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ABSTRACT

Convergence of full waveform inversion can be improved by extending the velocity
model along either the subsurface-offset axis or the time-lag axis. The extension
of the velocity model along the time-lag axis enables us to linearly model large
time shifts caused by velocity perturbations. This linear modeling is based on
a new linearization of the scalar wave equation where perturbation of the ex-
tended slowness-squared is convolved in time with the second time derivative of
the background wavefield. The linearization is accurate for both reflected events
and transmitted events. We show that it can effectively model both conventional
reflection data as well as modern long-offset data containing diving waves. It also
enables the simultaneous inversion of reflections and diving waves, even when the
starting velocity model is far from being accurate. We solve the optimization
problem related to the inversion with a nested algorithm. The inner iterations
are based on the proposed linearization and on a mixing of scales between the
short and long wavelength components of the velocity model. Numerical tests per-
formed on synthetic data modeled on the Marmousi model and on the “Caspian
Sea” portion of the well-known BP model demonstrate the global-convergence
properties as well the high-resolution potential of the proposed method.

INTRODUCTION

Conventional seismic imaging relies on a separation of scales between the migration
velocity model (long-wavelength components) and the reflectivity (short-wavelength
components). Figure 1 shows a simplified 1D graphical representation of the sep-
aration of scales concept. The black line represents the two disjointed wavelength
ranges (mapped into corresponding temporal-frequency bands) and the consequent
gap in information between long wavelengths and short wavelengths. This concep-
tual understanding leads naturally to a sequential approach for seismic imaging; the
velocity model is estimated first, and then it is used as input to migration for imaging
reflectivity. In current velocity-estimation practice, reflectivity is used only indirectly
to measure the focusing power of the velocity model. The only important exceptions
occur when migrated volumes are used to interpret boundaries of geobodies (e.g. salt
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Figure 1: Simplified 1D graphi-
cal representation of the separa-
tion of scales in seismic imaging
(black line) and how current in-
dustry trends are narrowing the
gap between the estimation of
long wavelengths and short wave-
lengths (blue and green lines).
(Adapted from Jon Claerbout’s
Imaging the Earth Interior. [NR]

bodies) and to estimate predominant dips in the geologic layering that are then used
to constraint a tomographic velocity update.

The sequential imaging process is slowly being undermined by three long-standing
trends in the industry: 1) acquisition of lower-frequency data, 2) imaging under a
complex overburden which requires higher-resolution velocity models to focus and
correctly position reflectors, and 3) acquisition of longer-offset data. As the industry
strives to widen the data frequency band at both the low and high end, the reflectivity
band is extended at the low end, as graphically represented by the green line in Fig-
ure 1. The high end of the velocity band is also pushed upward (blue line in Figure 1)
by the application of sophisticated tomographic methods that enable the estimation
of the high-resolution velocity models needed to focus reflectors located under com-
plex overburden. However, tomography (either ray or wave-equation based) is a more
challenging task than migration, and thus often it falls short of providing the accuracy
and resolution necessary to satisfactorily image the high frequencies in the data. The
acquisition of longer-offset data enables the recording of diving waves and refracted
arrivals that provide a complementary illumination of the velocity components in the
crucial scale gap and blur the distinction between migration and tomography since
they contain forward-scattering perturbations to transmission events.

As the information gap narrows, imaging methods that simultaneously estimate
the velocity and reflectivity model by taking advantage of all the information in the
data are becoming more attractive. The renewed interest in full waveform inversion
(FWI) (Bamberger et al., 1982; Tarantola, 1984) could be mostly explained as an
attempt to overcome the limitations imposed by the sequential imaging approach, as
well as the availability of the computational power sufficient for practical applications
of FWI. FWI has been the most successful when applied to the low frequencies in
the data (green line in Figure 1) to improve the velocity-model estimation needed for
imaging the high frequencies in the data under complex overburdens. FWI has been
less successful in using the high-frequencies in the data to tomographically estimate
the long-wavelengths in the model.

