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ABSTRACT

Tomographic full waveform inversion (TFWI) provides a framework to invert the
seismic data that is immune to cycle-skipping problems. This is achieved by
extending the wave equation and adding a spatial or temporal axis to the veloc-
ity model. For computational efficiency, the inversion is performed in a nested
scheme. We examine the linearized component of the nested inversion scheme and
present alternative fitting goals that have different properties compared to the
original formulation. Then, we compute the Hessian matrix of both formulations
as well as their individual operators to analyze the properties of each matrix.
The analysis of the new formulation indicate an improved convergence behavior
of inversion.

INTRODUCTION

Tomographic Full Waveform Inversion (TFWI) (Symes, 2008; Biondi and Almomin,
2012) provides a way to overcome cycle-skipping problems by combining both FWI
and wave-equation migration velocity analysis (WEMVA) techniques in a generalized
framework. This generalized approach utilizes the components of all seismic data to
invert for the medium parameters without cycle-skipping. This is achieved in two
steps: first, extending the wave equation and adding a subsurface offset axis to the
velocity model, and second, adding a regularization term that drives the solution
towards the zero subsurface offset. Biondi and Almomin (2013b) presented an alter-
native extension using time shift instead of subsurface offset. In either setting, this
velocity extension makes the propagation considerably more expensive because each
multiplication by velocity becomes a convolution over the extended axis.

In a companion abstract (Biondi and Almomin, 2013a), we presented an approx-
imation that significantly reduces the computational cost of TFWI by breaking the
velocity model into a background component and a perturbation component. We
achieve this in two steps. First, we set up a nested inversion scheme that utilizes the
nonlinear modeling operator to update the residuals. Second, the two components
of the gradient are first mixed and then separated based on a Fourier domain scale
separation.

In this report, we examine the properties of the inner loop of the nested scheme.
Then, we present alternative fitting goals that have different properties compared to
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the original formulation. Finally, we perform a Hessian analysis on both fitting goals
and their operators in order to evaluate each formulation.

FITTING GOALS

We start with the full waveform objective function, JFWI, which we write as

JFWI(s
2) = ‖L(s2)− dobs‖2

2, (1)

where s is the slowness model, L(s2) is the wave-equation modeling operator, and
dobs is the observed surface data. This first objective function represents the outer
loop of the inversion. We now compute the nonlinear residuals ∆d as:

∆d(s2) = L(s2)− dobs. (2)

The nonlinear residual will be used as the “observed” data for the inner loop. In the
inner loop of the inversion, we need to separate the slowness model into a background
and a perturbation as follows:

s2 = b2 + p2(τ), (3)

where τ is the extension axis with time lags, b2 is the background component, which
is a smooth version of the slowness squared and p2(τ) is the perturbation component.
The perturbation component can extend across several subsurface offsets or time
shifts so it is important to keep its extended axis. On the other hand, the background
component is not expected to generate reflections that would be grossly time shifted
with respect to the recorded data, and it thus safe to reduce its extension. This
greatly reduces our cost since the convolution with slowness in propagation becomes
a multiplication. The model separation allows us to use a linearized (Born) operator

L̃ to model “linearized” data. The linearized objective function JLTFWI can be written
as:

JLTFWI(b
2,p2(τ)) = ‖L̃(b2)p2(τ)−∆d‖2

2 + ‖εAp2(τ)‖2
2, (4)

where L̃ is the Born modeling operator, A is the regularization operator that at-
tempts to focus the extended model p2(τ) and ε is a scalar to balance the two terms
of the objective function. The Born modeling operator is linear with respect to per-
turbation but nonlinear with respect to the background component. Hence, another
linearization around the current value for both model parameters is required to com-
pute the gradient. This is achieved by Taylor’s expansion of the operator around the
model estimates at the current inner loop index i, i.e. b2

i and p2
i (τ), and dropping

the higher-order terms as follows:

L̃(b2
i + ∆b2)

[
p2

i (τ) + ∆p2(τ)
]
≈ L̃(b2

i )p
2
i (τ) + L̃(b2

i )∆p2(τ) +
∂L̃

∂b2
(b2

i )
[
p2

i (τ)
]
∆b2

= L̃(b2
i )p

2
i (τ) + L̃(b2

i )∆p2(τ) + T(b2
i )[p

2
i (τ)]∆b2.

(5)
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The tomographic operator T[p2(τ)] correlates a background and a scattered wavefield
from both the source and receiver sides. The scattered wavefields are computed by
correlating a background wavefield with the perturbation model p2

i and then propa-
gating again to all model locations. This operator is similar to the WEMVA operator
except that in the WEMVA operator, we keep the data fixed and vary the image
while here it is the other around for this tomographic operator.

