
Practically stable unstable orthorhombic finite

differences

Huy Le and Stewart A. Levin

ABSTRACT

Intrigued by an instability result presented at the last SEG meeting (Chu, 2012),
we analyze it and some variants to understand the nature and extent of such
instabilities. We investigate an unexpected dependency of stability on the order
of our spatial derivative approximation. We find that even the apparently stable
scheme in that SEG abstract is actually slightly unstable, though the instability
is not qualitatively manifest until tens of thousands of time steps are taken.

INTRODUCTION

The Stanford Exploration Project, in line with the interests of many of its sponsors,
has been investigating the effects of anisotropy on seismic processing, imaging and
inversion. Much recent interest in the geophysical community has focused on the
effects of orthorhombic symmetry, a type of elastic symmetry that has three mutually
orthogonal planes of symmetry. This type of symmetry can be found, most commonly,
where a set of vertical fractures is embeded in a VTI medium, or where two identical
sets of fractures make an arbitrary angle to each other, or where two or three sets of
mutually perpendicular fractures intersect (Tsvankin, 1997). Orthorhombic crystals
occur in anhydrite, olivine, and sulfur.

An orthorhombic medium is characterized by nine independent elastic parameters,
cij, that enter into a linear Christoffel relationship between stresses, σij, and strains,
εij (Malvern, 1969):
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There are two common ways to derive equations for wave propagation in anisotropic
media. The first approach is to derive them from the dispersion relations obtained
from the general Christoffel equations (Alkhalifah, 2003). The resultant differential
equations are sixth-order in both time and space. Another approach is to start with
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constitutive stress-strain relations and equations of motion (Duveneck and Bakker,
2011; Zhang and Zhang, 2011). The resultant equations from this approach are second
order. In either case, these are systems that couple both normal and shear stresses.

In practice, we are currently most interested in analysis and imaging of com-
pressional waves. For this case, one approximation is to set the shear velocities in
the symmetry plane axes to zero (c44 = c55 = c66 = 0), resulting in what are called
pseudo-acoustic wave equations. This substitution reduces the medium description to
six parameters instead of nine. Following the second approach, in tilted orthorhombic
symmetry, the system of pseudo-acoustic wave equations takes the following form:

∂2σii

∂t2
=

∑
j

Gij

∑
m

∑
n

RjmRjn

∑
l

∂2

∂xn∂xl

∑
k

RkmRklσkk, (2)

where σii are three normal stresses, Gij are related to vertical P-wave velocity vpz

and the Thomsen anisotropic parameters εi and δi in symmetry planes, and the Rij

are entries of the matrix that transforms from the coordinate system aligned with
the symmetry of the material to the surface North-East South-West Vertical system
(Chu, 2012).

We reparameterize system 2 as:

∂2σii

∂t2
=

∑
n,l,k

ainlk
∂2

∂xn∂xl

σkk, (3)

where
ainlk =

∑
j,m

GijRjmRjnRkmRkl (4)

are the corresponding coefficients in front of the spatial derivatives. These ainlk coef-
ficients have units of velocity squared. This reparameterization simplifies later alge-
braic manipulations and analysis and reduces the computational time significantly.

Relation 3 defines a system of three second-order coupled equations for the three
normal stresses σii. The compressional pressure P-wave is defined as the negative of
the average of these stresses, p = −1

3

∑
i σii (Malvern, 1969). Each of the equations

in 3 has 18 terms on the right-hand side: nine non-mixed spatial derivatives and
nine mixed spatial derivatives. The mixed derivatives consume a major fraction of
the computational time as compared to the non-mixed ones and will be handled
differently by different numerical schemes.

NUMERICAL STABILITY ANALYSIS

We analyze the stability of three different numerical schemes, following Chu (2012).
All of them use centered finite differences to approximate the non-mixed second spatial
derivatives. They differ in how the mixed derivatives are calculated (Table 1).
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Non-mixed derivatives Mixed derivatives
Scheme 1 Centered Centered
Scheme 2 Centered Rotated non-staggered
Scheme 3 Centered Rotated staggered

Table 1: Numerical schemes we analyze for stability.

To analyze the stability of system 3, we use the von Neumann method (Saenger
et al., 2000; Richtmyer and Morton, 1957). Rewriting system 3 in matrix form we
have

∂2σ

∂t2
= Lσ, (5)

where σ = [σii] is a vector of three normal stresses, and L is a 3×3 matrix differential
operator.

The numerical approximation of equation 5 in the spatial Fourier domain takes
the following form:

σ̂n+1 = (4t2L̂ + 2I)σ̂n − σ̂n−1, (6)

where we have used second-order finite difference in time with step size 4t. The
hat notation represents a function in the spatial Fourier domain, and the subscript
denotes time level.