Since the 1980s it has been recognized that FWI has both a migration component
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and a tomographic component (Mora, 1989). However, to ensure convergence of the
tomographic component the recorded and modeled data must be almost in phase with
each other; the rule of thumb being that the residual time-shifts must be shorter than
the half period of the dominant frequency in the data. Bootstrapping the inversion
by starting from the low frequencies may ameliorate the convergence problems, but it
still depends on conventional velocity estimation methods to deliver starting models
sufficiently accurate to satisfy the convergence criterion for the FWI tomographic
component. It also undermines the goal of simultaneous estimation because the high
frequencies in the data contain the high-resolution tomographic information that
facilitates the estimation of the velocity components represented by the blue line
in Figure 1.

To perform true simultaneous and synergistic inversion for all the model scales we
must address the convergence problems of the tomographic term in FWI. These con-
vergence problems are related to the non-linearity of the wave-equation with respect
to perturbations in the long wavelengths of the velocity model. Long-wavelength per-
turbations cause substantial time shifts of the propagating wavefields that are poorly
approximated by the linearization of the wave equation based on the first order Born
approximation. In this paper we introduce a linearization of the wave equation based
on an extension of the velocity model along the time lag axis (τ). This extension
enables the linear modeling of large time shifts in the propagating wavefields, and
consequently in the data. Based on this extension we define an objective function
that has a model-focusing term in addition to the conventional FWI data-fitting term.
Numerical examples with realistically complex velocity models demonstrate that this
objective function has excellent convergence behavior, although currently convergence
is unsatisfactorily slow.

The usefulness of extending the reflectivity model (as prestack images in the angle
or offset domain) to manage the non-linearities in wave-equation velocity analysis was
demonstrated in the context of differential semblance optimization (DSO) (Symes and
Carazzone, 1991; Shen and Symes, 2008) and wave-equation migration velocity analy-
sis (WEMVA) (Biondi and Sava, 1999; Sava and Biondi, 2004a,b). The generalization
of this idea to the extension of the propagation component of the velocity model (long
wavelength) was first introduced by Symes (2008) and more recently successfully ap-
plied by Sun and Symes (2012); Almomin and Biondi (2012); Biondi and Almomin
(2012). These methods are based on a velocity extension along the subsurface-offset
or plane-wave ray-parameter axes. In this paper, we introduce an extension along
the time lag axis (τ) because it is better suited to describe the large time shifts in
wave propagation that are at the root of FWI convergence problems. Furthermore, ex-
tending the velocity along the time lag axis can easily handle forward-scattered events
recorded at long offsets as well as the reflections recorded at near and intermediate
offsets. We believe that the time-lag formulation has the potential to deliver high-
quality results also for modern long-offset data sets. Furthermore, a one-dimensional
extension along time is computationally more efficient than a two-dimensional exten-
sion along horizontal subsurface offsets. Yang and Sava (2009, 2010) have discussed
the use and the computational advantages of time-lag gathers to perform WEMVA
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for reflected events.

TOMOGRAPHIC FULL WAVEFORM INVERSION
(TFWI)

Conventional full waveform inversion is performed by solving the following optimiza-
tion problem

min
s2

JFWI

(
s2

)
, (1)

where:

JFWI

(
s2

)
=

1

2

∥∥L (
s2

)
− d

∥∥2

2
, (2)

s = s (~x) is the slowness vector, L is a wave-equation operator nonlinear with respect
to slowness perturbations. The data vector d is the pressure field P = P (t, ~x)
measured at the surface through a sampling linear operator S; such as d = SP

The wave-equation operator is usually evaluated by recursively solving the follow-
ing finite difference equation [

s2D2 −∇2
]
P = f , (3)

where D2 is a finite-difference representation of the second derivative in time, ∇2 is
a finite-difference representation of the Laplacian, and f is the source function.

The most efficient solution of the optimization problem expressed in equation 1 is
performed by gradient based methods, and thus requires the evaluation of the linear
operator L, which is the linearization of L with respect to slowness perturbations δs2.
This linear operator can be derived by perturbing equation 3 as follows[(

so
2 + δs2

)
D2 −∇2

]
(Po + δP) = f , (4)

where Po and so are the background wavefield and slowness, respectively, and δP is
the scattered wavefield.