We can now define the linearized form ofJLTFWI as follows:

JLLTFWI(∆b2, ∆p2(τ)) =‖L̃(b2
i )∆p2(τ) + T(b2

i )[p
2
i (τ)]∆b2 −

(
∆d− L̃(b2

i )p
2
i (τ)

)
‖2

2

+‖εA∆p2(τ)−
(
−εAp2

i (τ)
)
‖2

2, (6)

where the fitting goals can be written in matrix notation as follows:[
∆d− L̃(b2

i )p
2
i (τ)

−εAp2
i (τ)

]
≈

[
L̃(b2

i ) T(b2
i )[p

2
i (τ)]

εA 0

] [
∆p2(τ)
∆b2

]
. (7)

To summaries, this scheme has three levels: an outer loop that tries to fit the
data with the nonlinear operator (equation 1), an inner loop that tries to fit the
nonlinear residual with the Born operator (equation 4), and finally a linearized loop
that computes the updates for each model component (equation 6). When we start the
inner loop, we set b2 = s2 and p2 = 0. Once we iterate enough times within the inner
loop, we update the velocity model with both the background and the perturbation at
τ = 0. Appendix A describes the derivation of the Born and tomographic operators
and how to numerically evaluate them and their adjoints.

There is one potential issue in the previous formulation, particularly in equation
4. The Born operator will attempt to match the first-order scattering from the back-
ground while the focusing term will attempt to force the extended model into the
zero lag. This means that the nonlinear residuals will be consistent with one term of
the objective function JLTFWI but not both, resulting in these parts of the objective
function to compete with each other. This behavior could slow down the convergence
of the inversion.

In order to avoid conflicting terms in the objective function, we propose to set
alternative fitting goals such that the data fitting term is independent of the regular-

ization term. One way to achieve this is to first compute a perturbation model p̂2(τ)
as follows:

p̂2(τ) = αL̃′(b2
i )∆d, (8)

where ′ denotes the adjoint and α minimizes the following objective function:

Jcp2(α) = ‖∆d− αL̃(b2
i )L̃

′(b2
i )∆d‖2

2. (9)

Once the perturbation model is computed, the independent fitting goals can be set
as follows:[

∆d− L̃(b2
i )p̂

2(τ)

−εL̃(b2
i )A

′Ap̂2(τ)

]
≈

[
L̃(b2

i ) 0

0 T(b2
i )[p̂

2(τ)]

] [
∆p2(τ)
∆b2

]
. (10)

SEP–150



Almomin and Biondi 4 TFWI operators

The residual in the first row is only a data fitting residual caused by the difference
between the adjoint and inverse of L̃ whereas the residual in the second row is only a

model regularization residual caused by not focused p̂2(τ). The perturbation model

p̂2(τ) has a slightly different role than p2
i (τ) in the first formulation. In the first

formulation, p2
i (τ) starts at zero but slowly change with the iterations of the inner

loop whereas p̂2(τ) is computed as a scaled perturbation model before optimizing the
fitting goals in equation 10.

HESSIAN ANALYSIS

A 1D model with a Gaussian anomaly (representing ∆b) and a spike (representing
p) is used for the synthetic examples. The true velocity is shown in Figure 1. The
background velocity is 3 km/s and the Gaussian anomaly is located at 1 km. The
perturbation spike is located at 2 km. A Ricker wavelet with a fundamental frequency
of 15 Hz is used to model the data. There is one source-receiver pair at the top of
the model.

Figure 1: The true velocity model.
[ER]

To test the L̃ operator, I start from a propagation velocity model that is the
same as the true model except for the perturbation spike. The result of applying the
adjoint of L̃ operator is shown in Figure 2. Next, I test the tomographic operator
by computing the data residual due to removing the Gaussian anomaly. I use the
results of applying the adjoint of L̃ as perturbation to estimate the update of the
propagation velocity. The results of using the adjoint tomographic operator is shown
in Figure 3. Both operators have the correct direction for the anomaly.

To compare the properties of both total operators in equations 7 and 10, we first
examine the properties of their individual operators. We first compute the Hessian
matrix of the L̃ operator at τ = 0 as shown in Figure 4 and the singular values of that
Hessian matrix as shown in Figure 5. The matrix is mostly diagonal with the imprint
of the wavelet around the main diagonal and small artifacts due to the boundary
conditions. The singular values drop significantly after approximately 100 values.
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Figure 2: The Born operator ad-
joint on the data residual. [ER]

Figure 3: The tomographic ad-
joint on the data residual. [ER]

Figure 4: Hessian matrix of the L̃
operator at τ = 0. [ER]
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Figure 5: Singular values of Hes-
sian matrix of the L̃ operator at
τ = 0 in log scale. [ER]

Next, we compute the Hessian matrix of the L̃ operator with τ lags from -10 to 10
samples as shown in Figure 6 and the singular values of that Hessian matrix is shown
in Figure 7. The Hessian matrix is now very non-diagonal due to the convolution by
the extended model. The singular values are also higher than those shown in Figure
5.

Figure 6: Hessian matrix of the L̃
operator. [ER]

The last individual operator to examine is the tomographic operator T[p2(τ)].
The Hessian matrix of the T[p2(τ)] operator is shown in Figure 8 and the singular
values of that Hessian matrix as shown in Figure 9. The hessian matrix is much less
diagonal compared to the L̃ operator due to the integral nature of the tomographic
operator. The plot of the singular values is very different than those of the L̃. The
singular values for the T[p2(τ)] operator have a relatively larger first singular value
and the following values drop at a steeper rate.

