom node survey over the Deimos field
in the Mississippi Canyon protration area. The survey was acquired with a 400 x 400
m grid of 807 ocean bottom nodes with a 50 x 50 m shot grid. Before the 3D survey
began, a pilot mini-survey of 16 ocean bottom nodes were deployed on a single 2D
line at their normal 3D grid locations (Hays et al., 2008). A swath of seven dual-
source sail lines nearest the node line were shot. This gives fourteen source lines on
the nominal 50x50 m grid for about 3300 shots. Figure 8 shows the location of the
sources and the receivers.
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Figure 5: A prestack subsurface offset image gather with a single node located at
x=54350 m and y=34800 m. The image cube is displayed at a constant crossline
slice of y=54350 m and with the horizontal slice displayed (a) to the left, (b) at the
center, and (c) to the right of the horizontal shot location. Notice how the energy in
the depth-offset panel is tilted based on its relative position from the source. [CR]
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Figure 6: The same prestack subsurface offset image gather from Figure 5 with the
horizontal slice displayed at x=54750 m (a) before filtering (b) after filtering, and (c)
filtered noise. The sum of (b) and (c) should be the same as (a). [CR]
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Figure 7: An enlarged section of Figure 6 (a) before filtering, (b) after filtering, and
(c) filtered noise. The sum of (b) and (c) should be the same as (a). [CR]

Figure 8: The acquisition geometry for the Deimos ocean bottom data set. The 14
source lines span a 50 x 50 m grid. The 16 ocean bottom node receivers are deployed
on a 2D line with an approximate spacing of 400 m. [NR]
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This is effectively a narrow azimuth survey where the horizontal (in-line) extent is
much greater than the vertical (crossline) extent. As a result, inline dipping reflectors
should be much better resolved than crossline dipping reflectors. Prior knowledge
of this field suggests that there are fewer structural variations along the crossline
direction compared to the inline direction. Figure 9 shows the migration velocity
model used in this study.

Figure 9: The migration velocity model used for the 16 nodes of the Deimos ocean
bottom node survey. [CR]

Pre-processing

Shell Exploration and Production Company performed some pre-processing of this
ocean bottom node dataset. PZ summation and multiple removal are performed to
extract the up- and down-going signal from the dataset. Figure 10 shows the up-going
and down-going data after pre-processing.
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Figure 10: One common receiver gather of the (a) up-going primary and (b) down-
going mirror data. [CR]
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The conventional imaging scheme for ocean bottom node datasets migrate only
the down-going mirror (Ronen et al., 2005; Dash et al., 2009) signal. Often time,
more care is given to the down-going mirror signal than the up-going signal. We
observe that the down-going data is better separated than the up-going data. Figure
11a shows the imaging result when we apply the down-going migration operator onto
the up-going data. We can represent this mathematically with:

mxalk = LT
↓ d↑. (12)

Figure 11b shows the image from applying the down-going migration operator onto
the down-going data. We can identify some of the events that are presence in either
of the two images. For example the reflectors annotated in Figure reffig:xtalkdeimos
can be found in both images. This suggests that some residual down-going energy
remains in the up-going data.

When unaccounted energy is present in the field dataset, it compromises both
the RTM and the LSRTM results. In the LSRTM case, the inversion will adjust the
solution to try to explain some of the crosstalk energy in the data. To alleviate this
problem, I have applied the extended domain noise filtering scheme to remove some
of the unwanted energy in the image space.

Imaging with a single mode

In conventional imaging, the down-going mirror signal is used for migration because
it provides a wider illumination area. Often time, the up-going signal is not used
in imaging. This is because the illumination area of the primary reflection is often
much narrower than that from the mirror reflection. Figure 12 shows the relative
illumination area (highlighted in yellow) of the primary and mirror events. The mirror
signal can clearly illuminate the sea-bottom region much better than the primary
signal.

