Wave-equation migration Q analysis (WEMQA)

Yi Shen

ABSTRACT

Estimates of quality factor Q are useful in seismic processing, amplitude anal-
ysis, and reservoir characterization. However, () model building, which is con-
ventionally done in the data space using ray-based tomography, is a notoriously
challenging problem due to issues like spectral interference, low signal-to-noise
ratio, diffractions, and complex subsurface structure. To produce a reliable Q
model, we present a new approach with two major features. First, this method is
performed in the image-space, which uses downward-continuation imaging with
Q to stack out noise, focus and simplify events, and provide a direct link between
the model perturbation and the image perturbation. We develop two methods
to generate the image perturbation for the following scenarios: the model with
sparse reflectors and the model with dense reflectors. Second, this method uses
wave-equation QQ tomography to handle the complex wave propagation. Two syn-
thetic tests on two different 2-D models with a () anomaly shows the capability
of this method on the model with sparse events. Tests with a modified SEAM
model also demonstrate the feasibility of this method for the model with dense
events.

INTRODUCTION

Attenuation, parametrized by seismic quality factor, Q, causes high frequencies loss
and phase distortion of surface seismic reflection data. An understanding of the effects
and properties of this attenuation parameter has two major motivations. First, Q
is a useful parameter for characterizing rock and fluid properties—e.g., saturation,
porosity, permeability, and viscosity—because of its high sensitivity to some of these
properties (e.g. Best et al.—@994})@econd, if the absorption properties of the
subsurface are known, they can be included in seismic data processing (deconvolution,
stacking, migration, inverse Q filtering, etc.) to get images with higher qualities, and
to better interpret the effects of AVO and anisotropy, which also have offset-dependent
signatures.

Studies of estimating attenuation tomographically have a long history. Brzos-
towski and McMechan (1992), and Leggett et al. (1992) used tomographic estimation
of attenuation according to the seismic amplitude changes. Kjartansson (1979), and
Zucca et al. (1994) measured the rise time of the broadened wavelets caused by at-
tenuation for Q tomography. Tonn (1991), Quan and Harris (1997), Dasgupta and
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Clark (1998), Leaney (1999), Mateeva (2003), Plessix (2006), Rickett (2006), Rickett
(2007), Reine et al. (2012a), and Reine et al. (2012b) performed the estimation based
on the attenuation-induced spectral changes. However, there are three main difficul-
ties that cause the estimated Q model from these methods to be unreliable. First,
QQ tomography schemes in these works are mostly ray-based, measuring the spectral
changes over different lengths of raypaths, which are prone to errors and unrealistic
results when multi-pathing exists in areas of complex overburden. Second, measure-
ments conducted in these works are all in the data domain, which has a number of
issues that can affect the accuracy of Q model building. Specifically, diffractions and
poor signal-to-noise ratio introduce large errors in ) estimation. In addition, the data
domain has an amount of crossed events , which will introduce spectral interference.

Therefore, we produce a reliable Q model by using wave-equation migration Q
analysis (WEMQA). This idea is similar to wave-equation migration velocity analysis
(WEMVA) (Sava and Biondi, 2004; Biondi, 2006), relates image perturbation with
velocity perturbation using wave-equation based tomography. Once the complex wave
propagation (i.e. multipathing) presents, wavefield-continuation methods yield better
images than ray-based methods, due to their ability to handle multipathing of the
reflected energy. Moreover, the data-space approach is vulnerable when the data are
contaminated with noise, diffractions and crossing events; whereas the image-space
approach is stable, because migration suppresses the noise and focuses the events. To
some degree, the migration-based technique is also more efficient than the data-based
one, since it can be implemented in a target-oriented fashion and hence focus on the
attenuated zone.

In this paper, we first present downward-continuation imaging with Q to provide
the basis for image-based QQ tomography. Second, we present a wave-equation Q
tomography operator — that provides a direct mapping between the change in the
image space and the change in the Q model. The change in the image will be dis-
cussed afterwards, which can be measured either by computing the difference between
the attenuated image and the attenuation-free stacked image, or by computing the
spectral variation of each window over depth and image points.

