
Enhanced interpreter-aided salt-boundary

extraction using shape deformation

Yang Zhang and Adam D. Halpert

ABSTRACT

In many marine seismic exploration projects, precise interpretation of the salt-
body geometry (which is also called salt-body segmentation) is a key component
of building the subsurface velocity model. However, segmentation of salt is very
human-intensive, even with the help of currently available semi-automatic com-
puter software. This paper addresses the problem of automatically and accurately
tracking the salt boundary in a series of neighboring seismic image slices, given
an accurate salt segmentation for only one single reference slice. (The reference
segmentation can be done manually). We achieve this using a landmark-based
shape deformation technique plus SVM (Support Vector Machine) style regres-
sion. An example on a 3-D Gulf of Mexico data set demonstrates the effectiveness
of our approach.

INTRODUCTION

Interpreting the salt body in seismic images is of great importance for accurate ve-
locity model building. Due to the poor quality of many seismic images, simple image
processing filters followed by local boundary tracking algorithms give very poor re-
sults or fail easily. For example, in Figure 1, some parts of the salt boundary are
simply missing from the image. A human interpreter’s input is essential in these
troublesome regions (Halpert et al., 2011). In the near term, the development of a
super-algorithm that can fully automate boundary extraction without sacrificing the
quality of the results is highly unlikely.

However, as today’s seismic imaging practices evolve to three dimensions, manual
interpretation of every single slice in a 3-D image cube is increasingly unrealistic.
How can we achieve a good trade-off between the amount of manpower required and
the quality of the boundary extraction result? The idea of manually segmenting only
a small number of “key” slices and then intelligently propagating these results to the
entire volume becomes attractive. Here we use a landmark-based shape-deformation
technique to propagate a manual segmentation result of a single slice onto its neigh-
boring slices, thus yielding a much better segmentation result overall than what we
can achieve by simply applying fully automatic methods. The design goal for such
intelligent boundary propagation consists of two parts:
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Figure 1: (a) A typical seismic image showing the salt body in the center. Some parts
of the boundary are not well imaged due to the limited image quality. (b) The same
image shown with the human-interpreted boundary. [ER]
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• First of all, we force the new boundary to honor the available boundary infor-
mation that can be confidently extracted from the image.

• Secondly, the new boundary should preserve the shape information known from
the manual segmentation input, such that the boundary will deform reasonably
where we do not have well-defined boundaries.

METHOD

Our approach is mainly based on the idea of Wang et al. (2001), described briefly
here. Let us define the reference image slice that has been properly segmented as the
template image, and define the image to which we want to propagate the segmen-
tation result as the input image. The segmentation result in the template image is
characterized by a set of contours. For simplicity, we assume that the template image
contains only a single closed contour. Nonetheless, the extension of this method to
handle multiple contours is straightforward.

We represent the known contour on the template image as a set of landmark
points, V = v1, v2, ..., vn where vi = (xi, yi) (in 2-D Cartesian coordinates). Wang
et al. (2001) describe the skeleton of this algorithm as follows:

“For each landmark vi, the proposed method first identifies a set of
possible corresponding landmark points Bi = {v(j)

i , j = 1, 2, ..., ni} on the

input image, where v
(j)
i = (x

(j)
i , y

(j)
i ). Then conceptually the deformation

is solved in two major steps:

1. Identify the best landmark point v′i from the landmark set Bi such
that V ′ = {v′1, v′2, ..., v′n} is located in or near the true object bound-
ary in the input image.

2. Deform the prior shape V to match V ′ while keeping the general
shape characteristics of V . ”

The cartoon in Figure 2 illustrates the idea of landmark-based contour deformation.

For the first step, we search the candidate points in set Bi along a short line
segment that centers around point vi and aligns to the contours normal direction ni.
It is difficult to determine the best landmark point v′i from all candidates in Bi at the
first try. Therefore, we just choose randomly an element in each Bi to form the initial
set V ′ and iterate this selection process a few times. During each iteration, we update
the set V ′ such that V ′ more likely contains the correct corresponding landmarks.

The next deformation step is formulated by finding the optimal solution to an
objective function which takes into account both the goal of deforming the points
in V into the current landmark set V ′ and the goal of preserving the prior shape V
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Figure 2: Landmark-based shape
deformation, from Wang et al.
(2001). [NR]

(using the bending-energy formula from (Bookstein, 1989)). The optimization goal is

min
V ′,t

{
1

n

∑
i=1

Q(v′i, t(vi)) + λφ(t)

}
(1)

in which t defines the deformation from V to V ′ as a mapping; i.e. t : (x, y) →
(f(x, y), g(x, y)) = (x′, y′). Function Q describes the term that penalizes the mis-
match between V ′ (the landmarks we found on the input image) and the mapping
defined by t(V ). The Q term corresponds to the first goal, deforming the landmarks
in set V to those in V ′. Function φ(t) is a regularization term that tries to force the
mapping t to be smooth, in other words, preserving the global shape information of
the original V . We add a λ parameter to balance the weights of the two terms, Q
and φ. The choice of λ is up to the user’s judgment. After mathematical simplifica-
tion, this optimization can be solved easily using the classical SVM(Support Vector
Machine) regression technique (as a quadratic programming problem of size n). More-
over, the badly fitted components in set V ′ are identified as the support-vectors. We
update the set V ′ by replacing those support-vectors with other candidates in Bi,
such that the new set V ′ would achieve better fitting.

