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ABSTRACT

In least-squares reverse-time migration, the adjoint of the linearized forward-
modeling operator suffers from back-scattering artifacts that severely hamper
the speed of convergence. To avoid the back-scattering artifacts, I propose to use
least-square reverse-time migration with wavefield decomposition. The incident
and scattering wavefields are decomposed into up- and down-going direction such
that only the forward-scattering component is used in imaging and modeling.
Compared with using the conventional Laplacian preconditioning method, the
proposed technique converges faster because it does not bias the inversion towards
higher-frequency content. I demonstrate the concept and methodology with the
2D Seam model.

INTRODUCTION

It has been observed that the conventional cross-correlation imaging condition pro-
duces strong low-frequency migration artifacts in reverse-time migration (RTM) (Baysal
et al., 1984). Migration artifacts appear mainly at shallow depth but also above
strong reflectors. Figure 1 explains the generation of such artifacts. Due to the two-
way propagation, source and receiver wavefields back-scatter off any hard velocity
interfaces. With the cross-correlation imaging condition, the two-way propagation
in RTM creates a wreath of possible imaging points. Figure 1 (a) and (b) show
the location of undesirable cross-correlation energy that generate the low-frequency
back-scattering artifacts. In least-squares reverse-time migration (LSRTM), the ad-
joint of the Born-modeling operator is equivalent to the RTM operator. LSRTM is
considered to be a large problem that requires iterative inversion scheme. A succes-
sive sequence of adjoint and modeling operations is required to iteratively change the
initial solution into the inverted one. As a result, when the adjoint operation is used
in LSRTM, the back-scattering artifacts also exist in the gradient. Such artifacts
hamper the convergence because erroneous energy in introduced into the gradient at
every iterations.

There are many published work on how to suppress these artifacts (Baysal et al.,
1984; Mulder and Plessix, 2003; Yoon et al., 2004; Fletcher et al., 2005). I will discuss
two ways that can be incorporated into the LSRTM algorithm to suppress the back-
scattering artifacts. A first way is to apply the Laplacian filter to the stacked RTM
image. Zhang and Sun (2009) have showed that applying the Laplacian filter (along
with a 1/ω2 filter onto the data) is equivalent to applying a cos2θ weight to the
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Figure 1: Consider an interaface with a sharp velocity contrast, migration artifacts oc-
cur when (a) the source wavefield correlate with the back-scattered receiver wavefield
or (b) the vice-versa. [NR]

angle gather. This cosine factor down-weights contributions from large angle and
effectively suppresses the back-scattered artifacts when θ = 90o. A straightforward
incorporation of this idea in LSRTM is to use the Laplacian filter as a preconditioner
in the inversion. The preconditioner scale low-frequency down to suppress the back-
scattering artifact in the gradient.

The second approach to suppressing back-scattering artifacts is to decompose
wavefields into one-way components and only cross-correlate the wave components
that occur as reflections (Liu et al., 2007). However, fully decomposing wavefields
into eight directions in 3D can be computationally expensive. Instead, I follow the
ideas from Liu et al. (2011), which introduce an efficient algorithm for up-down decom-
position of the source and receiver wavefields with having to save the entire wavefield
in time. By decomposing the wavefields into up-going and down-going direction, the
migration image (or the gradient) can be separated into forward and back-scattering
components. Most of the RTM artifacts are contained in the back-scattering compo-
nent, those noise can be conveniently excluded in the gradient calculation for LSRTM.
While in the forward modeling direction of LSRTM, only the forward-scattering events
will be calculated.

The paper starts with a discussion on the theory of LSRTM with wavefield de-
composition. It will be followed by a comparison of some results between the Lapla-
cian preconditioner and the wavefield decomposition approach of suppressing back-
scattering artifact using a modified version of the 2D Seam model.

