Designing an object-oriented library for large scale
iterative inversion

Chris Leader and Robert Clapp

ABSTRACT

A flexible library that allows the user to apply a variety of geophysical imag-
ing/inversion techniques and leverage a selection of solvers can be a very power-
ful tool. However, constructing this to work in multiple dimensions and with a
variety of options is a difficult task. The abstraction provided by object-oriented
languages helps us to separate the geophysics from the solver, to use the same
function calls for models of different dimensions and to create a single frame-
work that has the potential to apply a range of imaging or inversion methods on
heterogeneous computing systems.

INTRODUCTION

Geophysical inversion acts to ‘un-do’ (or ‘invert’) certain physics of the Earth in or-
der to estimate Earth properties. A data-set is provided that measures perturbations
which relate to subsurface properties or interactions - these could be well-log data,
GPS data, tilt data, seismic data, etc. Typically one can then forward model or sim-
ulate these physics over an estimated model and attempt to estimate our provided
data set. The closer we get, the better our model and physics approximations. An
inverse process endeavours to improve this model such that our recorded data are bet-
ter represented. Given data sets can often be tera-bytes in size, and the appropriate
model sampling can result in models that are giga-bytes or tera-bytes in size. Thus
matrix-based processes become impractical and we must turn to iterative methods
(Jupp and Vozoff, 1975).

Using object-oriented programming, we can separate the physics from the solver.
This can be done using C++ (Nichols et al., 1993), Fortran 2003 (Clapp, 2010), java
(Schwab, 1998) or Python (Clapp, 2005), amongst others. Furthermore, any contem-
porary iterative imaging and inversion methods have the same basic mathematical
functions at their core - these are two-way wave propagation, correlation (imaging and
extended imaging) and the vector operations (essentially a series of dot products) that
comprise our solvers. A single library that contains these operations (and other neces-
sary, less computationally intensive functions) can be constructed to permit minimal
additional coding or effort needed to perform, say, Reverse Time Migration (RTM,
Baysal et al. (1983)), linear inversion (occasionally called LSRTM, Nemeth et al.
(1999)) or Full Waveform Inversion (FWI, Tarantola (1984)). This library can also

SEP-150



Leader and Clapp 2 Object oriented libraries

be designed to accommodate modern distributed networks and heterogeneous com-
puting, including GPUs (Foltinek et al., 2009). This is especially desirable for a group
such as SEP, who possess several heterogeneous computing systems and perform many
techniques that contain wave propagation and wavefield correlation at their core.

There has been an ongoing effort at SEP to combine our common interests into
one framework and the approach discussed herein has used C++ and an appropriate
class heirarchy. This paper will discuss aspects of this class-based library, the benefits
of this construction, and where it is headed in the future.

OBJECT ORIENTED INVERSION

There are several methods to solve geophysical inverse problems. The majority fall
under two categories - statistical methods (Duijndam, 1988) or gradient methods
(Claerbout, 1999). Statistical/Bayesian methods can be useful when combining mul-
tiple sorts of data or for problems that typically contain very rough objective surfaces.
A major advantage is that they allow us to include a priori information about our
model. In gradient based methods we aim to find the model m that minimizes the dif-
ference between our estimated data, d.s, and our observed data, d,s. This amounts
to trying to minimise our residual vector, r, defined as

Lm-d,,=r~0 (1)

where L is a linear operator. In the simplest case we can use L and its adjoint L/ in
a solver; this will be discussed in more detail in the next section.

Our object oriented library seeks to solve a variety of problems of this nature.
L does not necessarily have to be linear in this inversion scheme. Provided we use
a non-linear solver (and typically multiple forward modeling processes), this same
framework can be used to solve non-linear geophysical inverse problems.

By defining our vectors (m and d) and operators (L, which could be a cascade of,
say, A and B) in an object-oriented fashion, we can easily separate the physics, L,
from the update scheme. Such a method also keeps the coding simple and flexible.
Furthermore, we can use a basic set-up and framework for applying many different
geophysical techniques (RTM, LSRTM, FWI, etc). Especially since RTM is simply
the first gradient of LSRTM, and LSRTM is essentially the inner-loop in FWI.