Equation 6 is a three-level recursive relation between the future (t = n+1), current
(t = n), and past (t = n − 1) wavefields. It can be reduced to a two-level system of
equations as follows:[

σ̂n+1

σ̂n

]
=

[
4t2L̂ + 2I −I

I 0

] [
σ̂n

σ̂n−1

]
, (7)

or
un+1 = Aun, (8)

where

un =

[
σ̂n

σ̂n−1

]
(9)

is a six-component vector of three current and three previous wavefields and

A =

[
4t2L̂ + 2I −I

I 0

]
(10)

is the 6× 6 amplification matrix.

The amplification matrix is a function of wave numbers kx, ky and kz and de-
termines how much each mode (in spatial frequency) is amplified as one time step
advances. It depends on the medium parameters ainlk (equation 4), the numerical
scheme, the order of spatial approximation M/2, and the time and space step sizes

SEP–149



Le and Levin 4 Orthorhombic FD

(Appendix A). The numerical scheme is stable when the magnitude of the largest
eigenvalue of A is less than unity for all modes.

In the case of second-order spatial approximation, an exact formula for the eigen-
values of A might be found (Saenger et al., 2000). In our case, as shown in Appendix
B, finding the explicit form for the eigenvalues of A involves solving a cubic equation.
In our work, we numerically compute the eigenvalues for different symmetries (Table
2) and analyze how the eigenvalues of A vary with changing time step and order of
spatial approximation. We choose 4x = 4y = 12.5 m and 4z = 6.25 m.

Symemtry ε1 ε2 δ1 δ2 δ3 vpz (m/s) θ ϕ φ
Isotropic 0 0 0 0 0 2000 0 0 0

TI 0.16 0.16 0.06 0.06 0 2000 0 0 0
Orthorhombic 0.2 0.12 0.07 0.05 0 2000 0 0 0

Tilted Orthorhombic 0.2 0.12 0.07 0.05 0 2000 40 25 35

Table 2: Medium parameters we use for stability analysis (Chu, 2012).

RESULTS AND DISCUSSION

For tilted orthorhombic media, from Figures 1(a), 2(a), and 3(a), we observe that the
magnitude of the largest eigenvalue increases exponentially with increasing time step
4t and, as expected, approaches unity as 4t approaches zero. Additionally, higher
orders of spatial approximation generally come with higher degrees of instability.
This implies a trade-off between accuracy and stability. The largest eigenvalues for
schemes 1 and 3 have the same order of magnitude, while those of scheme 2 are
considerably greater (Figures 1(b), 2(b), and 3(b)). This illustrates that, as Chu
points out, using rotated non-staggered finite differences for approximating mixed
spatial second derivatives causes a more severe problem of instability. Although
centered and rotated staggered grids have a less serious instability issue, higher order
spatial approximations (orders 8th, 10th, 12th, 14th, and 16th) are not technically
stable, because their corresponding maximum eigenvalues are slightly greater than
unity (Figures 2(b), and 3(b)). However, for typical time steps of a millisecond or
less, amplification of the wavefield will not be significant until after tens of thousands
of time steps.

Figures 4 and 5 show that the issue of instability becomes much more problematic
for tilted orthorhombic media than for other types of symmetries. Also, from these
figures, with our particular sets of material parameters, these numerical schemes
applied to TI symmetry surprisingly appear to become unstable more quickly than
those applied to vertical orthorhombic symmetry. We do not believe this is actually
the case, but an artifact of numerical precision when eigenvalues are clustered, as
they most certainly are for TI media which has a plane of symmetry. This still needs
to be investigated.
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One interpretation of the CFL stability condition is that the wavefield should
not propagate past multiple grid points in one time step. Consequently, one would
intuitively expect that the fast-progagating waves are more likely to cause instability.
Our observation that the directions that have the largest eigenvalues do not coincide
with the directions of the fast-propagating waves (Figure 6), however, does not fully
support this intuition.
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Figure 1: Largest eigenvalues of different orders for tilted orthorhombic media using
scheme 1: (a) large time steps and (b) small time steps. [NR]
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Figure 2: Largest eigenvalues of different orders for tilted orthorhombic media using
scheme 2: (a) large time steps and (b) small time steps. With such eigenvalues, the
wavefield would be amplified greatly after hundreds of time steps. [NR]

CONCLUSION

We verified that using rotated non-staggered finite difference to approximate the
mixed derivatives in wave equations for tilted orthorhombic media can cause seri-
ous instability. Alternative schemes, such as centered and rotated staggered finite
differences are practically stable, that is, with time steps around or less than a mil-
lisecond, the wavefield can be propagated up to tens of thousands of steps without
being excessively amplified.

