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ABSTRACT

Convergence of full waveform inversion can be improved by extending the velocity
model along either the subsurface-offset axis or the the time-lag axis. The ex-
tension of the velocity model along the time-lag axis enables us to linearly model
large time shifts caused by velocity perturbations. The extension is based on a
new linearization of the scalar wave equation where the extended-velocity pertur-
bation is convolved in time with the Laplacian of the background wavefield. This
linearization is accurate for both reflected events and transmitted events, and in
particular for diving waves recorded at large offsets. The modeling capabilities
of the proposed linearization enable the simultaneous inversion of reflections and
diving waves even when the starting velocity model is far from being accurate.
Numerical tests performed on synthetic data modeled on the “Caspian Sea” por-
tion of the well-known BP model shows the global-convergence properties as well
the high-resolution potential of the method.

INTRODUCTION

Conventional seismic imaging relies on a separation of scales between migration ve-
locity model (long-wavelength components) and reflectivity (short-wavelength com-
ponents). Figure 1 shows a simplified 1D graphical representation of the separation
of scales concept. The black line represents the two disjointed wavelength ranges
(mapped into corresponding temporal-frequency bands) and the consequent gap in
information between long wavelengths and short wavelengths. This conceptual un-
derstanding leads naturally to a sequential approach for seismic imaging; the velocity
model is estimated first, and then it is used as input to migration for imaging reflec-
tivity. In current velocity-estimation practice, reflectivity is used only indirectly to
measure the focusing power of the velocity model. The only important exceptions
occur when migrated volumes are used to interpret boundaries of geobodies (e.g. salt
bodies) and to estimate predominant dips in the geologic layering that are then used
to constraint a tomographic velocity update.

The sequential imaging process is slowly being undermined by three long-standing
trends in the industry: 1) acquisition of lower-frequency data, 2) imaging under
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Figure 1: Simplified 1D graphi-
cal representation of the separa-
tion of scales in seismic imaging
(black line) and how current in-
dustry trends are narrowing the
gap between the estimation of
long wavelengths and short wave- |
lengths (blue and green lines). 2 10 100
(Adapted from Jon Claerbout’s
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complex overburden which requires higher-resolution velocity models to focus and
correctly position reflectors, and 3) acquisition of longer-offset data. As the industry
strives to widen the data frequency band at both the low and high end, the reflectivity
band is extended at the low end, as graphically represented by the green line in Fig-
ure 1. The high end of the velocity band is also pushed upward (blue line in Figure 1)
by the application of sophisticated tomographic methods that enable the estimation
of the high-resolution velocity models needed to focus reflectors located under com-
plex overburden. However, tomography (either ray or wave-equation based) is a more
challenging task than migration, and thus often it falls short of providing the accuracy
and resolution necessary to satisfactorily image the high frequencies in the data. The
acquisition of longer-offset data enables the recording of diving waves and refracted
arrivals that provide a complementary illumination of the velocity components in the
crucial scale gap and blur the distinction between migration and tomography since
they contain forward-scattering perturbations to transmission events.

As the information gap narrows, imaging methods that simultaneously estimate
the velocity and reflectivity model by taking advantage of all the information in the
data are becoming more attractive. The renewed interest in full waveform inversion
(FWI) can be explained as an attempt to overcome the limitations imposed by the
sequential imaging approach, as well as the availability of computational power suf-
ficient for practical applications of FWI. FWI has been the most successful when
applied to the low frequencies in the data (green line in Figure 1) to improve the
velocity-model estimation needed to image the data high frequencies under complex
overburden. FWI has been less successful in using the high-frequencies in the data
to tomographically estimate the long-wavelengths in the model.

Since the eighties (see for example (Mora, 1989)) it has been recognized that FWI
has both a migration component and a tomographic component. However, to ensure
convergence of the tomographic component the recorded and modeled data must be
almost in phase with each other; the rule of thumb being that the residual time-shifts
must be shorter than the half period of the dominant frequency in the data. Boot-
strapping the inversion by starting from the low frequencies may ameliorate the con-
vergence problems, but it still depends on conventional velocity estimation methods
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to deliver starting models sufficiently accurate to satisfy the convergence criterion for
the FWI tomographic component. It also undermines the goal of simultaneous estima-
tion because the high frequencies in the data contain the high-resolution tomographic
information that facilitates the estimation of the velocity components represented by
the blue line in Figure 1.

To perform true simultaneous and synergistic inversion for all the model scales we
must address the convergence problems of the tomographic term in FWI. These con-
vergence problems are related to the non-linearity of the wave-equation with respect
to perturbations in the long wavelengths of the velocity model. Long-wavelengths
perturbations cause substantial time shifts of the propagating wavefields that are
poorly approximated by the linearization of the wave equation based on first order
Born approximation. In this paper we introduce a linearization of the wave equation
based on an extension of the velocity model along the time lag axis (7). This ex-
tension enables the linear modeling of large time shift in the propagating wavefields,
and consequently in the data. Based on this extension we define an objective func-
tion that has a model-focusing term in addition to the conventional FWI data-fitting
term. Numerical examples with realistically complex velocity models demonstrate
that this objective function has excellent convergence behavior, although currently
convergence is unsatisfactorily slow.