THEORY
Downward-continuation imaging with Q

Valenciano et al. (2011) presented a one-way viscoacoustic wave-equation approach
that can accurately migrate data in media with attenuation. Their approach uses
an extension of the Fourier Finite-Differences(FFD) algorithm to compensate for the
effects of Q during migration. Due to the relatively large frequency dispersion for
FFD, we extend the explicit split-step algorithm to migrate the attenuated data.

In a linear attenuating medium, the one-way wave equation used for migration by
wavefield continuation has the following phase-shift recursive solution:
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Pria: (@ ki, by) = Pa (@, kg, by) €275 (1)

where P is the pressure, w is the temporal frequency, k, and k, are the horizontal
wavenumbers, and k, is the vertical wavenumber. The plus and minus signs in the
phase-shift operator represent downgoing and upgoing waves, respectively.

The vertical wavenumber can be expressed by the following dispersion relation,
which is often called the Single Square Root (SSR) equation:

k. =/ (9)* — [k, (2)

where |k| = /kZ + kZ; 5 is the phase slowness, which becomes a complex number and
can be given by following equation based on the nearly constant-QQ model (Futterman,
1962),

5() = s (1= g tutwfin)) (14 55). 3)

where s, is the slowness at a reference frequency w,. Since attenuation delays more
at the lower frequencies than the higher frequencies, I will take the infinite frequency
as the reference frequency (the Nyquist frequency in the real case).

The phase-shift migration operator described above is strictly valid for a subsur-
face model that varies only with depth. To extend the operator to handle laterally
varying earth models, a simplified form of this SSR can be approximated by using
Taylor expansion around the reference slowness S, and the reference quality factor
Qo:

kz(swr, Q) = kz0(§0) +w (‘§ - §0) ’ (4)

S0 = Suro (1 _ %@0 ln(w/wr)) (1 + %QD) | (5)

Equation 4 describes split-step migration, whose accuracy can be improved by us-
ing more than one reference slowness and Q. In this modified scheme, called Extended
Split-Step migration, multiple reference wavefields are generated for interpolatation.

where

Wave-equation Q tomography operator

Wave-equation (Q tomography is a non-linear inversion process that aims to find
the Q model that minimizes the residual field in the image space. In general, the
residual image, Al, is the difference between the background image computed with
the current background Q model, and the ‘target’ image that will be fully discussed
in the later section. This residual image can also be approximated by a linearized
operator—wave-equation QQ tomography operator T--being performed-on the model
perturbation AQ:

Al = TAQ. (6)
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The adjoint of this tomographic operator T* backprojects the image perturbation
into the Q model space, and the back-projected changes in the model space will be
used as gradient directions to conduct a line-search in optimization schemes. This
backprojection can be expressed as

AQ = T*AL (7)

In this paper, I evaluate this wave-equation tomographic operator T in the shot-
profile domain. Both source and receiver wavefields are downward continued in the
shot-profile domain using the one-way wave equations (Claerbout, 1971):

{E)(—l—zk) (x,%5) =0 )

r,y,z2=0,%s) = f0(x —xg) '

and

[ (f - in)vien) - | o

U(z,y,z=0,x5) = (w,y,z:O,xs)

where D(x,x;) is the source wavefield at the image point x = (x,y,z) with the

source located at x5 = (s, ys, 0); U(x,Xs) is the receiver wavefield at the image point

x with the source located at xg; fs is the source signature, and f;d(x — x;) defines

the point source function at x4, which serves as the boundary condition of equation

8; P(x,y,z = 0,%,) is the recorded shot gather at x,, which serves as the boundary

condition of Equation 9; and £k, is the same vertical wavenumber as shown in Equation
2.

The background image is computed by applying the cross-correlation imaging
condition:

ZZD —h,x,)U(x +h,x,), (10)

where the bar stands for the complex conjugate, and h = (hy, hy, h.) is the subsurface
half-offset.

Under the Born approximation, a perturbation in the model parameters causes a
first-order perturbation in the wavefields. Consequently, the resulting image pertur-
bation reads:

Z Z (AD(X —h,x,)U(x + h,x,)+
D(x —h, xS)AU(x+h,xS)>, (11)

where ﬁ(X— h, x,) and U (x+h, x;) are the background source and receiver wavefields
computed with the background model Q(x), and AD(x—h, x,) and AU (x+h, x;) are
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the perturbed source wavefield and perturbed receiver wavefield, respectively, which
result from the model perturbation AQ(x).

