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ABSTRACT

Numerical dispersion in finite difference modeling produces coherent artifacts,
severely constraining the resolution of advanced imaging and inversion schemes.
Conventionally, we deal with this by increasing the order of accuracy of the fi-
nite difference operators and resign ourselves to paying the high computational
cost that incurs. But is there a way to reduce such dispersion without increasing
cost or, conversely, decrease the cost without increasing numerical dispersion?
To tackle this, we separate the finite difference numerical dispersion into pure
time and pure space dispersion and address them independently. In this article,
we focus on time dispersion. We show that finite difference time dispersion is
virtually independent of the medium velocity and the spatial grid for propaga-
tion, and only depends on the time stepping scheme and the propagation time.
Based on this, we devise post-propagation filtering to collapse the time disper-
sion effect of the finite difference modeling. Our dispersion correction filters are
designed by comparing the input waveform with dispersive waveforms obtained
by 1D propagation of that waveform forward in time. These filters are then
applied on multi-dimensional shot records to eliminate the time dispersion by
two schemes: (1) stationary filtering plus interpolation and (2) non-stationary
filtering. We show with both 1D and 2D examples that the time dispersion is
effectively removed by our post-propagation filtering at nearly no additional cost.

INTRODUCTION

Finite difference (FD) modeling for wave propagation has been widely used for ad-
vanced imaging techniques such as least squares reverse time migration (Lambare
et al., 1992; Nemeth et al., 1999; Dai et al., 2010; Wong et al., 2011) and inversion
schemes such as waveform impedance inversion (Kelly et al., 2010; Plessix and Li,
2013) and full waveform inversion (Tarantola, 1987; Virieux and Operto, 2009). In
these methods, wavefields modeled by finite difference are compared to recorded data
which, of course, contain no computational numerical dispersion. As a result, a great
deal of the cost of these methods arises from the effort to make these comparisons
meaningful by reducing finite difference dispersion.

Much effort has been put into suppressing the numerical dispersion of the FD
methods. Kosloff and Baysal (1982) used the spatial Fourier transform to eliminate
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all errors from FD approximation of the spatial derivatives, and chose a small enough
time step to limit the numerical time dispersion. However, this method requires many
Fourier transforms at each time step and also a rather small time step, and hence has
been considered prohibitively expensive in practice. Therefore, many authors (Hol-
berg, 1987; Fornberg, 1998; Etgen, 2007) set up an optimization problem to generate
FD coefficients that minimize the misfit between the numerical phase velocity and
the theoretical phase velocity for some range of frequency and velocity. Nonetheless,
with computational cost controlled by the number of coefficients that are optimized,
achieving both accuracy and efficiency at the same time is still challenging.

Recently, Stork (2013) proposed to separate the temporal and the spatial FD
dispersion. Here we follow this approach, albeit only tackling the temporal dispersion
in this article. For discussion of the spatial dispersion component, please refer to a
companion paper Le et al. (2013). In this paper, we first analyze the source of
the time dispersion and show that the time dispersion is independent of the spatial
sampling and the velocity of the medium. To eliminate the space error associated
with propagation we use a Fourier modeling method and propagate a wavelet through
an arbitrary medium. Then we design the filters using 1D Fourier modeling results
at discrete propagation times. These filters are applied to both 1D and 2D shot
records to remove the time dispersion. We test two different filtration schemes: (1)
stationary filtering plus interpolation and (2) non-stationary filtering. The results
show that both filtration schemes can eliminate the time dispersion on a shot record
with nearly no additional cost.

THEORY

Assuming constant density and a source free medium, the acoustic wave equation
may be written

c2(
∂2

∂x2
+

∂2

∂y2
)P =

∂2

∂t2
P, (1)

where P is the pressure field and c(x, y) is the velocity.

Both sides of equation 1 are approximated by numerical discretization: the left-
hand side in space and the right-hand side in time. Using notation similar to Kosloff
and Baysal (1982), the finite difference equation we are solving is

c2LP n(i, j) =
1

∆t2
[
P n+1(i, j)− 2P n(i, j) + P n−1(i, j)

]
, (2)

where P n(i, j) represents the value of the pressure field at time t = n∆t at spatial
location x = x0 +(i− 1)∆x, y = y0 +(j− 1)∆y. The term c2LP n(i, j) represents the
numerical approximation of the left-hand side.