Equation 4 can be rewritten as the following coupled equations:[
so

2D2 −∇2
]
Po = f , (5)[

so
2D2 −∇2

]
δP = δs2D2 (Po + δP), (6)

which represents a nonlinear relationship between the slowness perturbations and the
scattered wavefield. In conventional FWI, to linearize this relationship we drop the
term multiplying the perturbations with each other; that is, we drop the scattered
wavefield from the right-hand-side of equation 6 and obtain the following coupled
equations: [

so
2D2 −∇2

]
Po = f , (7)[

so
2D2 −∇2

]
δP = δs2D2Po. (8)
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The linear operator L is evaluated by recursively propagating the background wave-
field Po and the scattered wavefield δP by solving equations 7–8. Its adjoint operator
L′, which is needed to compute the gradient of the FWI objective function 1, is
evaluated by backward propagating the scattered wavefield solving equation 8 using
the data residuals as boundary conditions, and evaluating the zero time lag of the
cross-correlation between the background and scattered wavefields.

Equations 7–8 define a linear relationship between δP and δs2; however, they
cannot model large time shifts between the background wavefield and the scattered
wavefield. These large time shifts are correctly modeled by the nonlinear equations 5–
6 through multiple scattering, that is, by the accumulation of time shifts into the
scattered wavefield which enter in the expression of the virtual sources injected by the
right-hand-side of equation 6. When we drop the scattered wavefield from equation 6,
we prevent this accumulation of large time shifts into the scattered wavefield.

These observations suggest that a simple method to improve the capability of
the linearization to model large time shifts is to introduce time shifts directly into
the slowness-perturbations term in the right-hand-side of equation 8. We extend the
slowness model along the time lag axis τ and convolve its perturbations δs̃2 (τ) with
the second time derivative of the background wavefield; we rewrite equation 8 as:[

s̃2
o (τ = 0)D2 −∇2

]
δP = δs̃2 (τ)

τ∗ D2Po, (9)

where
τ∗ denotes convolution in τ . Onwards we use the tilde sign above operators and

model vectors to denote their extension along the time-lag axis.

Equations 7 and 9 define the operator L̃ (̃s (τ = 0)) which is linear with respect
to δs̃2 (τ), but nonlinear with respect to s̃2 (τ = 0). The combination of the wave

equation operator L (s) and of L̃ defines the extended nonlinear operator

L̃ (̃s) = L (̃so (τ = 0)) + L̃ (̃so (τ = 0)) δs̃2. (10)

The modeling equation 10 is used to define the TFWI objective function as

JTFWI (̃s) =
1

2

∥∥∥L̃ (̃s)− d
∥∥∥2

2
+ ε

∥∥|τ | s̃2
∥∥2

2
. (11)

The second term in the equation 11 rewards focusing of the data around zero time lag.
It introduces a strong tomographic component, which is necessary to constrain the
optimization problem because the slowness extension relaxes the constraints on the
modeled data kinematics imposed by the data-fitting term (first term) in equation 11.
This objective function can be minimized using a nested optimization algorithm with
scale mixing, as discussed in the next section.

1D modeling example

We will use a simple 1D numerical example to analyze some of the characteristics
of the TFWI method we introduced above. Figure 2 shows the difference between
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the background wavefield propagated with v=1.2 km/s and the wavefield propagated
with the true velocity of v=1.13 km/s. The source function is a zero-phase wavelet
bandlimited between 5 and 20 Hz. The wavefield difference is displayed as a function
of propagation distance and traveltime. The velocity error is sufficiently high that
the wavefields are completely out of phase after propagating for a couple of kilome-
ters. This is therefore a situation like the ones described where the first order Born
linearization (equation 8) would fail to to model the data residuals and conventional
FWI would have difficulties to converge, even though the problem is extremely simple.