Now, we compute the Hessian matrix of the total in Equation 7 and its singular
values as shown in Figure 10. The singular values of this operator drop very slowly
and become almost constant after 100 values. This is largely due to having L̃ at the
off-diagonal of the total operator. Having that many large singular values indicate
slow convergence rate of the inversion.

Finally, we compute the Hessian matrix of the total in Equation 10 and its singular
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Figure 7: Singular values of Hes-
sian matrix of the L̃ operator in
log scale. [ER]

Figure 8: Hessian matrix of the
T[p2(τ)] operator. [ER]

Figure 9: Singular values of Hes-
sian matrix of the T[p2(τ)] oper-
ator in log scale. [ER]
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Figure 10: Singular values of Hes-
sian matrix of the total operator
in Equation 7 in log scale. [ER]

values as shown in Figure 11. By comparing the these singular values to those in
Figure 10, we see a large decrease in the values. Moreover, the singular values of the
new operator drop at a much steeper rate. These changes indicate that inverting the
new total operator will have better convergence rate and properties.

Figure 11: Singular values of Hes-
sian matrix of the total operator
in Equation 10 in log scale. [ER]

CONCLUSIONS

Tomographic full waveform inversion (TFWI) requires separating the slowness model
into background and perturbation in order to utilize an extended model efficiently.
However, a direct minimization of the resulting objective function can potentially
have bad convergence properties due to the conflicting terms in the objective func-
tion. This is also verified by computing the Hessian matrix of the total operator
and its singular values. We proposed an alternative way to minimize the objective
function of TFWI without conflicting terms in the objective function by separating
the residuals into independent data-fitting residual and model regularization resid-
ual. The singular values of the new total operator indicate an improved convergence
behavior of inversion. Further testing of both operator is needed to confirm these
findings.
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APPENDIX A

The wave-equation modeling operator L(s2) is evaluated by solving the equation[
s2D2 −∇2

]
P = f , (A-1)

where P is the pressure field, D2 is a finite-difference representation of the second
derivative in time, ∇2 is a finite-difference representation of the Laplacian, and f
is the source function. The minimization of the objective function 4 requires the
computation of the gradients with respect to both b and p. These gradients can be
computed by a perturbation analysis of the modeling operator L(s2). Rewriting the
perturbed modeling equation in terms of b and p, and the incident wavefield, Pi and
the scattered wavefield, Ps, we obtain the Born modeling operator L̃ by the coupled
equations [

b2
i D2 −∇2

]
Pi = f , (A-2)[

b2
i D2 −∇2

]
Ps = p2

i (τ)
τ∗ D2Pi, (A-3)

where
τ∗ denotes convolution in τ . Introducing the perturbations, δb2 and δp2, in

the two model variables into equations A-2–A-3, and introducing the corresponding
perturbations in the wavefields, δPi and δPs yields the following perturbed system:[(

b2
i + δb2

)
D2 −∇2

]
(Pi + δPi) = f , (A-4)[(

b2
i + δb2

)
D2 −∇2

]
(Ps + δPs) =

[
p2

i (τ) + δp2 (τ)
] τ∗ D2 (Pi + δPi).(A-5)

By setting δb2 = 0 in equations A-4–A-5, we derive the following system of
equations: [

b2
i D2 −∇2

]
Pi = f , (A-6)[

b2
i D2 −∇2

]
δPs = δp2 (τ)

τ∗ D2Pi, (A-7)

which can be used to evaluate the perturbations in the scattered wavefield δPs, and
consequently in the recorded data δd = SδPs, caused by perturbations δp2.

We can derive the data-space tomographic operator, T, which relates perturba-
tions in the scattered wavefield, δPs, to perturbations in the background model, δb2,
by setting δp2 = 0 and neglecting the higher-order terms in δb2 in equations A-4–A-5.

This tomographic operator is equal to the sum of two operators, Ti and Ts.
The first operator, Ti, models perturbations in the scattered wavefield caused by
perturbations in the propagation of the incident wavefield:[

b2
i D2 −∇2

]
Pi = f , (A-8)[

b2
i D2 −∇2

]
δPi = δb2D2Pi, (A-9)[

b2
i D2 −∇2

]
δPs = p2

i (τ)
τ∗ D2δPi, (A-10)
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The second operator, Ts, models perturbations in the scattered wavefield caused
by perturbations in the propagation of the scattered wavefield itself:[

b2
i D2 −∇2

]
Pi = f , (A-11)[

b2
i D2 −∇2

]
Ps = p2

i (τ)
τ∗ D2Pi, (A-12)[

b2
i D2 −∇2

]
δPs = δb2D2Ps, (A-13)

Both of these tomographic operators depend nonlinearly on bi and linearly on p2
i .

They have zero output when p2
i is equal to zero; that is, at the first iteration of the

inner loop because we set p2
o = 0 as a starting model of the inner iterations. However,

as we update the linearization at each iteration, starting from the second iteration
the output of T becomes different from zero.
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