SOLVERS

The simplest solver is steepest descent. More complex solvers are almost all built on
this basic approach, so we can use this as a case study for our library. Assuming our
initial residual, r, is simply —d (zero starting model), we apply the adjoint of our
operator L to obtain our gradient vector g. Next we map this gradient back into the

SEP-150



Leader and Clapp 3 Object oriented libraries

data-space by applying L, obtaining rr. We then perform a series of dot-products to
estimate a scaling factor, «, that makes r 4+ rr as small as possible. This process is
repeated until r is sufficiently small or we run out of time. This can be summarised
as

Algorithm 1 General linearised inversion
r = Fmg — dgs
while iter < niter; iter++ do
g=Fr
rr = Fgg
(m,r) =stepper(m,r, g, rr)
end while
Output m

where ‘stepper’ is our chosen solver.

Algorithm 2 Steepest descent (a possible ‘stepper’)

a = —dotproduct(g, rr)/dotproduct(g, g)
m-=m+ ag
r=r-+arr

As the pseudo-code suggests, the solver acts to update the model and the residual
by using g and rr. These are each scaled by a and then summed to m and r,
respectively. This solver does not need to know L, or any detailed properties about
m or d. In the case of updating the residual it only needs to calculate a dot-product,
to scale rr, and to add this vector to r.

More complicated solvers are generally comprised of these basic operations; they
often just remember details of previous scaling factors and gradients. For example,
the code for conjugate directions is only a few lines longer and uses the same three
functions.

IMPLEMENTATION IN CH+

Using C++ we can construct a hierarchy of classes. Each class has a series of functions
and variables that can be private or shared, and by making some functions abstract
we can name a series of methods that others classes can use and define. This paper
will not go into detail about all the classes and the hierarchy of the library, but it will
mention the vector and operator classes since these comprise our solver.

We know that for our linear solver we need three operations - dot-product, scale
and add. These are all functions that can be placed within our vector class, and by
keeping a level of abstraction we can use these same operations and function calls to
act on arrays of different dimensions. Other operations we can define in ‘vector’ are
‘clone,” 'zero,” and ’set.” These six operations allow us to do most of the necessary

SEP-150



Leader and Clapp 4 Object oriented libraries

operations on the vectors within our inversion. It is wise to also include some vector
‘tests’, such as checking whether two vectors being operated on belong to the same
space.

The operator class is constructed in a similar manner, although it is a little simpler.
In this case we define a forward and an adjoint, and then allow two functions that
set the ’domain’ of the operator and the ‘range’. These are essentially the dimensions
of the model and the data vectors, respectively. Calling an operator has three inputs
and a fourth optional input. Inputs are ’add’ (whether we want to zero the output
array or not), then the vector 'model” and the vector ’data.” The optional input is a
iteration number argument, as some techniques require the current iteration number.

Setting up our classes as such results in simple, readable code for the inversion.
The exact code for the solver looks as follows:

my_vector *r=data->clone_vec();

r->scale(-1.);

for(iter=0; iter < niter; iter++){
oper->adjoint(false,g,r,iter);
oper—->forward(false,g,rr,iter);
bool valid=st->steepest_descent(iter,m,r,g,rr,&val);

}

alpha=-r->dot (rr)/rr->dot(rr);
s->scale(g,alpha);
ss->scale(rr,alpha);
m->add(s) ;

r->scale(ss);

this keeps things simple and readable, and the actual code looks almost the same as
the pseudo-code discussed in the previous section. Note that the vectors here could
be 2D, 3D or higher (provided they have the same number of dimensions as each
other) and the operator could be any forward-adjoint pair. For example, this code
snippet could be performing a basic radon inversion, or FWI.

With the operators coded and the various dimensions and data initialized, calling
the solver and producing a result is as simple as:

step *st=new cgstep();

solver *solv=new solver(st,&data,&operator);
solv->solve(no_iter);

oc_float *result=(oc_float*) solv->return_model();
image.add(result);

SEP-150



Leader and Clapp ) Object oriented libraries

HETEROGENEOUS COMPUTING

We must also design these codes to work on a selection of computers, in particular
a single core node, a multi-core node, a multi-node network, single GPUs, multiple
GPUs on a single node, multiple GPUs across nodes, and out-of-core. It is possible
to keep a lot of details about the computing out of the majority of the operator and
solver code, however the distributed network code involves a lot more work with MPI.

For single node solutions (single or multi-core, single or multiple GPU) it is only
the propagation and the correlation that must be distributed across units. The solver
code does not have to change. Furthermore, the details of the decomposition can be
kept separate within these aforementioned routines. Provided the code is told which
method is desired, the majority of the operator does not have to change either.

Currently the library works with single and multiple GPUs on a given node. This
provides an incredible amount of computation power with few of the classic GPU
memory restrictions. Whether the user wants to use a single or multiple devices
is simply a command line argument. For multiple GPUs domain decomposition is
performed (Micikevicius, 2012); however all details of this are kept out of the operator
and solver codes. Only one code, gpu_funcs_3d.cu has any knowledge of how this is
done, making the majority of the library very clean and readable.

