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ABSTRACT

To reduce numerical spatial dispersion and find an optimal set of finite difference
coefficients for a given frequency bandwidth and a range of velocities, we minimize
the weighted sum of the squared error between the finite difference operator and
the continuous operator. We reformulate the optimization problem in terms of
frequency and velocity, which allows us to weight our cost function according
to the frequency content of our injected source and to the velocity distribution
present in our model. We show that our method gives promising results on
a constant velocity model and a constant-thickness, linearly-increasing velocity
model. However, without selecting the appropriate portion of the domain on
which we optimize, the error at mid-range frequencies may be increased as a
trade-off for reducing the error at high frequencies. This problem has been noted
in previous work but not emphasized strongly enough. In this paper, we show
numerical examples demonstrating this critical point.

INTRODUCTION

The method of finite differences (FD) is commonly used to solve the wave equation in
seismic modeling, migration, and inversion. In general, FD will introduce deviations
that make parts of the wavefield travel at a different velocity than the true medium
velocity. This numerically-induced dispersion is more severe in the presence of high
frequencies (Dablain, 1986). Reduction of the numerical dispersion can be achieved
by using a finer spatial sampling or by using higher orders of approximation, both of
which increase the computational cost.

A number of approaches have been taken to reduce numerical dispersion without
requiring either a fine grid or higher orders. Holberg (1987) tried to correct for the
error in group velocity caused by the differencing scheme. Etgen (2007) revisited the
problem and corrected for phase-velocity error, taking a view that spatial and tem-
poral dispersion could be used to compensate for each other. Zhang and Yao (2013)
treated spatial dispersion separately and optimized the FD spatial derivative operator
coefficients by reducing the maximum absolute error over some wavenumber range.
Their approach assumes that temporal dispersion is either insignificant, possibly due
to the use of a very small time step or a higher order of temporal approximation,
or can be corrected separately. Correcting separately for the temporal dispersion is
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investigated in a companion article in this report (Li et al., 2013). We follow a path
similar to that of Zhang and Yao, but parameterize our calculations in terms of ve-
locity and frequency to take advantage of data-dependent values and limits for these
physical parameters with aim of obtaining more accurate results at equivalent FD
computational cost.

OPTIMIZATION OF FD COEFFICIENTS

In the Fourier domain, the error between the finite-difference and the continuous,
second-order spatial differentiation operators has the form:

E = OFD(k)−Ocont(k) =

 1

∆2

M/2∑
n=−M/2

ane
ink∆

− (−k2), (1)

where ∆ is the spatial discretization size, M is the order of approximation, an are
constant coefficients, and k is the wavenumber. Because the same set of coefficients is
used for all spatial axes, here k can be considered the wavenumber in any direction.

Following Zhang and Yao (2013), we require our FD constant coefficients to satisfy
a certain set of conditions:

symmetry: a−n = an, (2)

zero mean:
∑M/2

n=−M/2 an = 0, (3)

monotonically decreasing amplitude: |an| > |an+1|, (4)

alternating signs: anan+1 < 0 . (5)

The first two conditions, equations 2 and 3, lead to a relation for the center coefficient
a0 = −2

∑M/2
n=1 an. As a result, the FD operator simplifies to

OFD =
2

∆2

M/2∑
n=1

an[cos(nk∆)− 1]. (6)

Another condition the FD coefficients should satisfy, which was not acknowledged
in Zhang and Yao’s work, comes from the fact that as the spatial step size is reduced
toward zero, the FD operator should become a better and better approximation of
the continuous operator. Mathematically, this means:

lim
∆→0

2

∆2

M/2∑
n=1

an[cos(nk∆)− 1] = −k2, (7)

which implies that
M/2∑
n=1

n2an = 1. (8)
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The conventional FD coefficients obtained from Taylor series approximation satisfy
this set of conditions. These conditions reduce the number of free coefficients to
M/2− 1.

Using the exact dispersion relation k = 2πf/v, we form our cost function as a
weighted sum of squares of the error function (equation 1):

C =
∑
f,v

W1(f)W2(v)

2

M/2∑
n=1

an[cos(n
2πf

v
∆)− 1] + ∆2(

2πf

v
)2

2

, (9)

where W1(f) and W2(v) are the weighting functions corresponding to the contribu-
tions of frequency and velocity in the cost function. In equation 9, the cost function
has been multiplied by ∆2 to make it dimensionless (Zhang and Yao, 2013).

In this work, we have used a simulated annealing algorithm to find the minimum
of the cost function. As did Zhang and Yao, we chose to use simulated annealing
because of its ability to easily handle the non-linear constraints in equations 4, 5, and
8. We end the search when the cost stablizes at a value that is significantly smaller
(by one order of magnitude) than those calculated by Zhang and Yao’s coefficients
for a large number of iterations.