To evaluate the adjoint tomographic operator T*, which backprojects the image
perturbation into the model space, I first compute the wavefield perturbation from
the image perturbation using the adjoint imaging condition:

AD(x,x,) = ZAI(X,h)ﬁ(X—l—h,XS)

AU(x,x,) = Y AI(xh)D(x—hx,). (12)

The perturbed source and receiver wavefields satisfy the following one-way wave
equations, linearized with respect to Q:

{ (% + tk.) AD(x,x,) = (—Z%’Eﬁ(x, XS)) AQ(x) ’ (13)
AD(z,y,z=0,%x5) =0
and
{ (& = ih:) AU(x,x,) = (~i%50(xx,) ) AQ(x) | 14
AU(z,y,z=0,%x5) =0

When solving the optimization problem, I obtain the image perturbation by com-
paring the background image and the target image. Then the perturbed image is
convolved with the background wavefields to get the perturbed wavefields (Equation
12). The scattered wavefields are computed by applying the adjoint of the one-way
wave-equations 13 and 14. Finally, the perturbation AQ(x), is obtained by cross-
correlating the upward-propagated scattered wavefields with the modified background
wavefields,

Ok, =\ [ .0k~
QD>~I— U(—ZaQU>. (15)

Image perturbation estimation

e

As definition, the image perturbation Al is the difference between the background
image 1 Tomputed with the current background Q model, and the ‘target’ image, I
swhich is an attenuation-free image. In fact, instead of computing the difference be-
tween these two images, we calculate the spectral change of the images. The change in
the spectrum can be indicated by the steepness of the slope computed by spectral
ratio method (Tonn, 1991). The larger slope demonstrates more frequencies are
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attenuated. As attenuation is a frequency-dependent amplitude effect, the inter-
cept calculated from spectral ratio method removes the frequency-independent
amplitude effects, such as geometric spreading, instrument response, source/receiver
coupling, radiation patterns, and reflection/transmission effects. Therefore, the per-
turbed image are measured from the perturbed amplitude spectral change after the
absolute scaling of the waveform has been removed.

In this section, we develop ways of measuring the image perturbation for two sce-
narios: the model with sparse reflectors and the model with dense reflectors. The
choice of the target image I is the main distinguishing element between these two
different measurements of the perturbed image. Both of these methods require ac-
curate velocity models. Fortunately, since both velocity and Q model building share
the same tomography kernel, we can updated these two models simultaneously.

Model with sparse reflectors

As the reflectors are sparsly distributed in the subsurface, we assume those re-
flectivities are white and can be picked from the background image. Therefore, the
target image I in this method is the image of a non-attenuated dataset generated by
a set of picked reflectivities. We design an automatic picker to pick each individual
event for spectrum analysis and target image generation. The picker automatically
pinpoints the local maximum of the envelope of each trace and places a normalized
reflectivity R on the reflector. During this procedure, thresholding helps choose the
reflector with relatively high amplitude. We synthesize a set of non-attenuated data
by injecting the known source wavelet into a non-attenuated medium with reflectivity
R. This data is then remigrated to obtain the non-attenuated target image I. In the
real case, not all of the reflectivities can be accurately picked. Therefore, only key
reflectors are selected to generate the target image I. An image mask M is needed
to select the corresponding reflections in background image I, and M is designed
according to the energy of the target image I.