Figure 3 shows the conventional FWI objective functions when the data are
recorded with a single receiver located at 7 km for a total of 4 km offset from the
source. The plot shows the value of the initial value of the objective function for
several 1D transmission problems sharing the same starting velocity (1.2 km/s) and
with different true velocities. If the true velocity is lower than ≈ 1.18 km/s or larger
than ≈ 1.22 km/s a gradient based method starting from a velocity of 1.2 km/s will
not converge to the right solution. On the contrary, the linearized modeling equation
defined in equation 9 would have no troubles to model the data residual. For exam-
ple, we can easily reproduce the wavefield difference shown in Figure 2 by setting the
extended-velocity perturbation to be a delta function along the τ axis, where the shift
of the delta function linearly increases with the distance from the origin. This linear
shift is computed by integrating the difference in slowness between the background
model and the true model. The extended-velocity perturbation is shown in Figure 4.
Figure 5 shows the result of solving equation 9 with the model shown in Figure 4.
The approximation of the scattered wavefield δP is almost identical to the wavefield
difference shown in Figure 2.

Diving-wave modeling example

One of the advantages of extending the velocity model along the time-lag axis τ is
the capability to model with a linear operator large time shifts in the diving waves
recorded by modern long-offset acquisition geometries. The capability of modeling
time shifts in these events enables robust convergence of the inversion even when
the starting velocity model is far from the correct one. To show these modeling
capabilities we use one long-offset shot profile recorded over a half space with a vertical
velocity gradient. The starting velocity model is assumed to be uniform and equal
to the velocity at the surface. Figure 6a shows the data residual; both the recorded
diving wave as well as the data modeled with the starting velocity are clearly visible.

The backprojection of the data residuals shown in Figure 6a, by the application
of L̃′, generates the velocity perturbation cube shown in Figure 7. The front panel of
the cube shown in Figure 7 displays the zero time lag of the velocity perturbations.
A substantial amount of the energy in the residual has been backprojected away from
the zero time-lag panel.

Figure 6c displays the result of forward modeling the data residuals by the ap-
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Figure 2: Difference between the
background wavefield computed
with the starting velocity (1.2
km/s) and the wavefield propa-
gated with the true velocity (1.13
km/s). [CR]
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Figure 3: FWI norm as a func-
tion of the true velocity, when the
starting velocity is equal to 1.2
km/s. [CR]

1.13 1.165 1.2 1.235 1.27

0.5

1

1.5

2

2.5

3

x 10
−3

True Velocity (km/s)

F
W

I n
or

m

 

Figure 4: Extended velocity
perturbation chosen to approxi-
mately model the wavefield differ-
ence shown in Figure 2. [CR]
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Figure 5: Perturbed wavefield
computed by solving equation 9
with the model shown in Figure 4.
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Figure 6: a) Difference between the background wavefield computed with the starting
velocity and the wavefield propagated with the true velocity, b) data residual modeled
from zero lag of the velocity perturbation cubes (front panel in cubes shown in both
Figure 7 and Figure 8), c) data residual modeled from the velocity perturbations
extended along the time-lag axis, (Figure 7), and d) data residual modeled from the
velocity perturbations extended along the horizontal subsurface offset axis, (Figure 8).
[CR]
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plication of L̃ to the extended velocity perturbation shown in Figure 7. Although a
“squaring” of the wavelet is evident in Figure 6c, the kinematics of these modeled
residuals are very close to the kinematics of the true residuals shown Figure 6a. In
contrast, when we use only the zero time lag of the velocity perturbation (front panel
of the cube shown in Figure 7) to model the data residuals, we obtain the seismo-
grams displayed in Figure 6b. The diving wave is totally missing from these modeled
residuals because the background wavefield propagates with constant velocity along
the horizontal direction.

Figure 8 shows the velocity perturbation cube when the velocity is extended along
the horizontal subsurface offset axis. The front panel of the cube displays the zero
subsurface offset, and thus it is identical to the front panel of the cube shown in
Figure 7. Figure 6d displays the result of forward modeling the data residuals starting
from the extended velocity perturbation shown in Figure 8. The diving wave event
is present in these modeled residuals. However, it dies out at larger offsets, starting
at about 8 kilometers. A subsurface offset extension of the velocity has difficulties in
modeling large time shifts in transmitted events propagating in directions orthogonal
to the subsurface offset axes. Consequently, as the propagation paths of the diving
waves have longer vertical components, the less accurate the modeled residuals are.
To address this limitation we could use the vertical subsurface offset in addition to
the horizontal ones (Biondi and Symes, 2004), but the computational cost would
increase accordingly. In 3D we would need to extend the velocity along 3 subsurface
offsets, increasing further the dimensionality of the problem, and consequently its
computational cost.

