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ABSTRACT

Residual-moveout-based wave-equation migration velocity analysis uses residual-
moveout to characterize the kinematic error caused by an inaccurate velocity
model and computes velocity updates using wave-equation tomographic opera-
tors. However, the per-iteration cost of this method is even more expensive than
that of full waveform inversion because of the construction and back-projection
of offset/angle-domain common-image gathers. In order to speed up residual-
moveout-based migration velocity analysis, we examine its work flow, and propose
the following acceleration scheme: 1) by using the compressed-sensing technique,
we can very well reconstruct the angle-domain common image gathers from a
fraction of the subsurface offset common-image gathers, therefore saving signif-
icant computation cost; 2) after we extract the residual-moveout information
from the reconstructed angle-domain common image gathers, we reduce the cost
of back-projection by synthesizing an approximation of the original image per-
turbation, which can be back-projected with much lower cost and can yield a
velocity gradient with the same behavior.

INTRODUCTION

Wave-equation migration velocity analysis (WEMVA) is a reflection tomography
method which uses wave-equation rather than ray-based model to retrieve the ve-
locity model from seismic data(Chavent and Jacewitz, 1995; Biondi and Sava, 1999).
The velocity information comes from the seismic data redundancy that arises because
each reflector point in the subsurface is illuminated by wave energy from multiple di-
rections. WEMVA exploits such redundancy by forming common-image gathers and
then improves the velocity model by enforcing coherence among the common-image
gathers. Evaluating the flatness of the subsurface angle-domain common image gath-
ers (ADCIGs) is currently a popular choice when forming WEMVA objective functions
(Biondi and Sava, 1999; Clapp and Biondi, 2000; Biondi and Symes, 2004).

The objective function is usually optimized by applying gradient-based algorithms.
The computation of the gradient is performed in two steps: 1) computation of a per-
turbation in the migrated image domain, and 2) back-projection of the image per-
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turbation into the velocity model using the image-space wave-equation tomographic
(ISWET) operator (Sava and Biondi, 2004).

One flavor of the WEMVA methods is based on residual-moveout (RMO) (Zhang
et al.,, 2012). It describes the unflatness in the ADCIGs using residual-moveout.
Instead of maximizing the image-stack-power objective function directly with respect
to the velocity, we link the objective function to the velocity model indirectly through
an intermediate moveout parameter. By focusing on the kinematic errors in the
common-image gathers, RMO-based WEMVA is more robust with respect to the
cycle-skipping issue and still produces high-quality model updates.

However, for all WEMVA methods, the cost per iteration is much higher than that
of full waveform inversion (FWI) because the WEMVA projection operator is more
expensive compared to the projection operator in waveform inversion. In WEMVA’s
gradient projection, besides calculating wavefield propagation, the imaging operator
and wave-equation tomographic operator also have to perform cross-correlations and
convolutions that involve the subsurface offset-domain common image gathers (OD-
CIGs) or angle-domain common image gathers (ADCIGs). In contrast, the projection
operator in FWI does not deal with the subsurface common-image gathers, therefore
is much cheaper than that of WEMVA. Moreover, as the velocity error increases, the
size of the ODCIGs has to grow (otherwise the velocity information will be lost),
which further increases the cost of WEMVA iteration.

Due to the high cost, a computationally more efficient approach for RMO-based
WEMVA is very desirable. There are two computationally significant steps in the
work flow: one is the generation of ADCIGs with the current velocity model, which
requires one migration with subsurface offset; the other one is the back-projection
of the RMO error into the velocity model, which involves applying the image-space
tomographic operator with a subsurface-offset image perturbation. For the former
step, we make use of the compressed-sensing technique (Clapp, 2012), which can re-
construct the full ADCIG from a randomly subsampled ODCIG; thus the imaging
cost (of such an ODCIG) is only a fraction of the original implementation. However,
for the latter step, we cannot save computation by back-projecting a subsampled
subsurface ODCIG perturbation, because the output gradient will not be consistent
with the original gradient. Therefore we propose to approximate the image pertur-
bation with a synthesized one, which has shorter span along the subsurface-offset
axis without losing the moveout information. Back-projecting the synthesized image
perturbation would cost much less, because the number of subsurface-offsets in the
image perturbation is significantly smaller.