RESULTS AND DISCUSSION

The parameters for our modeling examples are presented in Table 1.

Model Velocity Temporal ∆t Spatial ∆x
(m/s) order (ms) order (m)

Constant velocity 2400 4th 1 8th 5
Constant thickness 1500-3300 4th 1 8th 5

Table 1: Modeling parameters we use in our examples.

Since numerical dispersion is most problematic at high frequencies, for all of the
following examples we chose a Ricker wavelet with fundamental frequency of 80 Hz
as our source. The corresponding weighting function, W1(f) in equation 9, is its
amplitude spectrum. For the case of constant velocity, we applied our method with
v = 2400 m/s. Figure 1 shows the difference between the FD operator and the
continuous operator (E in equation 1) as a function of frequency for different sets of
coefficients. In this example, we have experimented with different percentages of the
source bandwidth on which we compute and minimize the cost function. From this
figure, we observe that the conventional FD coefficients are good up to approximately
80 Hz, while with our coefficients optimized on 50% of the bandwidth (pink curve in
Figure 1), the error starts to become significant at about 110 Hz. Using Zhang and
Yao’s coefficients, this limit is pushed a little further to 120 Hz. As we enlarge the
optimized domain, we start to introduce more error in the mid-range frequencies as

SEP–150



Le et al. 4 FD spatial dispersion

a trade-off for reducing the error at the high end of the source bandwidth. This was
also observed by Etgen (2007) and by Zhang and Yao (2013).

Figures 2 and 3 compare the wavefields and wavelets obtained by modeling with
different sets of coefficients, for which the errors are shown in Figure 1. In both
Figure 2 and Figure 3, going clockwise from the top-left quadrant, as the tailing
dispersion (inside the true wavefront) is reduced, the leading dispersion (outside the
true wavefront) becomes worse. This can be explained by the behavior of the error
function we observed in Figure 1. The tailing dispersion is caused by the high-
frequency waves, which have high wavenumber and travel more slowly, while the
leading dispersion is caused by the mid-range frequency waves, which have lower
wavenumber and travel faster (Dablain, 1986).

We also tested our optimization scheme on a constant-thickness 11-layer medium
with velocity increasing linearly from 1500 m/s at the top to 3300 m/s at the bottom.
Figures 4 and 5 compare the error between using conventional, Zhang and Yao’s
coefficients, and coefficients optimized on 100% of the source bandwidth a range of
velocities. We can observe from both of these figures that the error is significantly
large at high frequencies and low velocities. Figure 5b shows how the error changes
with frequency for 11 velocities in our model. As the velocity changes, the position of
the ”error bumps” also changes. Unfortunately, as we shall see shortly, this is a red
herring, that is, an artifact of the display. In fact, while we have shown there is value
in designing the operator coefficients in the f − v domain, those coefficients remain
coefficients of a single spatial finite difference operator.

Comparisons of the wavefields and wavelets for the layered-medium example are
shown in Figures 6 and 7. Similar to the case of constant velocity, as the optimized
domain increases, we observe the reduction of the tailing dispersion and amplification
of the leading dispersion. Here we did not apply any weighting to the velocity part
of the cost function, W2(v) = 1, because the layer thicknesses were constant.

No cancellation without temporal dispersion

One topic of discussion has been how we could achieve partial cancellation of spatial
dispersion error in the presence of multiple velocities (Figure 5b); in particular, would
we need to design separate spatial second derivative approximations for each of a range
of velocities, or would a single approximation yield cancellation by itself.

The key step was to understand how to separate spatial dispersion from temporal
dispersion in our analysis. In essence, we asked how our wave extrapolation behaves
when we treat t as a continous variable. In this setting, we can simply replace ∂2

t

with −ω2 in designing our spatial operator. If we let κ be the approximation to the
true wavenumber k in our finite difference, then the wave equation we solve is

Ptt = −v2(κ2
x + κ2

z)P = −v2|~κ|2P (10)
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Figure 1: Error between the FD operator and the continuous operator (E in equation
1) as a function of frequency for different stencils. Percent notation indicates the
coverage of the bandwidth on which we try to minimize the cost function. Increasing
the coverage of the bandwidth boosts the mid-range-frequency error as a trade-off for
reducing the error at high frequency. [ER]