OPTIMIZATION METHOD

The minimization of the objective function in 11 is a challenging optimization prob-
lem because of the non linearities in the modeling operator L̃ and the occasional
contradictory search directions suggested by the gradients of the data fitting term
and the focusing term. To overcome these challenges we devised and tested the
nested optimization scheme with scale mixing described below.

Nested Inversion

The proposed nested optimization scheme consists of an outer and an inner loop. In
the outer loop we first compute the nonlinear data residual ∆d = d− L̃ (̃so), where
s̃o is the current slowness model evaluated at τ = 0. The nonlinear residual is used
as the “observed” data for the inner loop. The output of the inner loop is a search
direction ∆s̃. We then perform a nonlinear line search that estimates the optimal

step length α that minimizes
∥∥∥L̃ (̃so + α∆s̃)− d

∥∥∥
2
.

In the inner loop we formally separate the slowness model into a background
model, b, on which the operator L̃ depends non linearly, and a perturbation model
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Figure 7: Velocity-perturbation cube extended along the time-lag axis and computed
by backprojecting the data residuals shown Figure 6a. [CR]

Figure 8: Velocity-perturbation cube extended along the horizontal subsurface-offset
axis and computed by backprojecting the data residuals shown Figure 6a. [CR]
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p2 (τ), on which the operator L̃ depends linearly. The objective function minimized
in the inner loop is

JITFWI (b,p) =
1

2

∥∥∥L̃ (b)p2 −∆d
∥∥∥2

2
+ ε

∥∥|τ |p2
∥∥2

2
. (12)

The starting models for the inner iterations are bo = s̃o (τ = 0), and po = 0. The
output of the inner loop after N iterations is ∆s̃ = (bN − bo) + pN (τ = 0).

Unless the starting background slowness bo is very close to the true slowness, no
choice of b and p will simultaneously zero the two terms in the objective function 12.
This happens because of the particular choice of the data residual ∆d, that is the
difference between the recorded data and the data modeled with bo. However, the
models b and p that minimize this objective function provide an effective search
direction ∆s̃ for the outer loop of the nested optimization problem.

The modeling operator L̃ is linear with respect to perturbation p, but nonlin-
ear with respect to the background component b. Therefore, another linearization
around the “background” background is required to compute the gradient. The Born
approximation is used (again) to linearize the L̃ operator with respect to the back-
ground resulting in a data-space tomographic operator, T. Appendix A describes
the derivation of this new data-space tomographic operator and how to numerically
evaluate it and its adjoint. The expression of the two gradients at the inner iteration
i is the following:

∇b2 = T′ (bi,pi)
[
L̃ (bi)p

2
i −∆d

]
, (13)

∇p2 = L̃′ (bi)
[
L̃ (bi)p

2
i −∆d

]
+ ετ 2p2

i . (14)

Scale Mixing

In the inner loop, a straightforward use of the gradients is used to update their corre-
sponding models directly. However, this would hinders the simultaneous inversion of
different wavelengths of the model. This problem becomes apparent when we examine
the result of the two operators in the inner loop. At the first iteration, the application
of L̃′ to the data residual ∆d is equivalent to “migrating” the data and it could give a
tomographic update which manifests as a low wavenumber update. In a conventional
migration, this low wavenumber component is considered noise and filtered out. How-
ever, it is actually a tomographic component that should feed into the background
model. The opposite argument is also true for the tomographic operator creating
short-wavelengths perturbations. Therefore, to improve our inversion results, we first
mix the two gradients (∇b2 ,∇p2) and then separate them in the Fourier domain to
get the update of each model as follows:

∆b2 (~x) = −Cb2 (∇b2 (~x) +∇p2 (~x, τ = 0)) , (15)
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where ∆b2 (~x) is the search direction of the background model and Cb is a low-pass
filter along the space coordinates ~x. Similarly, we can compute the update of the
perturbation model as:

∆p2 (~x, τ) = −Cp2 (∇b2 (~x) +∇p2 (~x, τ)) , (16)

where ∆p2 (~x, τ) is the search direction of the perturbation model and Cp is a high-
pass filter along the space coordinates ~x. In order to sum the two gradients properly,
both of them need to have the same units as well as the same scale. This requires
careful implementation of each operator at each linearization.

