
Residual moveout-based wave-equation migration

velocity analysis in 3-D

Yang Zhang and Biondo Biondi

ABSTRACT

In the previous report (SEP-143), we proposed a novel approach to perform
Wave-Equation Migration Velocity Analysis (WEMVA) using Residual Moveout
(RMO) parameters. The 2-D examples we tested showed that this approach is
immune to the cycle-skipping problem, and it produces high-quality gradients. In
this paper, we try to address the theoretical and practical challenges of extending
this method to three-dimensions. Specifically, we propose a new parameterization
for the 3-D angle-domain residual moveout and a generalized 3-D RMO-based
WEMVA theory. We also address the practical issues in 3-D transforms between
subsurface offset and angle-domain image gathers.

INTRODUCTION

Wave-equation migration velocity analysis (WEMVA) (Biondi and Sava, 1999; Biondi
and Symes, 2004) belongs to a family of methods for solving the reflection tomog-
raphy problem. These methods aim to estimate migration velocity by employing
wave-equation operators. WEMVA formulates velocity estimation as an optimiza-
tion problem. Evaluating the flatness of the angle-domain common-image gathers
(ADCIGs) is currently the most favored choice when formulating WEMVA objective
functions. The WEMVA objective function is optimized by applying gradient-based
algorithms. The computation of the gradient is performed in two steps:

1. Computation of a perturbation in the migrated image.

2. Back-projection of the image perturbation into the velocity model using the
image-domain wave-equation tomographic operator.

In the previous report (Zhang and Biondi, 2011), we proposed a new WEMVA
method for maximizing the angle-stack power of ADCIGs. The key innovations in
this method are as follows: first, we approximate the ADCIG, I(s) (migrated using
the current slowness s), with the initial ADCIG I(s0) followed by an RMO(Residual
Moveout) on I(s0); then we design a new image-space tomography operator that
describes the kinematic relation between the model slowness perturbation and the
RMO parameters. Using several 2-D examples, we have shown that this method: 1)
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avoids cycle-skipping, 2) does not require manual picking of the moveout parameters,
and 3) can robustly improve the flatness of the angle gathers.

Although the three-dimensional extension of our method is conceptually straight-
forward, to actually implement a 3-D prototype requires substantial efforts on both
the theoretical and practical aspects. In this paper, we present our initial work to-
ward a 3-D implementation of our approach. The rest of the paper is organized as
follows: First, we present the upgraded theory of our RMO WEMVA method for
handling 3-D ADCIGs. Second, we discuss some of the challenges of transforming
3D common-image gathers (CIGs) between the offset and angle domains. We show a
synthetic example as a prove of concept for our 3-D RMO WEMVA formulation.

3-D RMO WEMVA METHOD

We first review the rationale and key derivations of our RMO WEMVA theory in the
2-D case, and then present the 3-D generalization to the theory by making analogies.
Practical experience indicates that slowness is a better parameterization than velocity.
For clarity, the model space is parameterized as slowness unless otherwise specified.

2-D Theory Review

We start from the ‘classical’ maximum-stack-power objective function

J(s) =
1

2

∑
x

∑
z

[∑
γ

I(z, γ, x; s)

]2

, (1)

where s is the model slowness, and I(z, γ, x; s) is the prestack image (ADCIGs) mi-
grated with s.

Objective functions defined this way are prone to cycle-skipping (Symes, 2008).
To tackle this issue, we approximate objective function 1 with the following one:

J(ρ(s)) =
1

2

∑
x

∑
z

[∑
γ

I(z + ρ tan2 γ, γ, x; s0)

]2

, (2)

in which s is the model slowness, I(z, γ, x; s0) is the prestack image migrated with
some initial slowness s0, and ρ tan2 γ is the residual moveout (RMO) function we
choose to characterize the kinematic difference (Biondi and Symes, 2004) between
I(s) and I(s0).

The meaning of equation 2 can be easily explained. As the model changes from
s0 to s, it leads to the change of the image kinematics between I(s0) and I(s), where
the differences are characterized by the moveout parameter ρ. Since I(s) will be
kinematically the same as I(s0) being applied moveout ρ(s), if we substitute the
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former image (I(s)) with the latter one, we transit from equation 1 to equation 2.
Notice that the new objective function is expressed as a function of only the moveout
parameter ρ, while the ρ parameter is then related to the model slowness s.