Equation 2 represents an explicit, second-order time differencing scheme that is
widely used in finite difference codes. Both the left-hand and the right-hand side of
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equation 2 contain errors with respect to equation 1. We call the error from the left-
hand side approximation spatial dispersion, and from the right-hand side temporal
dispersion.

Conventionally, temporal dispersion can be reduced either by decreasing ∆t or
increasing the order of the finite difference (Figure 1). Both options significantly
increase the computational cost. Stork (2013) suggests that temporal dispersion is
independent of the medium velocity and the spatial grid for propagation. We verify
this idea by numerical tests. Figure 2(a) shows the 1-D modeling results at different
propagation times when the second-order time stepping is used. The spatial derivative
is computed in the Fourier space to avoid any spatial dispersions. In this example,
∆t = 2ms, c = 2000m/s, ∆x = 10m. It is clear that the dispersion effects get stronger
with the longer propagation time. Figure 2(b) shows the same modeling results as in
figure 2(b), only with c = 1000m/s, ∆x = 6m. Despite the differences in the spatial
sampling and the medium velocity, the temporal dispersion remains the same as long
as the ∆t and the propagation time are the same. Therefore, inverse filters can be
designed to remove the velocity-independent dispersions after propagation.

Figure 1: Wavefield from 1-D modeling using the Fourier method with (a) second-
order time stepping and (b) fourth-order stepping. Time step is 2ms in both cases.
Severe time dispersions are removed at twice the computation cost. [ER]

We estimate the inverse filters f(τ, t) by comparing the waveform s(τ, t) with the
original waveform s(τ, 0) in the Fourier space:

F (ω, t) =
S(ω, 0)

S(ω, t) + ε
, (3)

where F (ω, t) and S(ω, t) are the Fourier representation of f(τ, t) and s(τ, t), respec-
tively. A small number ε is added to stabilize the division. The final inverse filters are
band-limited within the frequency range of the original waveform. We only estimate
the inverse filters at discrete propagation times. To apply these discrete filters on
2-D or 3-D continuous data record, we can choose from the following two schemes:
stationary filtering plus interpolation, or non-stationary filtering.
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Figure 2: 1-D modeling results by Fourier method with different model parameters.
In (a) c = 2000m/s, ∆x = 10m. In (b) c = 1000m/s, ∆x = 6m. The dispersion
effects are the same. [ER]

Stationary filtering plus interpolation (SFPI)

Given a record d(t, x) and inverse filters f(τ, ti), we can first apply each of the inverse
filters to the whole record:

di(t, x) = d(t, x) ∗ f(τ, ti); (4)

this is a trace-by-trace operation. On each filtered record di(t, x), only the waveforms
around t = ti are correctly filtered. The other parts of the record are either over or
under compensated.

We then interpolate among the filtered records to obtain the temporal dispersion
free record d̂(t, x):

d̂(t, x) =
∑

i

hidi(t, x), (5)

where h(i) are the interpolation weights for each filtered records. In this paper, we
use simple linear interpolation weights.

Non-stationary filtering (NSF)

In a non-stationary filtering scheme, we use a moving window, which has the same
length as the filter, to select the data patch to convolve with the filter defined at the
center of the moving window. We overlap the moving windows to ensure smooth tran-
sitions across the data patch. Mathematically, the filtering process can be formulated
as follows:

d̂(t, x) =
1

N

∑
i

(Wid(t, x)) ∗ f(τ, twi ), (6)
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where Wi is the ith window acting on the data record, twi is the center of this window,
and N is the number of overlaps before moving to a new data patch.

Assuming the dispersion varies smoothly in time, we can build the filters at any
propagation time by interpolating the estimated inverse filters as follows:

f(τ, twi ) =
∑

i

k(i)f(τ, ti), (7)

where k is the set of interpolation weights. The same linear interpolation scheme is
used.

More advanced non-stationary filtering schemes (Margrave, 1997; Fomel, 2009)
can be adapted in practice; however, in the examples we present in this paper, this
simple patching method yields satisfactory results.

EXAMPLES

We test the proposed post-propagation filtering scheme on both 1-D and 2-D exam-
ples. All spatial derivatives in the numerical modeling are performed in the Fourier
space to avoid the spatial dispersion. Figures 3(a) and 3(b) show the second-order
and the fourth-order modeling results with ∆x = 10m and c = 2000m/s. Dispersion
is eliminated at twice the cost of second-order time stepping. Figure 3(c) and (d)
show the second-order time stepping results after dispersion correction by SFPI and
NSF, respectively. After the filtering, dispersion is eliminated at nearly no additional
cost.