The usefulness of extending the reflectivity model (as prestack images in the an-
gle or offset domain) to manage the non-linearities in wave-equation velocity analysis
was demonstrated in the context of differential semblance optimization (DSO) (Symes
and Carazzone, 1991; Shen and Symes, 2008) and wave-equation migration velocity
analysis (WEMVA) (Biondi and Sava, 1999; Sava and Biondi, 2004a,b). The gener-
alization of extending the model to the propagation component of the model (long
wavelength) was first introduced by Symes (2008) and more recently successfully ap-
plied by Sun and Symes (2012); Almomin and Biondi (2012); Biondi and Almomin
(2012). These methods are based on a velocity extension along the subsurface-offset
or plane-wave axes. We propose an extension along the time lag axis (7) because
it is better suited to describe large time shifts in wave propagation, that are at the
root of FWI convergence problems. Furthermore, extending the velocity along the
time lag axis can easily handle forward-scattered events recorded at long offsets as
well as the reflections recorded at near and intermediate offsets. We thus believe
that the time-lag formulation has the potential to deliver high-quality results also for
modern long-offset data sets. Furthermore, a one-dimensional extension along time
is computationally more efficient than a two-dimensional extension along subsurface
offsets. Yang and Sava (2009, 2010) have discussed the use and the computational
advantages of time-lag gathers to perform WEMVA for reflected events.



Biondi and Almomin 4 TFWI with T extension

TOMOGRAPHIC FULL WAVEFORM INVERSION
(TFWI)

Conventional full waveform inversion in the acoustic constant-density approximation
is performed by solving the following optimization problem

H‘lliQIl JFWI (V2> (1)

where:
Tovar () = 5 1€ (%) — . )

v = v (&) is the velocity vector, L is a wave-equation operator non linear with respect
to velocity perturbations and the data vector d is the pressure field P = P (¢, )
measured at the surface.

The wave-equation operator is evaluated by recursively solving the following finite
difference equation

[Dz — V2V2] P=f, (3)

where D, is a finite-difference representation of the second derivative in time, V2 is

a finite-difference representation of the Laplacian, and f is the source function.

Efficient solution of the optimization problem expressed in equation 1 is performed
by gradient-based methods, and thus requires the evaluation of the linear operator L,
which is the linearization of £ with respect to velocity perturbations dv2. This linear
operator can be derived by perturbing equation 3 as follows

[D2 — (vo® 4+ 6v*) V?] (P, + 6P) =, (4)

where P, and v, are the background wavefield and velocity, respectively, and 0P is
the scattered wavefield.

Equation 4 can be rewritten as the following two equations:

D2 — v’V P, = f, (5)
Dy — v’ V2| 6P = 6v*V? (P, + 6P), (6)

which represent a nonlinear relationship between velocity perturbations and scattered
wavefield. In conventional FWI, to linearize this relationship we drop the term mul-
tiplying the perturbations with each other; that is, we drop the scattered wavefield
from the right hand side of equation 6 and obtain the following coupled equations:

D2 — v’V | P, = f, (7)
[D2 = vo°V?] 6P = 6vV°P,,. (8)
The linear operator L used to compute the gradient of the FWI objective function 2 is

evaluated by recursively propagating the background wavefield P, and the scattered
wavefield 6P by solving equations 7-8. The scattered wavefield 6P is now a linear
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function of the velocity perturbations 6v?2, equation 8 has the limitation that it takes
into account only first-order scattering, and thus it is unsuited to model large time
shifts between the background wavefield and the scattered wavefield.

To improve the capability of the linearization to model large time shifts, we extend
the velocity model along the time lag axis 7 and convolve its perturbations dv2 (1)
with the Laplacian of the background wavefield; we rewrite equation 6 as:

[Dy — 2 (7 = 0) V] 6P = 6%2 (1) * V*P,, (9)

which defines the linear operator L and where % denotes convolution in 7. The
combination of the wave equation non-linear operator £ (v) and of the linear operator
L defines the extended non-linear operator

L) =L(F(r=0)+L(¥(r=0))d (10)

that can be used to define the TFWI objective function as
- L5, 2 ~ 12
Jrrwr (V) = 5”5(") _d)’2+€|HT|V|’2- (11)

The second term in the equation 11 rewards focusing of the data around zero time
lag. It introduces a strong tomographic component, which is necessary to constrain
the optimization problem because the velocity extension relaxes the constraints on
the modeled data kinematics imposed by the data fitting term in equation 11. This
objective function can be minimized using the nested optimization algorithm with
scale mixing that we discussed in Almomin and Biondi (2013).