Model with dense reflectors

For some real cases, events are very close to each other, so that they will be difficult
to individually separate. The interference of those events may introduce errors into
spectral analysis. Therefore, instead of comparing the frequency contents of each
events, we compare the spectral difference between an amount of selected windowed
events from the background image with the events in the reference windows. These
reference windows are calfully selected from the background image so that they are not
contaminated by attenuation and can be used as our target image. All the windows
in this method are in the large and same size, hence the influence of the interferenced
reflectivies on the spectra are statistically the same over windows. Based on the
assumption that the amplitude spectra contain the same frequency contents over
windows if the Q model for imaging is accurate, this method minimizes the spectral
differences between the selected windows and the reference windows.
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EXAMPLES
Numerical test of downward-continuation imaging with Q

To test the downward continuation operator with ), we run downward-continuation
imaging with Q on a 2-D model. The model size is 4000 m (length) x 2500 m
(depth). A horizontal reflector is at 1500 m depth, and 51 sources and 401 receivers
are uniformly distributed on the surface. The medium is homogeneous with constant
velocity (2000 m/s) and constant Q (50 for the model with attenuation and 99999
for the model without attenuation). A Ricker wavelet with 50 Hz central frequency
is used as the source wavelet.

For conveniently comparing the wavelets in Figure 1, all plots are displayed in nor-
malized wiggles, and the maximum amplitude of those wavelets before normalization
are presented in the title. Figure 1(a) shows the conventional migration of the data
generated from the model without attenuation, which images the reflector at 1500m
depth. Figure 1(b), and Figure 1(c) shows the conventional migration, and migration
compensated by the true (Q model of the data generated from the model with attenua-
tion, respectively. Due to the higher-frequency frequencies loss and velocity dispersion
caused by attenuation, the wavelets in Figure 1(b) are stretched, amplitude-decayed
and phase-rotated when compared with Figure 1(a). Figure 1(c) shows exactly the
same result as Figure 1(a), indicating that Q compensation adequately restores both
the amplitude and phase.

Numerical test of the wave-equation Q tomography operator

Similar to the forward tomographic operator in WEMVA (Sava and Biondi, 2004;
Biondi, 2006) that linearizes the image around the velocity, the forward wave-equation
QQ tomography operator relates the perturbation in @) to the image perturbation by
linear approximation. This approximation may fail when the model error is large. To
verify the effectiveness of this linear approximation, I compare the results generated
by the linearized operator and the non-linearized image perturbation that is obtained
by subtracting the background image from the true image. The size of the test
2D model is 4000 m (length) x 1200 m (depth). A horizontal reflector is at 900 m
depth, and 51 sources and 401 receivers are uniformly distributed on the surface.
The background medium is homogeneous with constant velocity (2000 m/s) and no
attenuation (¢ = 10000). Figure 4(a) shows the model perturbation with rectangular
low Q. The @ errors are set to 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and
90% lower than the background model.

I compare the linearized and the non-linearized image perturbation by examining
their RMS value. Figure 2 shows their RMS values as A@) increases. The results
show that this wave-equation Q tomography operator is a good linear approximation
when Q error is less then 50%, but fails in approximating the non-linearized image
perturbation when the model error increases.
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Figure 2: The linearized and the

non-linearized image perturbation QX107
a‘re Compared by examining their s —— Non-linearized image perturbation
RMS Value. This ﬁgure ShOWS il —* Linearized image perturbation

their RMS values as A increases.
The results show that this wave-
equation QQ tomography operator
is a good linear approximation
when Q error is less then 50%,
but fails in approximating the

RMS value

non-linearized image perturbation % " 2 % 4 s e 70 8 %
. Q error (%)

when the model error increases.

[CR]

SEP-1/9



Yi Shen 10 WEMQA

To test the adjoint of the wave-equation Q tomography operator T*, I run it in
a homogeneous background medium with v = 2000 m/s and @ = 50. The input
of the adjoint tomographic operator is a spike in the image space Al = § (x = 0
m, z = 900 m). Figure 3(a) and Figure 3(b) show the back-projected Q gradient
where the source-receiver offset is 0 km and 1.6 km respectively. Clearly, these back
projections have a banana-donutj shape and are spread along the wavepaths from
the source to the perturbed image point and from the perturbed image point to the
receiver.
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Figure 3: 2D impulse responses for Q: (a) zero-offset impulse responses; (b) impulse
responses when source-receiver offset is 1.6 km. [ER]

Numerical tests on the model with sparse reflectors

This section applies WEMQA to two 2-D synthetic examples to update an inaccurate
Q model. The size of the first test 2D model is 4000 m (length) x 1200 m (depth). A
horizontal reflector is at 900 m depth, and 51 sources and 401 receivers are uniformly
distributed on the surface. The background medium is homogeneous with constant
velocity (2000 m/s) and constant Q (@ = 50). A Ricker wavelet with 50 Hz central
frequency is used as the source wavelet. Figure 4(a) and Figure 4(b) show the true
Q models, which have a Q anomaly of 10% lower and higher than the background,
respectively.