THEORY

Least-squares migration poses the imaging problem as an inversion problem by lin-
earizing the wave equation with respect to our model (m(x)). The model is defined to
be a weighted difference between the migration slowness (so(x)) and the true slowness
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(s(x)):
m(x) = (s(x)− so(x))so(x). (1)

The constant-density acoustic isotropic wave-equation is used in this study. The
wave-equation is linearized with respect to m(x) by applying the first-order Born
approximation. The forward-modeling equation is

dmod(xr,xs, ω) =
∑
x

ω2fs(ω)G(xs,x)m(x)G(x,xr). (2)

where dmod represents the forward modeled data, ω is the temporal frequency, m(x)
is a function of the image point x, fs(ω) is the source waveform, and G(xs,x) is the
Green’s function of the two-way acoustic constant-density wave equation over the
migration slowness. Note that G is actually ω-dependent and is a function of so(x)
only. The inversion problem is defined as minimizing the least-squares difference
between the synthetic and the recorded data:

S(m) =‖ Lm− d ‖2=‖ dmod − d ‖2, (3)

where L is the matrix form of the forward-modeling operator as shown in equation
2. It is important to point out that the adjoint of the forward-modeling operator is
the migration operator:

mmig(x) =
∑

xr,xs,ω

ω2f ∗s (ω)G∗(xs,x)G∗(x,xr)d(xr,xs, ω),

=
∑
xs,t

s(t,x;xs)r(t,x;xs). (4)

Note that the second line of equation 4 express the adjoint operation of the forward-
modeling operation to the more familiar zero-lag cross-correlation imaging condition
in RTM. s(t,x) and r(t,x) represent the source and receiver wavefield as a function of
time t and sub-surface location x. To reduce the back-scattering artifacts, Liu et al.
(2011) propose to partition the source and receiver wavefields as

s(t,x;xs) = sd(t,x;xs) + su(t,x;xs), (5)

and
r(t,x;xs) = rd(t,x;xs) + ru(t,x;xs), (6)

where su(t,x;xs) and sd(t,x;xs) represents the up- and down-going partition of the
source wavefield. Similarly, ru(t,x;xs) and rd(t,x;xs) represents the up- and down-
going partition of the receiver wavefield. T is the recording time of the observed data.
The imaging condition can then be decompose into four component by substituting
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Figure 2: Ray-path diagrams of the imaging condition of (a) down-going source and
up-going receiver wavefields and (b) up-going source and down-going receiver wave-
fields. These image points corresponds to the forward-scattering events. Note that
the black arrows indicate the direction of wavefields when played forward in time.
The green arrows indicate the direction of the receiver wavefields played in reverse
time. [NR]

equation 5 and 6 into the imaging condition (equation 4).

mmig(x) = I1(x) + I2(x) + I3(x) + I4(x), (7)

I1(x) =
∑
xs,t

sd(t,x;xs)ru(T − t,x;xs), (8)

I2(x) =
∑
xs,t

su(t,x;xs)rd(T − t,x;xs), (9)

I3(x) =
∑
xs,t

su(t,x;xs)ru(T − t,x;xs), (10)

I4(x) =
∑
xs,t

sd(t,x;xs)rd(T − t,x;xs), (11)

where I1(x) corresponds to the cross-correlation of the down-going source and up-
going receiver wavefields as shown in Figure 2a . I2(x) corresponds to the cross-
correlation of the up-going source and down-going receiver wavefields as shown in
Figure 2b. Both terms produce images at reflection points. I will refer I1 and I2

as the forward-scattering term. On the other hand, I3(x) corresponds to the cross-
correlation of the up-going source and up-going receiver wavefields while I4(x) cor-
responds to the cross-correlation of the down-going source and down-going receiver
wavefields. These terms produce the low-frequency artifacts in RTM, illustrated by
Figure 1. I will refer I3 and I4 as the back-scattering term. We can eliminate the
back-scattering artifacts in the image with the following migration operator,

mdecomp(x) =
∑
xs,t

sd(t,x;xs)ru(t,x;xs) + su(t,x;xs)rd(t,x;xs). (12)
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In general, extracting up- and down-going wavefield requires a 2D Fourier trans-
form in (t, xz) space. This is computationally expensive because the entire source
and receiver wavefield must be saved in memory. To go around this problem, Liu
et al. (2011) proposed decomposing the wavefields in the kz axis, which only requires
1D Fourier transform in z. Let s̃(t, x, kz) be the 1D Fourier transform of the source
wavefield s(t,x) in z. Let s+(t,x) and s−(t,x) represents the kz± decomposition of
the source wavefield as,