We will use a simple 1D numerical example to analyze some of the characteristics
of the TFWI method we introduced above. Figure 2 shows the difference between
the background wavefield propagated with v=1.2 km/s and the wavefield propagated
with the true velocity of v=1.13 km/s. The source function is a zero-phase wavelet
bandlimited between 5 and 20 Hz. The difference wavefield is displayed as a function
of propagation distance and traveltime. The velocity error is sufficiently high that
the wavefields are completely out of phase after propagating for a couple of kilome-
ters. This is therefore a situation like the ones described where the first order Born
linearization (equation 8) would fail to to model the data residuals and conventional
FWI would have troubles to converge, even if the problem is extremely simple.

Figure 3 shows the conventional FWI objective functions when the data are
recorded with a single receiver located at 7 km for a total of 4 km offset from the
source. The plot shows the initial value of the objective function for several 1D trans-
mission problems sharing the same starting velocity (1.2 km/s) and with different
true velocities. If the true velocity is lower than ~ 1.18 km/s or larger than ~ 1.22
km/s a gradient-based method starting from a velocity of 1.2 km /s will not converge
to the right solution. An explanation for the lack of convergence of a gradient-based
method is that conventional first-order Born approximation cannot model the data
residuals when the true velocity is outside this range. On the contrary, the linearized
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Figure 2: Difference between
background wavefield computed ~
with the starting velocity (1.2 2
km/s) and the wavefield propa- i
gated with the true velocity (1.13

km/s). [CR]

3000 4000 5000 6000 7000
Distance (m)

Figure 3: FWI norm as a func- | /
tion of the true velocity, when the

starting velocity is equal to 1.2
km/s. [CR]
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Figure 4:  Extended velocity
perturbation chosen to approxi-
mately model the wavefield differ-
ence shown in Figure 2. [CR]
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modeling equation defined in equation 9 would have no troubles to model the data
residual.

For example, we can easily reproduce the wavefield difference shown in Figure 2
by setting the extended-velocity perturbation to be a delta function along the 7 axis,
where the shift of the delta function linearly increases with the distance from the
origin. This linear shift is computed by integrating the difference in slowness between
the background model and the true model. The extended-velocity perturbation is
shown in Figure 4. Figure 5 shows the result of solving equation 9 with the model
shown in Figure 4. The approximation of the scattered wavefield AP is almost
identical to the wavefield difference shown in Figure 2.

DIVING-WAVE MODELING EXAMPLE

One of the advantages of extending the velocity model along the time-lag axis 7 is
the capability to model with a linear operator large time shifts in the diving waves
recorded by modern long-offset acquisition geometries. The capability of modeling
time shifts in these events enables robust convergence of the inversion even when
the starting velocity model is far from the correct one. To show these modeling
capabilities we use one long-offset shot profile recorded over a half space with a vertical
velocity gradient. The starting velocity model is assumed to be uniform and equal
to the velocity at the surface. Figure 6a shows the data residual; both the recorded
diving wave as well as the data modeled with the starting velocity are clearly visible.

The backprojection of data residuals shown Figure 6a by the application of L/
generates the velocity perturbation cube shown in Figure 7. The front panel of the
cube shown in Figure 7 displays the zero time lag of the velocity perturbations. A
substantial amount of the energy in the residual has been backprojected away from
the zero time-lag panel.

Figure 6c¢ displays the result of forward modeling the data residuals by the appli-
cation of L to the extended velocity perturbation shown in Figure 7. The kinematics
of these modeled residuals are very close to the kinematics of the true residuals shown
Figure 6a. In contrast, when only the zero time lag of the velocity perturbation (front
panel of the cube shown in Figure 7) is used to model the data residuals, we obtain
the seismograms displayed in Figure 6b. The diving wave is totally missing from
these modeled residuals because the background wavefield propagates with constant
velocity along the horizontal direction.

Figure 8 shows the velocity perturbation cube when the velocity is extended along
the horizontal subsurface offset axis. The front panel of the cube displays the zero
subsurface offset, and thus it is identical to the front panel of the cube shown in Fig-
ure 7. Figure 6d displays the result of forward modeling the data residuals starting
from the extended velocity perturbation shown in Figure 8. The diving wave event is
present in these modeled residuals. However, it dies out at larger offsets, starting at
about 8 kilometers offset. A subsurface offset extension of the velocity has difficulties
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Figure 6: a) Difference between background wavefield computed with the starting
velocity and the wavefield propagated with the true velocity, b) data residual modeled
from zero lag of the velocity perturbation cubes (front panel in cubes shown in both
Figure 7 and Figure 8), c¢) data residual modeled from the velocity perturbations
extended along the time-lag axis, (Figure 7), and d) data residual modeled from the
velocity perturbations extended along the horizontal subsurface offset axis, (Figure 8).
[CR]
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in modeling large time shifts in transmitted events propagating in directions orthogo-
nal to the subsurface offset axes. Consequently, as the propagation paths of the diving
waves have longer vertical components, the less accurate the modeled residuals are.
To address this limitation we could use vertical subsurface offset in addition to the
horizontal ones (Biondi and Symes, 2004), but the computational cost would increase
accordingly.