Figure 4 repeats the same modeling and filtering process with a different spatial
sampling (6m) and a different velocity (1000m/s). Figure 4(a) shows the same disper-
sion effects as figure 3(a). We use the inversion filters estimated from 3(a) to process
the data. Figures 4(c) and (d) show that the dispersion correction filters are effective
as long as the time step ∆t and the propagation time remain the same.

Figure 5 shows the modeling and filtering results on a 2D record. Panels (c) and
(d) show that both filtering schemes can remove the dispersion effects on the shot
record without increasing the FD order in time. Figure 6 shows a zoom-in view of
the shot record in figure 5. All the parallel events leading the main lobe are temporal
dispersions. The post-propagation filterings remove them all and perfectly match the
fourth-order modeling results.

Figure 7 shows the later waveform at receiver x = 2000m. The wave packet be-
tween 9s and 9.5s is severely dispersed so that any waveform-based inversion scheme
would fail. Post-propagation filterings restore the phase of the waveform at no addi-
tional cost.
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Figure 3: One-D modeling and filtering results in TK domain with 10m spacing and
2000m/s velocity. Waveforms are shown after being propagated for 0sec, 0.5sec, 2sec,
6sec and 11sec. (a): second-order time stepping results. Leading time dispersion gets
greater with propagation time. (b): fourth-order time stepping results. Dispersion
is eliminated at twice the cost of second-order time stepping. (c): second-order time
stepping results after dispersion correction by SFPI. (d): second-order time stepping
results after dispersion correction by NSF. In (c) and (d), dispersion is eliminated at
nearly no additional cost. [ER]
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Figure 4: One-D modeling and filtering results in TK domain with 6m spacing and
1000m/s velocity. Waveforms are shown after being propagated for 0sec, 0.5sec, 2sec,
6sec and 11sec. (a): second-order time stepping results. Dispersion gets greater with
propagation time. The dispersion effect is the same as in figure 3(a). (b): fourth-
order time stepping results. Dispersion is eliminated at twice the cost of second-order
time stepping. (c): second-order time stepping results after dispersion correction by
SFPI. (d): second-order time stepping results after dispersion correction by NSF. In
(c) and (d), the same set of filters applied in figures 3(c) and (d) are applied here.
[ER]
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Figure 5: Shot record by two-dimensional TK domain modeling. (a) Shot record with
2nd-order modeling. Time dispersion gets greater with time. (b) Shot record with
4th-order modeling. Dispersion was eliminated by twice the cost of 2nd-order time
stepping. (c) Shot record (a) after dispersion correction by SFPI. (d) Shot record (a)
after dispersion correction by NSF. [ER]
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Figure 6: Zoom-in view of a shot record by two-dimensional TK domain modeling.
(a) Shot record with 2nd-order modeling. Time dispersion gets greater with time.
(b) Shot record with 4th-order modeling. Dispersion was eliminated at twice the cost
of 2nd-order time stepping. (c) Shot record (a) after dispersion correction by SFPI.
(d) Shot record (a) after dispersion correction by NSF. [ER]
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Figure 7: Full waveform at receiver x = 2000m by two-dimensional Fourier domain
modeling. Dispersion gets greater in time in the 2nd-order time stepping. The en-
ergy packet between 9s and 9.5s is severely distorted by dispersion in the 2nd-order
modeling result. Post-propagation filtering can remove the dispersion at nearly no
additional cost. [ER]
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CONCLUSIONS

We have developed two post-propagation filtering schemes to remove the temporal
dispersion caused by the inaccuracy of the second-order FD approximation to the time
derivatives when solving the wave equation. We show that the temporal dispersion
is independent of the medium velocity and spatial sampling, which is the reason why
post-propagation filtering is possible. We design two different filtering schemes: sta-
tionary filtering plus interpolation and non-stationary filtering. The filtering results
on both 1-D and 2-D second-order modeling show that we can successfully remove
the dispersion artifacts at nearly no additional cost.

Although the filtering results of both schemes are similar, the SFPI scheme in-
volves many (the number of filters) passes of convolution across the data record,
whereas the NSF scheme involves only one convolutional pass. Furthermore, the
SFPI scheme interpolates among multiple copies of the data record, whereas the NSF
scheme interpolates among the filter coefficients. Therefore, considering both the
computation and memory requirements, the non-stationary filtering scheme is more
suitable for large scale computations.
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