s̃+(t, x, kz) =

{
s̃(t, x, kz) if ω ≥ 0

0 if ω < 0,

and

s̃−(t, x, kz) =

{
0 if ω ≥ 0

s̃(t, x, kz) if ω < 0,

where s̃+(t, x, kz) and s̃−(t, x, kz) is the 1D Fourier transform of a new representation
of the decomposed source wavefields s+(t,x) and s−(t,x). Similar definition follows
for the receiver wavefields r+(t,x) and r−(t,x). Liu et al. (2011) show that the
imaging condition in equation 12 can also be written as

mdecomp(x) =
∑
xs,t

s+(t,x)r−(t,x) + s−(t,x)r+(t,x). (13)

The forward-modeling direction is equivalent to the Born-modeling operator that
corresponds to the forward-scattering events as illustrated in Figure 3a and b. A
derivation of the forward-modeling operator using wavefields decomposition is shown
in the appendix.

2D Seam model

I extracted a 2D velocity section of the Seam model for this study. Figure 4a shows
the true velocity model used to generate synthetic data. The model is 16000 m wide,
7000 m deep and a spatial spacing of 20 m. 20 shots are evenly distributed at the
surface. Each shot gather is generated with receivers located at every grid point at the
surface. The migration velocity model (Figure 4b) is a smoothed version of the true
velocity model in the sediment layers. I assume the salt is being picked correctly in
the migration velocity model excluding the details of the dirty salt. Figure 4c shows
the image model we wish to recover. The true model is calculated using equation 1.

I compare imaging result between RTM, LSRTM with Laplacian preconditioner,
and LSRTM with wavefield decomposition. LSRTM with wavefield decomposition has
been described in the previous section. In LSRTM with Laplacian preconditioner, a
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Figure 3: Ray-path diagram of the forward scattering events. (a) shows down-going
incident (sd(t,x)) and up-going scattered ku(t,x)) wavefields and (b) up-going inci-
dent su(t,x)) and down-going kd(t,x)) scattered wavefields. (c) and (d) show ray
paths of some back-scattering events that are excluded from the migration and mod-
eling. [NR]

new model variable x is defined such that m = Ax where A is the Laplacian operator.
Note that A is self-adjoint. Equation 3 then becomes

S(x) =‖ LAx− d ‖2=‖ dmod − d ‖2 . (14)

Figure 5a shows the RTM image of the Seam model. In the RTM image, there
are strong back-scattering artifacts above the salt layer that are suppressed with a
Laplacian filter. When LSRTM with wavefield decomposition is applied, the gradient
at every iteration is separated into the forward-scattering component (Figure 6a) and
the back-scattering component (Figure 6b). Only the forward-scattering part is used
to update the model. The sum of the forward- and back-scattering component (Figure
6) yields the gradient for regular LSRTM.

Figure 5b and 5c show the LSRTM image with the Laplacian preconditioning and
with wavefield decomposition at iteration 20, respectively. In general, the LSRTM
images are better than the RTM image (Figure 5a) with higher frequency content
and better relative amplitude across the reflectors.
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Figure 4: (a) True velocity, (b) migration velocity, and (c) true model. [ER]
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Figure 5: (a) RTM image, (b) LSRTM with Laplacian preconditioner at iteration 20,
and (c) LSRTM with wavefield decomposition at iteration 20. [CR]
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Figure 6: (a) Forward scattering part of the RTM image (I1 +I2), (b) back-scattering
part of the migration image (I3 + I4) and (c) the total RTM image (I1 + I2 + I3 + I4).
[CR]
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Figure 7: A zoomed section of (a) the true model, (b) RTM image, (c) LSRTM with
Laplacian preconditioner, and (d) LSRTM with wavefield decomposition. [CR]

To compare between the two LSRTM results, let look at two zoomed areas. Figure
7 shows a zoomed section of the image from x = 4000−7200m and z = 1500−4500m.
We can easily identify the shadow zone underneath the salt structure in the RTM
image (Figure 7b). The information in the shadow zone is partially recovered with
LSRTM as shown in Figure 7c and d. The quality of the inverted image can be
evaluated by looking at the relative strength of the reflectors across the image. By
comparing the relative amplitude with the true model (Figure 7a), the LSRTM image
with wavefield decomposition (Figure 7d) has better relatively amplitude information
than the LSRTM image with Laplacian preconditioner (Figure 7c). Figure 9 shows
the convergence curve between the two inversion. One remark is that using wavefield
decomposition seems to allow the inversion to converge faster than using the Laplacian
preconditioner. At iteration 10, the residual in wavefield decomposition has dropped
down to below 5% while the residual from the Laplacian preconditioner is at around
10%.



