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ABSTRACT

We proposed to use a partial-stack power maximization objective function in
wave-equation migration velocity analysis. Instead of stacking the angle-domain
common-image gathers all at once, the partial-stack power maximization objec-
tive function stacks them in smaller groups. It improves the robustness against
the cycle-skipping problem and can achieve better global convergence. We also
added a normalization term to the partial-stack power maximization objective
function to balance the different reflector amplitudes. We tested our objective
function using the Marmousi model. The results demonstrate that using the
partial-stack power maximization criterion can achieve better global convergence.
We also observed that the normalization of reflector amplitudes is very important
in order to better constrain the tomography problem.

INTRODUCTION

Introduced by Gardner (1974) and Sattlegger (1975), migration velocity analysis
(MVA) belongs to a family of methods for estimation of migration velocity. Instead
of looking at travel-times in the seismic data, MVA extracts the velocity information
from the migrated images. Etgen (1990) and van Trier (1990) proposed the first for-
mulations of tomographic MVA using surface offset-domain common-image-gathers
(ODCIGs) obtained by Kirchhoff migration. Recently, the tomographic MVA method
has been extended to wave-equation migration velocity analysis (WEMVA), which
uses the wave-equation rather than the ray-based model to resolve the velocity infor-
mation (Chavent and Jacewitz, 1995; Biondi and Sava, 1999). The wave-equation-
based methods are more accurate than ray-based methods, because the wave-equation
better describes wave-propagation physics and provides physically more realistic sen-
sitivity kernels for the velocity update. The wave-equation model can behave quite
differently than the ray-based model when applied to complex velocity models.

To estimate velocity, WEMVA solves an optimization problem. Evaluating the
flatness of the subsurface angle-domain common-image gathers (ADCIGs) is currently
a popular choice when forming WEMVA objective functions (Biondi and Sava, 1999;
Clapp and Biondi, 2000; Biondi and Symes, 2004). The objective function is usually
optimized by applying gradient-based algorithms. The computation of the gradient
is performed in two steps: 1) computation of a perturbation in the migrated image
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domain, and 2) back-projection of the image perturbation into the velocity model us-
ing the image-space wave-equation tomographic (ISWET) operator (Sava and Biondi,
2004).

Several ADCIGs-based WEMVA objective functions have been proposed in the
literature. The stack power maximization (SPM) method directly maximizes the
stack of the ADCIGs of all detectable angles, but similar to full-waveform inversion
(FWI) (Tarantola, 1984), it is prone to cycle-skipping when the starting model is
not sufficiently accurate and the data do not contain very low frequencies (Symes,
2008). Differential-semblance optimization (DSO) (Symes and Carazzone, 1991; Shen
et al., 2005; Shen and Symes, 2008) penalizes the difference between the ADCIGs of
neighboring angles (or the unfocused energy on the subsurface ODCIGs). This objec-
tive function can achieve much better global convergence. However, the differencing
operator amplifies the high-frequency (with respect to the angle axis) image varia-
tions in the ADCIGs and can generate unwanted artifacts in the gradient (Fei and
Williamson, 2010), which slows down convergence.

If we compare the two objective functions that previously mentioned, notice that
“stacking all angles” is a special case of the smoothing operations, and it extracts
nothing but the zero-frequency component (with regard to the angle axis), while “dif-
ferencing neighboring angles” extracts all frequency components but boosts higher-
frequency components. The partial-stack power maximization objective function is
a compromise between the two. It utilizes many non-zero frequency components as
DSO does, while still using the stacking operator (in contrast to the differencing op-
erator) with smaller windows. Having higher-frequency components in the objective
functions ensures better global convergence, and not using the differencing operator
avoids amplifying the high-frequency noise in the ADCIGs. Therefore the partial-
stack power maximization objective function combines the merits of the SPM and
DSO objective functions.

The rest of this paper is divided into two parts: first we present the mathematical
formulation; then we demonstrate the effectiveness of our method with the Marmousi
examples.

THEORY

Partial-Stack power maximization

For the sake of simplicity, we assume two-dimensions in our derivation; however, ex-
tending the theory to 3-D is straightforward for this method. We denote the prestack
image as I(z, γ, x), (x, z are the depth and horizontal axis, and γ is the reflection-
aperture angle).