The rest of this paper is divided into three parts: first we briefly review the theory
of RMO-based WEMVA; then we present the details of the modification method which
becomes computationally more efficient; finally we illustrate the modified approach
with some synthetic examples.
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RMO-BASED WEMVA

For simplicity, we assume two dimensions in our derivation; however, extending the
theory to 3-D is conceptually straightforward for this method. We denote the pre-
stack angle-domain images as I(z,~, x), where x, z are the depth and horizontal axis,
v is the reflection-aperture angle, and s represents the slowness model.

The details of RMO-based WEMVA can be found in Zhang and Biondi (2011,
2013); here we simply re-state the key steps. We start from the “classical” stack
power maximization objective function

:%;Z {/dv ](z,%x;s)r, (1)

where s is the model slowness, and I(z,~, z;s) is the prestack image (ADCIG) mi-
grated with s.

RMO-based WEMVA defines an alternative objective function (maximizing the
normalized RMO semblance) with respect to the RMO parameter p, which is a func-
tion of the slowness s:

ZZfdzw JdvI(7, z 4 zy + ptan® v, z; 50))2 @)
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where s is the starting model and z, is a local averaging window of length L along
the depth axis. The gradient given by the objective function (2) is

ds  Op 0s’
where 0Js,, /Op can be easily calculated by taking the derivative along the p axis of
the semblance panel S,,, and dp/0s can be derived in a way similar to the sensitivity
kernel of the finite-frequency travel-time tomography method in Marquering et al.
(1998).

The final expression for the gradient calculation is:

oJ ol + Zw, Y, T, ; aJm
o — / dz, / i 32 — V(P tan? + Fi) (2 + 27,71 50) 5, (=0 (@)

where Fi; and Fiy are constants computed from the initial ADCIGs, the detailed
formula for which can be found in Zhang and Biondi (2013).

ACCELERATED RMO WEMVA APPROACH

The dominant cost of RMO WEMVA is the ADCIG reconstruction and the model
gradient calculation (shown in eq. (4)). The following two sections describe the ac-
celeration we propose.
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Efficient reconstruction of ADCIGs

As seen in egs. (4) and (2), the cost of computing 0.Jg,, /Op is primarily the cost of con-
structing the full ADCIGs I(z,7,x; so). In our practice, this is done by constructing
the subsurface-offset image I(z, h,, x; sg) using the cross-correlation imaging condi-
tion and then transforming the offset image to the angle-domainusing the method
described in Sava and Fomel (2003). Computing the subsurface-offset images (i.e.
ODCIGs) is significantly more expensive than the zero-subsurface-offset image, be-
cause wavefield cross-correlation has to be performed at all subsurface-offset locations.
As we move to 3-D, the I/O could also become another bottleneck because of the large
size of the 5-D subsurface-offset image.

There is a significant amount of literature on compressing seismic data, recently
Clapp (2012) found that the seismic images such as ADCIG and ODCIG are also
highly compressible. To utilize the compressibility of seismic images, Clapp (2012)
proposed to use the compressed-sensing method (Candes and Donoho, 1999; Donoho,
2006) to reduce the imaging cost. Compressed-sensing theory predicts that given
certain conditions are satisfied, we can almost perfectly recover the full ADCIGs from
a randomly and heavily subsampled ODCIG by solving the following optimization
problem:

0 ~ |Ma(d—RWm)|[3,
0 ~ [jmlf, (5)

where My represents the sub-sampling mask for the ODCIG d. Thus we need to
compute the ODCIGs only at those locations specified by Mgq. R is the angle-to-
offset transform operator, W is the multi-dimensional wavelet transform operator, m
is the wavelet-domain coefficient of the ADCIG, and m is assumed to be sparse. The
sparsity-promoting constraint for m is to minimize the ¢;-norm of m, as expressed in

eq. (5).