Wong 11 Decomposing LSRTM

Figure 8 shows another zoomed section of the image from x = 7000 − 10000m
and z = 3500 − 6000m. Figure 8a is the true model we wish to recover. Figure 8b
is the RTM image. Notice that some of the higher frequency structures as annotated
by circles is not well represented in the RTM image. Those structures are better
represented in Figure 8 c, d, e, and f with LSRTM. By comparing both result at
iteration 10, the Laplacian preconditioning image (Figure 8c) is less refined than
the wavefield decomposition image (Figure 8d). However, as the inversion progress
to iteration 40, the Laplacian preconditioning result (Figure 8e) has recovered some
refined details. The images from iteration 10 and 40 suggests that LSRTM with
wavefield decomposition converges faster than with Laplacian preconditioner.

DISCUSSIONS

Amplitude bias

From the synthetic result, I observe that LSRTM with wavefield decomposition con-
verges faster than LSRTM with the Laplacian preconditioner. One explanation is
because the later method tends to bias the inversion towards fitting the higher fre-
quency. Figure 10 shows the amplitude spectrum of one shot gather from the input
data and from the forward modeling of the first gradient from the two LSRTM meth-
ods. The spectrum is calculated by taking Fourier transform in time of each trace in
the shot gather and the resulting spectrum is average along all traces (receivers) in the
shot gather. Notice that the spectrum from the wavefield decomposition technique is
much closer to the spectrum of the input data than that of the Laplacian precondi-
tioning. The frequency bias can be compensated by adding a left-preconditioner in
the inversion with the following fitting goal:

P(LAx− dobs) ≈ 0, (15)

where P represents the 1
ω2 filter. However, the affects of including a left-preconditioner

along with other data-weighting term will need to be studied.

Including the back-scattering term

One drawback for using LSRTM with wavefield decomposition is that some true back-
scattering event (Figure 3c and d) will be excluded from the inversion. This implies
that some steeply dipping reflectors might not be imaged with this technique. One
way to address this problem is to introduce a spatially varying weighting for the
back-scattering term.

mmig(x) = I1(x) + I2(x) + Mback(x)(I3(x) + I4(x)), (16)

where Mback(x) is a image-space weighting function. It is set to zero for regions with
strong back-scattering artifacts and is set to ones elsewhere. The region with strong
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Figure 8: A zoomed section of (a) the true model, (b) RTM image, (c) LSRTM with
Laplacian preconditioner at iteration 10, (d) LSRTM with wavefield decomposition
at iteration 10, (e) LSRTM with Laplacian preconditioner at iteration 40 and (f)
LSRTM with wavefield decomposition at iteration 40. All images are scaled to one
and are displayed at the same clip of ±0.25. [CR]
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Figure 9: Convergence plot for LSRTM with the Laplacian preconditioner (square
marker) and LSRTM with wavefield decomposition (cross marker). In general, using
wavefield decomposition converges faster than using Laplacian preconditioner. [NR]

Figure 10: Amplitude spectrum of one shot gather from the input data (solid line).
The amplitude spectrum of the forward modeling of the first gradient from LSRTM
with Laplacian preconditioner (dash line) and LSRTM with wavefield decomposition
(dotted line). [CR]
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back-scattering artifacts is generally in the shallow region. This weighting would at
least allow some true back-scattering event to be included in the inversion. Further
study will be needed for this approach.