TFWI OF LONG-OFFSET DATA

To verify the capabilities of the TFWI method based on time-lag extension of the
velocity model we tested the method on a synthetic data set recorded with long
offsets. The data were generated over the “Caspian Sea” portion of the well-known
BP velocity model, as shown in Figure 9. The receiver array was assumed to be fixed
at the surface, and thus data with more than 20 kilometers long offsets were recorded.
The source was bandpassed wavelet between 5 and 10 Hz. No energy was present
below 3 Hz.

Figure 10 shows the data recorded for the leftmost shot location. Strong and
complex diving waves and refracted arrivals are visible in the data starting from
approximately 8 kilometers offsets. These events carry useful information on the
velocity, in particular in the shallow part of the section. In this data set, they are
extremely useful to define the low-velocity anomalies present around the depth of two
kilometers.

The starting model for the TFWI inversion was obtained by a strong horizontal
smoothing of the true model, after the low and high velocity anomalies were removed.
Figure 11 shows the shot gather located at the same location as the one shown in
Figure 10, but modeled with the starting model, which is shown in Figure 12. As a
direct comparison of Figure 10 with Figure 11 demonstrates, the differences between
the true and starting models cause large time shifts in the diving-waves arrivals. The
inaccuracies of the starting model, together with the lack of low frequencies in the
data, prevent conventional FWI from converging to any useful model.

The straightforward application of an optimization algorithm designed for non-
quadratic problems to the TEFWI minimization problem defined by equation 11 would
be very expensive. We therefore solved the problem by a nested optimization algo-
rithm as described in Almomin and Biondi (2013). The nested inversion converged
towards the accurate model shown in Figure 13. The main features of the true model
are accurately reconstructed. Some edge artifacts are present; they are caused by the
finite span of the receiver array and the finite range of source locations. No sources
were activated outside the displayed model, and the receiver array was fixed and
covering the whole model.

Although the resolution of the model and the robustness of convergence are ex-
tremely attractive, the rate of convergence is slower than ideal; 500 iterations of the
outer loop of the nested TFWI inversion were required to estimate the model shown
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Figure 7: Velocity-perturbation cube extended along the time-lag axis and computed
by backprojecting the data residuals shown Figure 6a. [CR]
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Figure 8: Velocity-perturbation cube extended along the horizontal subsurface-offset
axis and computed by backprojecting the data residuals shown Figure 6a. [CR]
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Figure 9: Portion of the BP velocity model used for the numerical test of the proposed
TFWI method. The model contains both low-velocity anomalies (shallow gas) as well
as high-velocity anomaly on the flanks of the mud volcano. [ER]

in Figure 13. We believe that several numerical techniques could be applied to speed
up the convergence, but further experiments are needed.

CONCLUSIONS

The integration of FWI and WEMVA into TFWI promises to enable robust con-
vergence to high-resolution models. We introduced a TFWI method based on the
extension of the velocity along the 7 axis. This extension is based on a linear op-
erator capable of correctly modeling transmitted events with large time shifts, as
we demonstrated by a simple numerical example. The results of the inversion of
a long-offset data set recorded over the BP “Caspian Sea” demonstrate the strong
convergence properties of new method when both reflections and diving waves are
present.
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Figure 10: Leftmost shot profile recorded on the model shown in Figure 9. No-
tice several diving waves and refractions present in the data at offset larger than 8
kilometers. These events carry useful information for the estimation of the velocity
anomalies present in the model. [CR]
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Figure 11: Shot gather modeled assuming the starting model shown in Figure 12 at
the same shot location as the data shown in Figure 10. Notice the large time shifts
between the diving-wave arrivals in this gather with the one shown in Figure 10. [CR]
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Figure 12: Starting model for the TFWI inversion. This model was obtained by
strong horizontal smoothing of the model shown in Figure 9, after the low and high
velocity anomalies were removed. The lack of low frequencies in the data makes this
model inappropriate for starting a conventional FWI inversion. [ER]
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Figure 13: Estimated model after 500 iterations of the outer loop of the TFWI
inversion based on time-lag extension of the velocity model. The main features of the
true model are accurately reconstructed. Some edge artifacts are present; they are
caused by the finite span of the receiver array and the finite range of source locations.
No sources were activated outside the displayed model, and the receiver array was

fixed and covering the whole model. [CR]