Figure 2: Comparison of wavefields (left) and of the wavelets (right) modeled with
constant velocity using different sets of coefficients: conventional, Zhang and Yao’s,
optimized on 50%, and 70% of the bandwidth. [ER]
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Figure 3: Comparison of wavefields (left) and of the wavelets (right) modeled with
constant velocity using different sets of coefficients optimized on 70%, 80%, 90%, and
100% of the bandwidth. [ER]

(a) (b)

Figure 4: Error between the FD operator and the continuous operator as a func-
tion of frequency and velocity for: (a) conventional coefficients and (b) Zhang and
Yao’s coefficients. Carefully observed around the 120-Hz regions, Zhang and Yao’s
coefficients do a slightly better job than the conventional FD coefficient [ER]

SEP–150



Le et al. 7 FD spatial dispersion

(a) (b)

Figure 5: Error between the FD operator and the continuous operator as a function
of frequency and velocity for coefficients optimized on 100% of bandwidth and: (a) a
range of velocities from 1500-3300 m/s and (b) 11 velocities that are used for wavefield
modeling later. Notice the movement of the ”bumps” in the error plane and curves
as velocity changes. [ER]

Figure 6: Comparison of wavefields (left) and of the wavelets (right) modeled in a
constant-thickness layered medium using different sets of coefficients: conventional,
Zhang and Yao’s, optimized on 50%, and 70% of the bandwidth. [ER]
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Figure 7: Comparison of wavefields (left) and of the wavelets (right) modeled in a
constant-thickness layered medium using different sets of coefficients: 70%, 80%, 90%,
and 100% of the bandwidth. [ER]

with solution being a linear combination of

eiv|~κ|t and e−iv|~κ|t .

Given this, taking steps of ∆t1 at velocity v1, ∆t2 at velocity v2, etc. yields the
cumulative phase shift

φtot = ±|~κ|
∑

i

vi∆ti , (11)

which differs from the continuous solution phase shift by the factor |~κ|/|~k|.

Conclusion: The bumps and wiggles in the error of a single spatial second-derivative
operator sum in phase in the absence of temporal dispersion.

No cancellation with temporal dispersion

Having established that a single spatial second-derivative approximation would not
yield phase error cancellation without temporal dispersion, we included temporal
dispersion by examining the phase error as a function of one (large) time step over a
range of medium velocities.

Appendix B of Le and Levin (2013) provides the appropriate framework for the
analysis. Substituting the scalar operator −v2|~κ|2 for L in that appendix, we find
that for stable time steps our eigenvalues are the complex conjugate pair

λ =
2− v2∆t2|~κ|2 ±

√
(2− v2∆t2|~κ|2)2 − 4

2
(12)
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on the unit circle with corresponding eigenvectors (ignoring normalization)(
λ1

1

)
and

(
λ2

−1

)
. (13)

Looking now at the all-important phase φ of the eigenvalues (equation 12), we
have

cos φ =
2− v2∆t2|~κ|2

2
(14)

sin φ = ±
v∆t|~κ|

√
4− v2∆t2|~κ|2

2
. (15)

For a practical comparison, we took the 16th order approximation of Zhang and
Yao (2013) for a spatial 10-meter discretization and calculated the phase error after
a time step of 2 ms, nearly the largest stable time step in this setting. The plot of
the phase error is shown in Fig. 8. Even the most cursory examination of that result
shows that the velocity-dependent errors are always in the same direction.

 

Figure 8: Finite-difference phase error after one time step of 2 ms on a 10-meter spac-
ing grid using an explicit (2,16) finite difference scheme and varying the propagation
velocity from 1500 to 3000 m/s. Quite clearly the phase errors for different velocities
will not even partially cancel out. [ER]

Conclusion: The bumps and wiggles in the error of a single spatial second derivative
operator sum in phase in the presence of temporal dispersion.

Conclusion: We need to design multiple spatial operator approximations in order
to obtain some cancellation of spatial dispersion as we step in time. This will a
significant focus of our future work.
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CONCLUSIONS

We have reformulated the optimization problem for the FD constant coefficients in
terms of velocity and frequency. This allows us to weight the cost function accord-
ing to the frequency content present in our data and the velocity distribution in our
model. As a result, we gain the flexibility to design an optimal FD coefficients that
are suitable for a particular imaging or inversion problem. We have demonstrated
that our method works for both a constant-velocity model and a constant-thickness,
linearly increasing velocity model. However, without carefully selecting an appro-
priate portion of the optimization domain, we may boost the low- and mid-range
frequency dispersion. Using a better minimum-searching algorithm or higher-order
stencils might help increase this optimization coverage. Although in this work we use
the standard FD grid, our optimization design can be straightforward to apply for
more complicated FD schemes, such as staggered schemes, which have been recently
used for modeling in anisotropic media (Chu, 2012).
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