Figure 13 shows the RTM image using the primary signal and the mirror-only
signal. Notice that the illumination area between Figure 13a and b is not as dramat-
ically different as described by Figure 12. This is because the lateral extend of the
source grid is only slightly larger than the lateral extend of the receiver grid along
the inline direction. Although the illumination between the up-going and down-going
signals are similar for this survey, joint-imaging could still be beneficial in terms of
higher signal to noise ratio for the image. I will show you some of the joint imaging
results in the next section.
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Figure 11: Image depicting crosstalk energy when applying the down-going migration
operator onto the up-going data; mxalk = LT

↓ d↑. [CR]
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Figure 12: The relative illumination area (highlighted in yellow) of the (a) primary
and (b) mirror events for ocean bottom node geometry. [NR]

Joint imaging of up- and down-going ocean bottom signals
with LSRTM

Figure 14a shows the joint-RTM image and Figure 14b shows the joint-LSRTM image.
The joint-RTM image is essentially the first gradient of the joint-LSRTM algorithm.
It can also be viewed as the sum of the up-going RTM image and the down-going RTM
image. As compared to conventional mirror image (Figure 13b) and the joint-RTM
image (Figure 14a), the joint-LSRTM image has better relative amplitude balance for
the deeper reflectors.

One challenging area to image in the Deimos field is up against the Antares salt.
Burch et al. (2010) proposed using 3D VSP survey to improve illumination in that
region (Figure 15). We will look at how joint-LSRTM performs in a nearby region as
depicted by Figure 15.

Figure 16 shows an enlarged section near the Antares salt for the down-going
RTM and down-going LSRTM images. Figure 17 shows the corresponding enlarged
sections of the joint-RTM and joint-LSRTM images. Comparing the two figures, we
can see that the joint-LSRTM has improved illumination near the salt flank. The
side-panel in Figure 17b shows that the energy is more focused at zero-subsurface
offset for reflectors close to the salt flank.
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Figure 13: Subsurface offset RTM image gather using (a) the up-going primary signal
and (b) the down-going mirror signal. The front face shows the image gather at zero-
subsurface offset. [CR]
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Figure 14: (a) joint-RTM image. (b) joint-LSRTM image at iteration 25. [CR]
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Figure 15: A migration image of the 2007 survey with 807 ocean bottom nodes. The
Deimos field is indicated by the oval below the Antares salt. This figure is from Burch
et al. (2010). [NR]
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Figure 16: A enlarged section near the Antares salt for (a) the down-going RTM
image and (b) the down-going LSRTM image at iteration 25. [CR]
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Figure 17: A enlarged section near the Antares salt for (a) the joint-RTM image and
(b) the joint-LSRTM image at iteration 25. Notice that the reflectors against the salt
flank near the Deimos field are better illuminated. The side-panel in (b) shows that
the energy is more focused at zero-subsurface offset. [CR]
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DISCUSSION

The result from Figure 17 is encouraging. However, more investigation is needed to
study the contribution from the up-going and the down-going signal onto the joint-
image. There are several future directions that we would like to pursue. One would
be to apply target oriented data space weighting that would enphasize the subsalt
region. Another direction is to use iterative reweighted least-squares for the inversion.

CONCLUSION

Least-squares reverse time migration is an advanced imaging technique that can im-
prove imaging with better relative amplitude information, fewer artifacts, and reduced
noise. When applying to field data sets, the recorded data departs from the theory
and assumptions of the LSRTM operator. It is found that a simple data-fitting
objective function in LSRTM is not sufficient. We used Laplacian preconditioning,
salt-dimming data weighting, noise filtering in the extended domain, and DSO regu-
larization to condition the LSRTM algorithm when applied to the 3D Deimos ocean
bottom field data set. By comparing the joint-LSRTM image of up- and down-going
signal with the conventional down-going RTM or down-going LSRTM images, we see
better relative amplitude balance for the reflectors and improved illumination near
the Antares salt area.
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