Clapp (2012) uses an ¢; inversion scheme called the Stage-wise Orthogonal Match-
ing Pursuit (StOMP) (Donoho et al., 2006), which essentially approximates the orig-
inal problem by solving multiple least-square data-fitting problems. The operators
R and W are much cheaper than the imaging operator itself, so this reconstruction
scheme is more efficient than calculating the ADCIG directly from the full ODCIG.

Figure 1 shows a reconstruction example using the Marmousi model; here the sub-
sampling ratio of the ODCIGs is 20%. Figure 2(a) shows the reconstructed ADCIG
using the sub-sampled ODCIGs in figure 1. For comparison, figure 2(b) shows the
ADCIG transformed from fully sampled ODCIGs. The comparison shows that the
compressed-sensing-based reconstruction is satisfactory. Although the two are not
exactly the same, the important RMO information has been well preserved on the
reconstructed ADCIG.
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Figure 1: A Marmousi subsurface offset image after random sub-sampling. The sub-
sampling ratio is 20%. [ER]

Figure 2: (a): The reconstructed ADCIGs using the sub-sampled ODCIG in figure 1.
(b): The ADCIGs transformed from the fully sampled ODCIG. [ER]
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Back-projection using synthesized image perturbation

As shown in the gradient calculation in formula (4), the other computationally ex-
pensive step is the back-projection of the image perturbation,

aJS’m
o .0)

using the image-space wave-equation tomographic operator,

T =0I(z+ zw,7,x;8)/0s.

AT = (Fygtan®y + Fi2)1(2 + 2w, 7, 7; 50)

From the offset-to-angle common image gathers transform described by Sava and
Fomel (2003), we know that the unflatness in the angle domain corresponds to un-
focused energy in the subsurface-offset domain. The angle-domain image pertur-
bation AT is the first-order z derivative of the initial ADCIG I(sg), modulated by
f(y) = (Fiy tan?y + F12)8gspm (z,2). Therefore the gather shape (curvature) in AT is
the same as in initial ADCIG I(sg). Then the subsurface-offset domain of Al will
have to use the same offset span as the initial ODCIG. When the velocity error is
large, the offset span can be large, which increases the amount of computation for

the tomographic operator.

The back-projection is expensive, because Al takes many subsurface offset lo-
cations to represent. Realizing that the RMO information (which determines the
velocity update direction) is already embedded in the modulate function f(v), we
can form a different image perturbation as follows:

AL(z+ 2y, v, 2) = fFONI (2 + 2w, 7, T; S0),

in which I (7; 80) is the angle-domain common image gathers for the zero-subsurface-
offset image I(h = 0;s¢), and the dot denotes the derivative respect to depth z. The
advantage of defining such I(v) is that I(7) would be flat among angles, which leads
to AI(y) also being flat. Then the offset-domain AZ(h) will be much more focused
around h = 0, and we can use a shorter subsurface-offset axis h for AI(h). Therefore
the cost of applying the tomographic operator on AT (h) will be much smaller, because
AI(h) needs fewer subsurface-offset points than AI(h).

Besides changing I(h) and AI(h), we need to replace the observed data d used in
the tomographic operator with d = LT (h = 0) correspondingly, where L is the Born
modeling operator. By doing this, the synthesized data d becomes kinematically
consistent with the synthesized image perturbation Al

INVERSION EXAMPLE

Marmousi model

With the two modifications incorporated in our RMO WEMVA work flow, we test the
new approach on the smoothed Marmousi Model. The model is 6 km in z and 1.6 km
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Figure 3: The slightly smoothed true velocity model of Marmousi (a), the start-
ing velocity model (b), and the inverted velocity models using our method after 20
iterations (c¢). [CR]

in z. The spatial sampling is 20 m. The survey geometry follows the land acquisition
pattern with receivers at every surface location on the top and we simulate 51 shots in
total, covering the whole lateral span on the top with a spacing of 120 m. We model
64 frequencies in total using the one-way wave-equation, ranging from 5 Hz to 40 Hz.