In the examples of this paper, we used a radial cut-off in the Fourier domain with
a cosine squared taper. The wavelength cut-off is based on the dominant frequency
in the data as well as the average slowness of the initial model. The two filters
were designed such that they always sum to one at all wavelength to maintain the
energy of the gradients. It is possible to design a more accurate filter that varies with
frequency and slowness, but it is not necessary because both models will eventually
be added to the slowness. This relative insensitivity is another benefit of applying
the nested scheme we presented, in comparison with inverting the models separately
and combining them only at the end. If the latter approach were implemented, the
final results would be more sensitive to the choice of the scale-separation parameters.

This nested scheme has many benefits compared to a more conventional way
of solving a tomographic inversion followed by an imaging inversion or even doing
them simultaneously. The first benefit of this scheme is that the limitation of the
linearized, first-order Born operator will not prevent the optimization from inverting
higher order scatterings, such as multiple reflections and prismatic events. In this
setup, the Born operator will attempt to match the first-order scattering from the
background, which is not necessarily primary data since the background itself can
generate many orders of scatterings if it contains sharp boundaries (and it will in later
iterations). In other words, the linearized operator will account for one additional
order of scattering at a time. Higher and higher scattering orders will be introduced
with outer-loop iterations, until we eventually invert all the multiple-scattered events
that are present in the data. This also means that higher-order scattered energy
will initially be wrongly positioned in the model, but later iterations will correct for
this mispositioning. The second benefit of this scheme is that it produces only one
slowness model, because we keep pushing both background and perturbation into
the slowness model, in contrast to the method presented in Almomin and Biondi
(2012). Therefore, our goal is to drive the perturbation to a minimum and have the
background explain the data.

TFWI OF MARMOUSI DATA

A modified Marmousi model is used for the first synthetic examples where 500m of
water layer is added to the top. Figure 9 shows the true velocity model. The thicker
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water layer reduces the amount of refracted energy being recorded in the data. There-
fore, this dataset tests the capabilities of the inversion method to converge in presence
of almost exclusively reflected events. In contrast, the example presented in the next
section tests the capabilities of the method to deal with mixed reflected/refracted
arrivals.

There are 461 fixed receivers with a spacing of 20 m and 93 sources with a spacing
of 100 m. We use a bandpassed wavelet with a frequency range between 5 Hz to 10
Hz and a small taper on both ends. The purpose of using this wavelet is to completely
eliminate unrealistically low frequencies in the data. The initial model is shown in
Figure 10 which is obtained by strongly smoothing the true model laterally after
clipping the salt anomalies out. The inversion results after 900 outer-loop iterations,
each of them with 10 inner iterations, are shown in Figure 11. The inversion shows
remarkable results in reconstructing most features in the velocity model. The results
are most accurate in the top and middle than at the bottom because the have the
best illumination and coverage.

Figure 12 and 13 provide a clear illustration of the substantial improvements in
the accuracy with which the final velocity model describes the data kinematics as
compared with the initial one. Figure 12 shows the migrated image corresponding
to the initial velocity; most of the reflectors are out of focus and mispositioned. In
contrast, Figure 13 shows the migrated image corresponding to the final velocity.
Reflectors are well focused and the structures are well imaged. In the middle of the
section even the deepest reflectors are well focused and not grossly distorted.