MATHEMATICAL SIMPLIFICATION

In this section, we reveal more mathematical details of this approach. The actual
form of function Q in the objective function 1 is the ε-insensitive L1 norm:

||v′i − t(vi)||ε =

{
0, if |v′i − t(vi)| < ε

|v′i − t(vi)| − ε, otherwise
(2)

Since new landmark candidates in V ′ are sought along the contours normal direction
ni, we constrain the desired mapping t(V ) to displace vi along direction ni as well:

t(vi) = vi + γini. (3)
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Let γ = γi : i = 1, ..., n. Since points in V ′ are found along the normal directions of
the original contour V as well, we have v′i = vi + hini. Then the previous problem 1
becomes

min
t,γ

{
1

n
||hi − γi||ε + λφ(t)

}
, (4)

subject to constraint 3. As for, we choose the so-called bending-energy term, defined
as

φ(t) =

∫ ∫ +∞

−∞
(E(f) + E(g)) dxdy,

where

E(•) =

(
∂2

∂x2

)2

+

(
∂2

∂y2

)2

+

(
∂2

∂x∂y

)2

.

The nice thing about this choice of bending-energy is that we know in advance, given
all mappings that satisfy constraint 3, the mapping specified by thin-plate spline
interpolation will minimize the bending-energy (Bookstein, 1989). In other words, the
solution t∗ to the optimization problem 4 must be the thin-plate spline interpolation
that maps {V : vi, i = 1, ..., n} to {t(V ) : t(vi) = vi + γini, i = 1, ..., n}. Given that
t must be a thin-plate spline interpolation, we can express φ(t) with the vector γ.
Therefore, this variational problem (where the optimization parameters are functions
not numbers) turns into a much simpler numerical convex optimization problem. We
just need to find the optimal γ for the problem below:

min
γ

{
1

n
||hi − γi||ε +

λ

8π
(x̂T Lx̂ + ŷT Lŷ)

}
, (5)

where x̂, ŷ is the vector representation of the x and y coordinates of the points in set
t(V ), and L is a semi-positive definite matrix defined by known quantities.

Using the standard SVM technique, we can instead solve the dual problem of
5 according to the K.K.T.(Karush–Kuhn–Tucker) conditions. It ends up being a
standard quadratic programming problem with both upper and lower bounds.

EXAMPLES

We test this algorithm on a 3-D seismic image cube from a Gulf of Mexico seismic
survey. The cube is of discrete size 970 × 784 × 12 in the depth(Z), inline(X) and
cross-line(Y) directions respectively. The grid spacings are 9.6 m, 25 m and 30 m. We
have only the human-interpreted segmentation result in slice 1, which we use as the
template image. We then perform initial processing on this segmentation result to
extract the template landmarks as shown in Figure 3.

To find candidates for the set Bi, we overlay the landmark on the energy envelope
of the input image (neighboring slice), then we search along the normal direction
for certain image features which might suggest that certain locations be part of the
boundary. Here we just use a very simple criterion: we choose the locations of the
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Figure 3: Preprocessing flow on the segmentation result of the template image. (a)
Build the salt-body mask. (b) Extract the boundary. (c) Subsample to a list of
landmarks. (d) The outnormal directions found for each landmark on the contour.
[CR]
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Figure 4: The three candidate
points found in B137. [CR]

Figure 5: The update of set V ′

in one iteration. Blue indicates
points in V ′ that are support vec-
tor points, red shows the original
points in V ′, and green shows the
updated set V ′ obtained by replac-
ing the badly fitting points in v′i
with better fitting candidates in
Bi. [CR]
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local amplitude maxima as the boundary point candidates. The plot in Figure 4
shows all candidates in Bi for i = 137.

We then run the optimization for a few iterations. During each iteration, we
identify all the support vectors (which correspond to the fitting outliers); for each
support vector hi, we try to use other candidates in set Bi such that the fitting hi−γi

improves. Figure 5 demonstrates this step during one iteration.

Finally we deform all 12 slices one by one, in increasing distance from the template
slice. In Figure 6, we show the comparison between the obtained deformed boundary
and the boundary found by automatic methods with the simple way of propagating
the user input as described in Halpert et al. (2011). The improvement is prominent,
with several regions highlighted in circles. The deformed boundary is less jagged
and tracks the local edges in the image better. The shape-preserving constraint
helps prevent boundary leakage as the automatic segmentation is done using flooding
algorithms.

CONCLUSION

In this paper, we improve salt-body segmentation for 3-D seismic images by deforming
the accurate boundary on a human-interpreted slice into the neighboring slices. The
deformation not only honors the available boundary information on the input slice,
but also preserves the shape information from the template slice. Field data examples
show very promising results. Possible additional applications of this method include
the seismic tomography problem, where horizon-picking needs to be done for each of
several non-linear iterations; meanwhile, the seismic image changes only slightly at
each iteration.
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Figure 6: The segmentation result for slices 4 (top) and 12 (bottom) using our bound-
ary deformation technique (left column) and the simple automatic method (right
column). [CR]
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