SEP–149



Le and Levin 6 Orthorhombic FD

0 

20 

40 

60 

80 

100 

120 

140 

0.000 0.002 0.004 0.006 0.008 0.010 0.012 

La
rg

es
t E

ig
en

va
lu

e 

Time Step (s) 

2nd 
4th 
6th 
8th 
10th 
12th 
14th 
16th 

(a)

1.00000 

1.00001 

1.00002 

1.00003 

1.00004 

1.00005 

1.00006 

1.00007 

0.0000 0.0004 0.0008 0.0012 0.0016 

La
rg

es
t E

ig
en

va
lu

e 

Time Step (s) 

2nd 
4th 
6th 
8th 
10th 
12th 
16th 

(b)

Figure 3: Largest eigenvalues of different orders for tilted orthorhombic media using
scheme 3: (a) large time steps and (b) small time steps. [NR]
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Figure 4: Largest eigenvalues of 8th order for tilted orthorhombic media using: (a)
scheme 1 and (b) scheme 3. [NR]
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Figure 5: Largest eigenvalues of 8th order for tilted orthorhombic media using scheme
2: (a) 4 types of symmetries and (b) zoom-in without tilted orthorhombic. [NR]
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(a) (b)

Figure 6: Wavefield snapshots at t = 0.5 s using 4t = 0.1 ms: (a) scheme 2 and
(b) scheme 3. The arrows mark directions that have the largest eigenvalues. These
directions do not coincide with the directions of the fast-propagating waves. [CR]

Figure 7: Positions of six eigenval-
ues of the amplification matrix A
(for scheme 1, second order spatial
approximation, tilted orthorhom-
bic symmetry) with respect to the
unit circle. The figure shows three
pairs of eigenvalues: one complex-
conjugate pair of magnitude unity
and two real pairs, each of which
has one eigenvalue that is greater
than unity. [NR]
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APPENDIX A

The amplification matrices are as follows:

For scheme 1:

L̂ik =
∑

n

ainnk
2

4x2
n

M/2∑
p=1

cp[cos(kxnp4xn)− 1]

−
∑
n6=l

(ainlk + ailnk)
4

4xn4xl

M/2∑
p=1

bpsin(kxnp4xn)

M/2∑
p=1

bpsin(kxl
p4xl).

(A-1)

For scheme 2:

L̂ik =
∑

n

ainnk
2

4x2
n

M/2∑
p=1

cp[cos(kxnp4xn)− 1]

−
∑
n6=l

(ainlk + ailnk)
1

4xn4xl

M/2∑
p=1

cpsin(kxnp4xn)sin(kxl
p4xl).

(A-2)

For scheme 3:

L̂ik =
∑

n

ainnk
2

4x2
n

M/2∑
p=1

cp[cos(kxnp4xn)− 1]

−
∑

n6=l 6=r

(ainlk + ailnk)
4

4xn4xl

M/2∑
p=1

spsin(kxn

2p− 1

2
4xn)cos(kxl

2p− 1

2
4xl)cos(kxr

2p− 1

2
4xr)

×
M/2∑
p=1

spcos(kxn

2p− 1

2
4xn)sin(kxl

2p− 1

2
4xl)cos(kxr

2p− 1

2
4xr).

(A-3)

The cp, bp, and sp are coefficients of the spatial derivative approximations as
defined by Chu(2012).

APPENDIX B

Stability is assessed by examing the roots of the determinant of the eigenvalue matrix:
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A− λI =

[
4t2L̂ + 2I− λI −I

I −λI

]
(B-1)

Due to the commutativity of the identity matrix with all other matrices, the deter-
minant of this block matrix is the same as the determinant of

(4t2L̂ + 2I− λI) · (−λI)− I · (−I). (B-2)

Simplifying, this becomes

det A = det((λ2 +1)I−λ(4t2L̂+2I)) = (−λ)3 det((4t2L̂+2I)− (λ+1/λ)I). (B-3)

This takes the form of the eigenvalue calculation for 4t2L̂+2I, with each eigenvalue λ̂
providing a pair of eigenvalues of A according to λ̂ = λ+ 1

λ
. Solving by the quadratic

formula yields

λ =
λ̂±

√
λ̂2 − 4

2
. (B-4)

If we assume λ̂ is real valued, then we first consider the case |λ̂| > 2. In this event
the two roots are real and their product is 1; hence at least one is greater than 1 in
magnitude. This situation is therefore unstable. If the magnitude is exactly 2, the
roots are either both 1 or both -1, a stable situation. Finally, with the magnitude
less than 2, the roots are complex and the squared magnitude of each is

|λ|2 =
λ̂2 − (λ̂2 − 4)

4
= 1; (B-5)

in other words, both roots are on the unit circle. These are, indeed, the very situations
we observed in our analysis (Figure 7).
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