We model the data using the true Q model (the background plus the perturba-
tion), and use the background Q model as the initial model. After migration on the
attenuated data with the initial Q model, the reflectivities are automatically picked
from the background image that serve as the input for the target image. Figure 4(c)
and 4(d) shows the image perturbation obtained by subtracting the background im-
age from the target image. These images have larger perturbation underneath the Q
anomaly than in the area far away from the anomaly. In addition, the sign of the
amplitude of the middle lobe of the reflector in Figure 4(c) and 4(d) indicates the
direction for updates. The positive amplitude of the middle lobe of the reflector in
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Figure 4(c) indicates the background image is undercompensated, and smaller Q is
needed for the updates. The reverse is true for Figure 4(d). Figure 4(e) and 4(f)
shows the inversion results using steepest descent algorithm after 3 iterations. The
results show that both the shape and the values of the Q anomalies are recovered.

The second test example is modeled on a realistic subsurface structure with an
absorptive gas cloud. Figure 5(a) shows the velocity model with multiple reflectors,
and Figure 5(b) presents a Gaussian Q anomaly in a non-attenuating medium. The
data are modeled with 3 km maximum offset, 10 m receiver spacing, 40 m source
spacing, and a 50Hz Ricker wavelet. We use a non-attenuating medium as the initial
model. Figure 5(c) show the inversion results using steepest descent algorithm after
4 iterations. As the initial model is far from the true model, the low ) anomaly is
partially recovered in Figure 5(c), and hence more iterations are needed to better
retrieve the true model.

Numerical tests on the model with dense reflectors

A part of a modified SEAM velocity model is used in this section. This model includes
two gas clouds with lower velocity than the surrounding sediments (Figure 6(a)). The
Q model shown in Figure 6(b) also has these two gas clouds with high attenuation. We
generate synthetic data with 51 shots with 0.2km spacing, 251 receivers with 0.04km
spacing, and a Ricker wavelet with 50 Hz central frequency. The initial model to
the inversion is a model without attenuation. After migration on the attenuated
data with the current Q model, we generate the image perturbation by calculating
the slope of the logarithm of the spectral ratio between the windowed events of each
trace and the events in the reference window. The window size is 3km, and 30 sliding
windows are used for each trace. The reference windows are in x=6km, which are not
contaminated by attenuation. As both the structures and velocities in this example
does not have strong horizontal variation, the compared windows and the reference
windows are in the same depth. Figure 6(c) show the inversion results using steepest
descent algorithm after 2 iterations. The results indicates the accurate locations of
these two anomalies. However, the energy around these anomaly is strong. As for
the gas clouds, the initial model is 90% far from the true model, which makes the
wave-equation tomographic operator fails in linear approximation and emphasizes the
side-lobes. Therefore, we need more iterations to better retrieve the anomalies.

CONCLUSION

We design a new method ~-WEMQA to produce reliable Q models. This method is
performed in the image-space, which uses downward-continuation imaging with Q
to stack out noise, focus and simplify events, and provide a direct link between the
model perturbation and the image perturbation. We develop two methods to generate
the image perturbation for the following scenarios: the model with sparse reflectors
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Figure 4: Q perturbations: (a) rectangular Q anomaly that is 10% lower than the
background Q; (b) rectangular Q anomaly that is 10% higher than the background
Q; (c) image perturbation caused by the perturbed model in Figure 4(a); (d) image
perturbation caused by the perturbed model in Figure 4(b); (e) inversion results of
the low Q anomaly shown in Figure 4(a) using steepest descent algorithm after 3
iterations; (f) inversion results of the high Q anomaly shown in Figure 4(b) using
steepest descent algorithm after 3 iterations. [ER]
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Figure 5: (a) True velocity model with multiple reflectors; (b) True Q model with a
Gaussian anomaly in a non-attenuating medium. (c) Inverted Q model using steepest
descent algorithm after 4 iterations. [ER]
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Figure 6: (a) A part of a modified SEAM velocity model with two gas clouds. ;
(b) True Q model with two gas clouds. (c) Inverted ) model using steepestydescent
algorithm after 2 iterations. [ER]
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and the model with dense reflectors. Second, this method uses wave-equation Q
tomography to handle the complex wave propagation. Two synthetic tests on two
different 2-D models with a Q anomaly shows the capability of this method on the
model with sparse events. Tests with a modified SEAM model also demonstrate the
feasibility of this method for the model with dense events.