For each iteration, we compute only 20% of the locations of the migrated OD-
CIGs and reconstruct the full ADCIGs using the StOMP algorithm, which could save
approximately 80% of the imaging cost. After the RMO information is extracted, we
back-project the synthesized image perturbation, which uses only 9 subsurface offsets
rather than 33 points needed for original image perturbation, saving about 75% of
the tomographic operator cost. We ran 20 nonlinear iterations for the inversion.

Figure 3(a) shows the true model (in velocity) and (b) shows the starting model,
which has a vertical gradient increasing from 1600m/s and 3200m/s. Figure 3(c)
shows the inverted velocity model using our computationally efficient approach. The
result shows good convergence to the true model.

BP synthetic model

We also test this new approach on a portion of the BP synthetic model. The model
is extracted from the upper-left part of the original BP model, with a size of 35km in
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Figure 4: The true velocity model (a) of the upper-left part of the BP model, the
starting velocity model (b), and the inverted velocity model (c) using our method
after 40 iterations. [CR|]
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Figure 5: The migrated images using the velocity models shown in fig 4. [CR]
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Figure 6: The angle-domain common image gathers migrated using the true model
(a), using the starting velocity model (b), and using the inverted velocity model (c).
We calculate the angles from 0° to 52°, with a sampling of 2°. The flatness of ADCIGs
improves significantly from the initial model. [CR|]
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x and 8 km in z. The spatial sampling of the model is 25 m in x and 12.5m in z. We
synthesize several flat reflectors to simulate the seismic data. We use marine streamer
geometry to simulate 200 shots on the top of the model, with receiver streamer towing
from left to right. The shots start from x = —5km, and the spacing is 125 m. There
are 401 receivers on the 10 km long streamer with a spacing of 25 m. We model 281
frequencies in total using the one-way wave-equation, ranging from 5 Hz to 40 Hz.

Figure 4(a) shows the true model (in velocity) and (b) shows the starting model,
in which we assume the complex salt overburden has been well resolved, and the
sediments velocity below the salt linearly increase from 3.4 km/s to 4.4 km/s. Because
we assume the velocity above the salt is accurate, we apply a mask during the inversion
so that only the subsalt region of the model will be updated. Figure 4(c) shows
the inverted velocity model after 40 iterations using our computationally efficient
approach. Again, the result shows good convergence to the true model. Figure 5
shows the migrated images using the velocity models in fig 4. They are plotted
using the same clip, so that we can easily observe the improvements of the reflector
coherence by the inversion. Figure 6 show the improvement of ADCIGs flatness from
the starting velocity model to the inverted velocity model.

CONCLUSION

In order to reduce the computational cost of residual-moveout based wave-equation
migration velocity analysis, we propose two modifications to the workflow: first we use
a compressed-sensing-based technique to reconstruct angle-domain common-image
gathers without computing all of the subsurface-offset gathers; second, we synthesize
an image perturbation that has more focused energy near zero subsurface offset, and
back-project that image perturbation into the slowness model while keeping the model
updates similar to the original case. We test this computationally efficient approach
using the 2-D Marmousi model and the BP model. The examples show that adopting
these modifications in RMO-based WEMVA does not degrade its inversion result;
while it can increase inversion speed by five-fold. Although the increased speed we
achieve currently is not overwhelming, in the 3-D case, the compressibility of the
seismic images increases dramatically with the growth of dimensions, so we expect
the speed up ratio to increase by additional one or two orders of magnitude.
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