To enforce the goal of ADCIG flatness, we have multiple options in choosing the
objective functions. The stack power maximization (Soubaras and Gratacos, 2007)
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maximizes the full angle stack of the ADCIG:

max
v

JSPM(v) =
1

2
‖
∑

γ

I(z, x, γ; v)‖2
2, (1)

in which I(z, x, γ; v) is the ADCIGs migrated using the current velocity model v. This
approach can yield a high-resolution model, however when the velocity error is large,
the angle gathers will become strongly curved and demonstrate significant residual
moveout (RMO) (different amounts of event shifts at different angles). Because we
stack all angles at once, as the difference of event shifts between angles becomes bigger
than half wavelength of the dominant frequency, the stacking becomes incoherent and
would result in two separate events instead of one. The cycle-skipping phenomenon
arises from such situations.

As another option to enforce angle-gather flatness, the differential semblance op-
timization (DSO) objective function proposed by Shen et al. (2005) overcomes this
cycle-skipping issue by using a local operator that operates on each individual angle
and its immediate neighbors:

min
v

JDSO(v) =
1

2
‖∂I(z, x, γ; v)

∂γ
‖2

2. (2)

Cycle-skipping is very unlikely to happen using the DSO objective function, because
the relative shifts in the gathers between one angle and its neighbors is generally very
small.

However, the differencing operator is poorly conditioned (i.e., the operator is very
short, spanning over only two angles and therefore requires many iterations to make
all angles the same), and it magnifies the high-frequency variations of the ADCIGs
along the axis of reflection angle. In several cases these high-frequency variations
are not desired (for example, when high-frequency noise is present in ADCIGs, or
when the variations are caused mainly by non-uniform subsurface illumination at
each reflection angle).

In order to combine the advantages of both approaches, Shen and Symes (2008)
introduce a bi-objective function that includes both terms using the weighted sum:

min
v

JCMB(v) = JDSO(v) − βJSPM(v). (3)

As expected, this approach can achieve both global and local convergence, but the
disadvantage brought by the differencing operator still remains, and adjusting the
parameter β (β ≥ 0) might not be trivial.

The partial-stack power maximization (partial SPM) objective function is an al-
ternative way to combine the SPM and DSO objective functions. We use a partially
stacking operator that has a span between those of the full stacking operator and the
differencing operator:

max
v

JPSPM(v) =
1

2
‖
∑

γ

{g(γ) ∗ I(z, x, γ; v)}‖2
2, (4)
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in which ∗ means convolution and g(γ) is the windowing function whose support cor-
responds to the span of the partial-stacking operator. The partial-stacking objective
function serves as a transition between SPM and DSO. SPM uses only the zero-
frequency component (with respect to the angle axis), and DSO uses all components
but zero-frequency; while the partial SPM uses both zero and non-zero frequency
components. Nonetheless, partial-stack is still a low-pass stacking operator, thus it
does not amplify high frequencies. Additionally, partial SPM objective function has
a single term, and the user does not have to choose proper values for the relative
weight parameter β as in objective function (3).

In practice, subsurface offset CIGs are more convenient for implementation than
subsurface angle-domain CIGs. To find out the subsurface offset-domain counterparts
of the objective functions we just discussed, Sava and Fomel (2003) showed that
the transform between subsurface offset gathers and angle gathers is analogous to a
Fourier transform with respect to γ and h; that is, convolution in the angle-domain
corresponds to multiplication in the offset domain. Therefore we can see that for
the SPM objective function, the offset-domain counterpart is to maximize the zero
subsurface-offset image (because the Fourier transform of a constant function is a
spike at the origin):

max
v

JSPM O(v) =
1

2
||I(z, x, h = 0; v)||22; (5)

for the DSO objective function in the offset-domain, the differencing operator will
map to a weighting function f(h) = h:

min
v

JDSO O(v) =
1

2
||I(z, x, h; v)h||22. (6)

Following the same logic, the partial SPM objective function will be:

max
v

JPSPM O(v) =
1

2
||I(z, x, h; v)G(h)||22, (7)

in which G(h) corresponds to the Fourier transform of g(γ). Figure 1 illustrates
the comparisons of the three objective functions in the angle-domain (a) and offset-
domain (b).

Balancing the impact of strong and weak reflectors

Notice that all of the objective functions we discussed previously implicitly put more
weight on the strong-amplitude events, which causes the inversion to spend very little
effort on the unflatness of the ADCIGs at weak reflectors. Not only will the inverse
problem become less constrained, but also the inverted model might depart far from
the true model, as we can see in the examples later.