ACKNOWLEDGMENTS

The authors thank Biondo Biondi, Robert Clapp and Dave Nichols of Stanford for
their advice and suggestions, and also thank Yunyue Li, Ali Almomin and Sjoerd de
Ridder for fruitful discussion.

REFERENCES

Best, A. I., C. MaCann, and J. Sothcott, 1994, The relationships between the ve-
locities, attenuations, and petrophysical properties of reservoir sedimentary rocks:
Geophysical Prospecting, 42, 151-178.

Biondi, B. L., 2006, 3-D seismic imaging.

Brzostowski, M. A. and G. A. McMechan, 1992, 3-D tomographic imaging of near-
surface seismic velocity and attenuation: Geophysics, 57, 396-403.

Claerbout, J. F., 1971, Towards a unified theory of reflector mapping: Geophysics,
36, 467-481.

Dasgupta, R. and R. A. Clark, 1998, Estimation of Q from surface seismic reflection
data: Geophysics, 63, 2120-2128.

Futterman, W. 1., 1962, Dispersive body waves: Journal of Geophysical Research,
67, 5279-5291.

Kjartansson, E., 1979, Constant () wave propagation and attenuation: Journal of
Geophysical Research, 84, 4737-4748.

Leaney, W. S.; 1999, Walkaway Q inversion: 69th Annual International Meeting,
SEG, Expanded Abstracts, 1311-1314.

Leggett, M., N. R. Goulty, and J. E. Kragh, 1992, Study of traveltime and ampli-
tude time-lapse tomography using physical model data: Abstracts of 54th EAEG
Meeting,, 248-249.

Mateeva, A., 2003, Thin horizontal layering as a stratigraphic filter in absorption
estimation and seismic deconvolution: PhD thesis, Colorado School of Mines.

Plessix, R. E., 2006, Estimation of velocity and attenuation coefficient maps from
crosswell seismic data: Geophysics, 71, S235-5240.

Quan, Y. and J. M. Harris, 1997, Seismic attenuation tomography using the frequency
shift method: Geophysics, 62, 895-905.

Reine, C., R. A. Clark, and M. van der Baan, 2012a, Robust prestack Q-determination
using surface seismic data: Part 1 Method and synthetic examples: Geophysics,

77, R45-R56.

SEP-1/9



Yi Shen 16 WEMQA

——, 2012b, Robust prestack Q-determination using surface seismic data: Part 2
3D case study: Geophysics, 77, B1-B10.

Rickett, J., 2006, Integrated estimation of interval-attenuation profiles: Geophysics,
71, A19-A23.

, 2007, Estimating attenuation and the relative information content of amplitude
and phase spectra: Geophysics, 72, R19-R27.

Sava, P. and B. Biondi, 2004, Wave-equation migration velocity analysis-i: Theory:
Geophysical Prospecting, 52, 593606.

Tonn, R., 1991, The determination of seismic quality factor Q from VSP data: A
comparison of different computational techniques: Geophysical Prospecting, 45,
87-1009.

Valenciano, A. A., N. Chemingui, D. Whitmore, and S. Brandsberg-Dahl, 2011, Wave
equation migration with attenuation and anisotropy compensation: 2011 Annual
Meeting, SEG, Expanded Abstracts, 232-236.

Zucca, J. J.,; L. J. Hutchings, and P. W. Kasameyer, 1994, Seismic velocity and
attenuation structure of the geysers geothermal field, california: Geothermics, 23,
111-126.

SEP-1/9