TFWI OF LONG-OFFSET DATA

To verify the capabilities of the TFWI method based on a time-lag extension of the
velocity model we tested the method on a synthetic data set recorded with long
offsets. The data were generated over the “Caspian Sea” portion of the well-known
BP velocity model, as shown in Figure 14. The receiver array was assumed to be
fixed at the surface, and thus data with more than 20 kilometers long offsets were
recorded. The source was a bandpassed wavelet between 5 and 10 Hz. No energy was
present below 3 Hz.

Figure 15 shows the data recorded for the leftmost shot location. Strong and
complex diving waves and refracted arrivals are visible in the data starting from
approximately 8 kilometers offsets. These events carry useful information on the
velocity, in particular in the shallow part of the section. In this data set, they are
extremely useful to define the low-velocity anomalies present around the depth of two
kilometers.

The starting model for the TFWI inversion was obtained by a strong horizontal
smoothing of the true model, after the low and high velocity anomalies were removed.
Figure 16 shows the shot gather located at the same location as the one shown in
Figure 15, but modeled with the starting model, which is shown in Figure 17. As a
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Figure 9: The true velocity of the Marmousi example. [ER]

Figure 10: The initial velocity of the Marmousi example. [ER]
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Figure 11: The inverted velocity of the Marmousi example. [CR]

Figure 12: Migrated image using the initial velocity for the Marmousi example. [CR]

SEP–150



Biondi and Almomin 16 Tomographic FWI

direct comparison of Figure 15 with Figure 16 demonstrates, the differences between
the true and starting models cause large time shifts in the diving-waves arrivals. The
inaccuracies of the starting model, together with the lack of low frequencies in the
data, prevent conventional FWI from converging to any useful model.

We solved the problem by a nested optimization algorithm as described earlier.
The nested inversion converged towards the accurate model shown in Figure 18. The
main features of the true model are accurately reconstructed. Some edge artifacts are
present; they are caused by the finite span of the receiver array and the finite range
of source locations. No sources were activated outside the displayed model, and the
receiver array was fixed and covered the whole model.

Although the resolution of the model and the robustness of convergence are ex-
tremely attractive, the rate of convergence is slower than ideal; 500 iterations of the
outer-loop iterations, each of them with 10 inner iterations, were required to estimate
the model shown in Figure 18.

DISCUSSIONS AND CONCLUSIONS

The integration of FWI and WEMVA into TFWI has the potential of yielding a
waveform-inversion method that robustly converges to high-resolution models using
the whole bandwidth of the seismic data simultaneously. We introduced a TFWI
method based on the extension of the velocity along the τ axis. This extension is
based on a linear operator capable of correctly modeling transmitted events with large
time shifts, as we demonstrate by two numerical examples based on simple 1D and
layered models.

To minimize the TFWI objective function we propose a specialized nested inver-
sion scheme. In the inner loop of this scheme the extended velocity model is separated
into its background and perturbation components. The inversion scheme performs
simultaneous inversion of different model scales by mixing the gradients of the two
components and then separating them in the Fourier domain.

The results of the inversion of the Marmousi model demonstrate the strong con-
vergence properties of the new method for typical reflection data. The results of
the inversion of a long-offset data set recorded over the BP “Caspian Sea” demon-
strate that the inversion method converges when both reflections and diving waves
are recorded in the data, and inaccuracies of the starting velocity model create large
errors in the kinematics of the diving waves.

The proposed optimization is effective to demonstrate TFWI convergence proper-
ties on realistic 2D data sets. However, the number of iterations required to produce
the results shown in the paper are large: 900 for the Marmousi example and 500 for
the ”Caspian Sea” example. This suggests that further optimization of the inversion
algorithm is needed for applications to 3D field data.
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APPENDIX A

The minimization of the objective function 12 requires the computation of the gradi-
ents with respect to both b and p. These gradients can be computed by a perturbation
analysis of the modeling operator L̃. As discussed in the main text, L̃ is evaluated
by solving equations 7 and 9. Rewriting these equations in terms of b and p, and the
incident wavefield, Pi and the scattered wavefield, Ps, we obtain[

b2
i D2 −∇2

]
Pi = f , (A-1)[

b2
i D2 −∇2

]
Ps = p2

i (τ)
τ∗ D2Pi. (A-2)