There are multiple ways to normalize these objective functions so that they are
more independent of reflector strength; here, for simplicity, we choose to normalize
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Figure 1: The comparison of the three objective functions in angle-domain(a) and
offset-domain(b). [NR]
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them for each inline location x (Tang, 2011). The normalized version of objective
function (7) is:

max
v

JPSPM OB(v) =
1

2

∑
x

∑
z,h [I(z, x, h; v)G(h)]2∑

z,h I2(z, x, h)
. (8)

The next step is to find the model gradient from the objective function, as we will
use gradient-based methods to solve this optimization problem. For conciseness and
without bringing confusion, we omit the variables in I(z, x, h; v) and simply denote
it as I, and define

Ī =
∑
z,h

I2 and ĪG =
∑
z,h

I2G2(h). (9)

Then the gradient of the objective function (8) is

∂JPSPM OB

∂v
=

∂I

∂v

(ĪG2(h) − ĪG)I

Ī2
. (10)

Eq. (10) indicates that first we compute the image perturbation ∆I = (ĪG2(h)−ĪG)I

Ī2 ;
then we back-project ∆I using the image-space wave-equation tomographic operator.

NUMERICAL EXAMPLES

We use the synthetic Marmousi model to test the effectiveness of the partial SPM
objective function. In our implementation, we use a two-way acoustic wave-equation
propagator, and for our optimization algorithm, we use non-linear conjugate-gradient
with Polak-Ribiere formula for search direction.

We implement the offset-domain representation of the partial SPM objective func-
tion (eq. (7) and eq. (8)). The selection of weighting function G(h) is not unique, as
long as it can be considered as the frequency spectrum of a certain low-pass filter. In
our examples, we use Gaussian functions for G(h). We started with a wide G(h) that
would include most unfocused energy of the ODCIGs at non-zero subsurface offsets,
as the inversion proceeds, the gathers will become more focused; we then reduce the
width of G(h) so that our objective function gradually approaches the traditional
SPM objective function. To control the resolution of the inversion, we precondition
the model gradient with a triangular smoothing operator and reduce the extent of
smoothing gradually within each iteration.

Marmousi Example

The model size is 9 km in x and 3.2 km in z. The spatial sampling is 20 m. The survey
geometry is of split-spread type, with sources and receivers located on the top of the
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Figure 2: The migrated image (a) using the velocity model inverted from the objective
function (7) (without normalization) and (b) using the initial model. The display clip
we use for (a) is 4 times of the clip used in (b), and we can see that in (a) the single
reflector marked in the left box becomes very strong and coherent. In contrast, many
weaker reflectors (for e.g., marked in the right box) that are initially present in the
initial image (a) are imaged much poorly in (b). Therefore it is important to give the
weak reflectors more weight in the objective function. [NR]
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model. There are 451 receivers with 20 m spacing that fully covers the model surface.
We simulate 226 shots with shot spacing of 40 m. The central frequency of the Ricker
wavelet we use is 10 Hz. For the inversion, we invert all frequencies simultaneously
rather than from low to high frequencies. We run 40 nonlinear iterations for the
inversion.

Figure 4(a) shows the true velocity model and 4(b) shows the starting model
v(z). Figures 4(c) and (d) show the inverted velocity model using the un-normalized
partial SPM objective function and the normalized partial SPM objective function
respectively. As we can see, the inverted result in 4(c) is stuck in local minima,
because without normalization, the inversion will attempt to increase the focusness
of a few large, strong reflectors, while ignoring and even sacrificing the coherency
of smaller, weaker events. The observation of the corresponding migrated images
in figure 2 further confirms our conclusion. The result in figure 4(d) shows global
convergence towards the correct model. The long-wavelength part of the velocity
model is well captured up to depth 2.2 km, as can be seen from the migrated images
in figure 3.

CONCLUSION

We propose to use the partial stack power maximization objective function in wave-
equation migration velocity analysis. This objective function merges the advantages of
both conventional stack power maximization and differential-semblance-optimization
objective functions, and it can achieve good global convergence, while retaining the
relatively high resolution of the stack power maximization objective function. We
have successfully applied our approach to the Marmousi model. We have also verified
that the normalization of the reflector amplitude in the objective function is not only
preferred but necessary in the Marmousi case.
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Figure 3: The comparison of the migrated images using the true velocity model (a)
and using the inverted model with normalized partial SPM objective function (b).
The two images match well up to 2.2 km depth. [NR]
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Figure 4: The Marmousi true velocity model (a), the starting velocity model (b),
the inverted velocity models using partial SPM objective function without normal-
ization (c) (eq. (7)) and with normalization (d) (eq. (8)). We can see that without
normalization, the inversion yield a model that is very different from the true one.
[NR]
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