Efficient CPU based multi-core and multi-node implementations are currently
being improved upon as part of a SEP initiative. Introducing them to the system is
very simple; they can either be included in gpu_funcs_3d.cu or a separate file, then
whichever method is used can be determined by an input argument. Keeping these
numerically intensive aspects somewhat separate from the operators further helps to
make the code flexible.

PHASE ENCODING

Extending the code to use phase encoded inversion (Gao et al., 2010; Morton and
Ober, 1998) is less straightforward. In phase encoded inversion we combine groups
of shots into supershots, and then aim to recover a common model between them.
In the most extreme case we can combine all shots into one supershot, so that we
only perform two forward model operations and one adjoint operation per iteration.
By changing the encoding matrix that we use between iterations, very fast model
convergence (as a function of cost) can be seen (Krebs et al., 2009; Romero et al.,
2000).

The inversion set-up needs knowledge of two data-sets: the original/separated
data-set and our encoded dataset. However our current operator class only gives us
the option of passing one data vector. This means we have to introduce two data
vectors within our phase encoded operator routine in the forward routine. This is
not a difficult task, but it limits the flexibility of using the same code as LSRTM for
phase encoded LSRTM without introducing a series of if statements.

SEP-150



Leader and Clapp 6 Object oriented libraries

CONCLUSIONS

An object oriented framework creates a flexible, clean and readable inversion library.
The class system means our solver can neatly deal with vectors of multiple dimensions
while the internal workings of our operator (the geophysics) is kept separate. The
details of how the propagation and correlation are performed on the network are kept
separate again from the main operator construction. This creates further flexibility
for general operator coding and means only a few command line arguments can be
used to greatly vary how the computationally intensive aspects of the inversion are
dealt with.

FUTURE WORK

There are many ways of extending this library in the future. Current effort is being
put into multi-core and multi-node solutions for propagation and correlation, into
ways of accelerating extended imaging, and into non-linear solvers.

REFERENCES

Baysal, E., D. Kosloff, and J. Sherwood, 1983, Reverse time migration: Geophysics,
45, 1514-1524.

Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings
image enhancement: Stanford Exploration Project.

Clapp, R., 2010, Hybrid-norm and fortran 2003: Separating the physics from the
solver: SEP, 142.

Clapp, R. G., 2005, Inversion and fault tolerant parallelization using Python: SEP-
Report, 120, 41-62.

Duijndam, A., 1988, Bayesian estimation in seismic inversion. part i: Principles]:
Geophysical Prospecting, 36, 878-898.

Foltinek, D., D. Eaton, J. Mahovsky, P. Moghaddam, and R. McGarry, 2009, Industry
scale reverse time migration on GPU hardware: SEG Technical Program Expanded
Abstracts, 28, 2789-2793.

Gao, F., A. Atle, and P. Williamson, 2010, Full waveform inversion using deterministic
source encoding: SEG Technical Program Expanded Abstracts, 29, 1013-1017.
Jupp, D. L. B. and K. Vozoff, 1975, Stable iterative methods for the inversion of
geophysical data: Geophysical Journal of the Royal Astronomical Society, 42, 957

976.

Krebs, J. R., J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee, A. Baumstein, and
M.-D. Lacasse, 2009, Fast full-wavefield seismic inversion using encoded sources:
Geophysics, 74, WCC177-WCC188.

Micikevicius, P., 2012, Multi-GPU programming: Presentation at GPU Technology
Conference 2012.

SEP-150



Leader and Clapp 7 Object oriented libraries

Morton, S. A. and C. C. Ober, 1998, Fastershot-record depth migrations using phase
encoding: SEG Technical Program Expanded Abstracts, 17, 1131-1134.

Nemeth, T., C. Wu, and G. Schuster, 1999, Least squares migration of incomplete
reflection data: Geophysics, 64, 208-221.

Nichols, D., H. Urdaneta, H. I. Oh, J. Claerbout, L. Laane, M. Karrenbach, and M.
Schwab, 1993, Programming geophysics in C++: SEP-Report, 79, 313-471.

Romero, L. A., D. C. Ghiglia, C. C. Ober, and S. A. Morton, 2000, Phase encoding
of shot records in prestack migration: Geophysics, 65, 426-436.

Schwab, M., 1998, Enhancement of discontinuities in seismic 3-D images using a Java
estimation library: 99.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation:
Geophysics, 49, 1259-1266.

SEP-150