Introducing the perturbations, δb2 and δp2, in the two model variables into equa-
tions A-1–A-2, and introducing the corresponding perturbations in the wavefields,
δPi and δPs yields the following perturbed system:[(

b2
i + δb2

)
D2 −∇2

]
(Pi + δPi) = f , (A-3)[(

b2
i + δb2

)
D2 −∇2

]
(Ps + δPs) =

[
p2

i (τ) + δp2 (τ)
] τ∗ D2 (Pi + δPi).(A-4)

By setting δb2 = 0 in equations A-3–A-4, we derive the following system of
equations: [

b2
i D2 −∇2

]
Pi = f , (A-5)[

b2
i D2 −∇2

]
δPs = δp2 (τ)

τ∗ D2Pi, (A-6)

which defines again L̃ and can be used to evaluate the perturbations in the scat-
tered wavefield δPs, and consequently in the recorded data δd = SδPs, caused by
perturbations δp2.

We can derive the data-space tomographic operator, T, which relates perturba-
tions in the scattered wavefield, δPs, to perturbations in the background model, δb2,
by setting δp2 = 0 and neglecting the higher-order terms in δb2 in equations A-3–A-4.

This tomographic operator is equal to the sum of two operators, Ti and Ts.
The first operator, Ti, models perturbations in the scattered wavefield caused by
perturbations in the propagation of the incident wavefield:[

b2
i D2 −∇2

]
Pi = f , (A-7)[

b2
i D2 −∇2

]
δPi = δb2D2Pi, (A-8)[

b2
i D2 −∇2

]
δPs = p2

i (τ)
τ∗ D2δPi, (A-9)

The second operator, Ts, models perturbations in the scattered wavefield caused
by perturbations in the propagation of the scattered wavefield itself:[

b2
i D2 −∇2

]
Pi = f , (A-10)[

b2
i D2 −∇2

]
Ps = p2

i (τ)
τ∗ D2Pi, (A-11)[

b2
i D2 −∇2

]
δPs = δb2D2Ps, (A-12)
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Both of these tomographic operators depend nonlinearly on bi and linearly on p2
i .

They have zero output when p2
i is equal to zero; that is, at the first iteration of the

inner loop because we set p2
o = 0 as a starting model of the inner iterations. However,

as we update the linearization at each iteration, starting from the second iteration
the output of T becomes different from zero.

The data-space tomographic operator represented by equations A-7–A-9 and equa-
tions A-10–A-12 is analogous to the WEMVA operator (Biondi and Sava, 1999; Sava
and Vlad, 2008) except that in the WEMVA operator, we keep the data fixed and
vary the image; it is the other way around in this tomographic operator.

SEP–150



Biondi and Almomin 20 Tomographic FWI

Figure 13: Migrated image using the final velocity for the Marmousi example. [CR]

Figure 14: Portion of the BP velocity model used for the numerical test of the pro-
posed TFWI method. The model contains both low-velocity anomalies (shallow gas)
as well as high-velocity anomaly on the flanks of the mud volcano. [ER]
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Figure 15: Leftmost shot profile recorded on the model shown in Figure 14. No-
tice several diving waves and refractions present in the data at offset larger than 8
kilometers. These events carry useful information for the estimation of the velocity
anomalies present in the model. [CR]

Figure 16: Shot gather modeled assuming the starting model shown in Figure 17 at
the same shot location as the data shown in Figure 15. Notice the large time shifts
between the diving-wave arrivals in this gather with the one shown in Figure 15. [CR]
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Figure 17: Starting model for the TFWI inversion. This model was obtained by
strong horizontal smoothing of the model shown in Figure 14, after the low and high
velocity anomalies were removed. The lack of low frequencies in the data makes this
model inappropriate for starting a conventional FWI inversion. [ER]

Figure 18: Estimated model after 500 iterations of the outer loop of the TFWI
inversion based on time-lag extension of the velocity model. The main features of the
true model are accurately reconstructed. Some edge artifacts are present; they are
caused by the finite span of the receiver array and the finite range of source locations.
No sources were activated outside the displayed model, and the receiver array was
fixed and covered the whole model. [CR]
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