CONCLUSION

Back-scattering artifacts in reverse-time migration occur when diving waves, head
waves or backscattered waves cross-correlate. These events are particularly strong
where high velocity contrasts exist. In LSRTM, the adjoint of the linearized forward-
modeling operator suffers from back-scattering artifacts that severely hamper the
speed of convergence. One solution to this problem is to use a Laplacian filter as a
preconditioner, which suppress lower-frequency and boost up higher-frequency. An
alternate approach is to use LSRTM with wavefield decomposition. Based on the 2D
Seam example, I found that the proposed technique allow the inversion to converge
faster than using LSRTM with the Laplacian preconditioner.
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APPENDIX

Forward modeling with wavefield decomposition

The goal here is to show that the adjoint of equation 12 is the Born-modeling equiva-
lent of the forward scattering events. The derivation will be shown in 2D but extension
to 3D is straight forward. To simplify notation, I will represent the model m(x, z)
and the data d(xr, t) as matrices M and Dr of dimension (x, z, t). The relationship
is summarized as follow,

m(x, z) =
∑

t

M(x, z, t) = AM, (17)

Dr(x, z, t) = Lrd(xr, z = 0, t), (18)

where matrix A is a stacking along the time axis t and Lr project the data at re-
ceiver location xr. Let think of the input and output of the modeling and migration
operators as M and Dr. The decomposing migration operator of equation 12 can be
re-written in matrix form as follow,

M = SuKdGDr + SdKuGDr. (19)

In the above equation, Su and Sd are up- and down-going source wavefield, respec-
tively. G is the matrix operator form of the Green’s function. Ku and Kd decom-
position operators that partition wavefields into up- and down-going direction. They
are defined as,

Ku = F−1k̃uF, (20)

Kd = F−1k̃dF, (21)

where F and F−1 is the forward and inverse 2D Fourier transform in (z, t). k̃u and

k̃d extract up- and down-going direction in the (kz, ω) space;

k̃u =

{
1 if ωkz ≥ 0

0 if ωkz < 0,

k̃d =

{
0 if ωkz ≥ 0

1 if ωkz < 0.

Note that the decomposition operators are self-adjoint. The forward-modeling oper-
ator with wavefield decomposition is defined to be

Dr = G∗K∗
uS

∗
dM + G∗K∗

dS
∗
uM. (22)

In the first term of equation 22, down-going source wavefield is multiplied with model
M and only the up-going component is extracted by the operator Ku. The extracted
energy then propagates back to the receiver by G∗. In the second term, the up-
going source wavefield multiplies the model M and only the down-going component
is extracted.
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Forward modeling with up-down and kz± decomposition

The goal of this section is to show that the forward-modeling with up-down decom-
position can also be represented with the kz± representation. This section follows
the prove similar to that in the paper Liu et al. (2011) for the migration direction.
Let first re-write equation 22 with an explicit dependence on the variable ω

d̃r(ω) = g̃∗(k̃∗u(ω)s̃∗d(ω) + g̃∗k̃∗d(ω)s̃∗u(ω))m̃. (23)

The up-down decomposition can be expressed in terms of the kz± wavefields in the
following ways:

k̃u(ω) =

{
k̃+(ω) if ω ≥ 0

k̃−(ω) if ω < 0,

k̃d(ω) =

{
k̃−(ω) if ω ≥ 0

k̃+(ω) if ω < 0,

s̃u(ω) =

{
s̃+(ω) if ω ≥ 0

s̃−(ω) if ω < 0,

and

s̃d(ω) =

{
s̃−(ω) if ω ≥ 0

s̃+(ω) if ω < 0.

The k̃±(ω) are the k̃(ω) wavefield with kz± decomposition as referenced in Liu et al.
(2011). Substituting the above equations into equation 23 gives

d̃r(ω) =

{
g̃∗(k̃∗+s̃∗− + k̃∗−s̃∗+)m̃ if ω ≥ 0

g̃∗(k̃∗−s̃∗+ + k̃∗+s̃∗−)m̃ if ω < 0,

which shows that the forward modeling with up-down decomposition (equation 23)
is equivalent to the forward-modeling with kz± decomposition.

d̃r(ω) = g̃∗(k̃∗+(ω)s̃∗−(ω) + g̃∗k̃∗−(ω)s̃∗+(ω))m̃. (24)