Furthermore, notice that equation 2 weights the strong-amplitude events more
heavily. To make the gradient independent from the strength of reflectors, we further
replace 2 with the following semblance objective function:

JSm(ρ(s)) =
1

2

∑
x

∑
z

∑
zw

( ∑
γ I(z + zw + ρ tan2 γ, γ, x; s0)

)2∑
zw

∑
γ I2(z + zw + ρ tan2 γ, γ, x; s0)

, (3)

where zw is a local averaging window of length L along the depth axis. For the rest
of the paper, the summation interval of zw is always [−L/2, L/2]; thus we can safely
omit the summation bounds for concise notation.

We will use gradient-based methods to solve this optimization problem. The
gradient given by the objective function 3 is

∂JSm

∂s
=

∂JSm

∂ρ

∂ρ

∂s
, (4)

where ∂JSm/∂ρ can be easily calculated by taking the derivative along the ρ axis of
the semblance panel Sm.

To evaluate the derivative of the moveout parameter ρ with respect to the slowness
model s, we define an auxiliary objective function in a fashion similar to the one
employed by Luo and Schuster (1991) for cross-well travel-time tomography. The
auxiliary objective function is defined for each image point (z, x) as:

Jaux =
∑
zw

∑
γ

I(z + zw + (ρ tan2 γ + β), γ, x; s0)I(z, γ, x; s) (5)

where β is a simple vertical shift introduced to accommodate bulk shifts in the image
introduced by variation in the migration velocity. Notice that the semblance in ob-
jective function 3 is independent of β because a bulk shift does not affect the power
of the stack; therefore we do not include β in 3.

The explanation for equation 5 is as follows: The moveout parameters β(s) and ρ(s)
are chosen to describe the kinematic difference between the initial image I(z, γ, x; s0)
and the new image I(z, γ, x; s). In other words, if we apply the moveout to the ini-
tial image, the resulting image I(z + (ρ tan2 γ + β), γ, x; s0) will be the same as the
new image I(z, γ, x; s) in terms of kinematics; this is indicated by a maximum of the
cross-correlation between the two.

Given the auxiliary objective function 5, ∂ρ/∂s can be found using the rule of
partial derivatives for implicit functions. We compute the gradient of 5 around the
maximum at s = s0 and ρ = β = 0; consequently ∂Jaux

∂ρ
= 0

∂Jaux

∂β
= 0

(6)
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We differentiate equation 6 with respect to s, which gives ∂2Jaux

∂ρ2
∂2Jaux

∂ρ∂β

∂2Jaux

∂ρ∂β
∂2Jaux

∂β2

 ∂ρ
∂s

∂β
∂s

 = −

 ∂Jaux

∂ρ∂s

∂Jaux

∂β∂s

 . (7)

Now we need to invert a Jacobian to get ∂ρ/∂s. We denote İ , Ï to be the first and
second order z derivatives of image I, then define the following:

∂2Jaux

∂ρ2
=

∑
zw

∑
γ

Ï(z + zw, γ, x; s0) tan4 γI(z + zw, γ, x; s) = E11(z, x)

∂2Jaux

∂ρ∂β
=

∑
zw

∑
γ

Ï(z + zw, γ, x; s0) tan2 γI(z + zw, γ, x; s) = E12(z, x)

∂2Jaux

∂β2
=

∑
zw

∑
γ

Ï(z + zw, γ, x; s0)I(z + zw, γ, x; s) = E22(z, x). (8)

Let the inverse of matrix E be matrix F :

F =

[
F11 F12

F12 F22

]
=

[
E11 E12

E12 E22

]−1

Then

∂ρ

∂s
|s=s0 = −

∑
zw

∑
γ

(F11 tan2 γ + F12)İ(z + zw, γ, x; s0)
∂I(z + zw, γ, x; s)

∂s
. (9)

Finally, we have the expression for the gradient

−
∑
zw

∑
γ

∑
z,x

∂I(z + zw, γ, x; s)

∂s
(F11 tan2 γ + F12)

∂JSm

∂ρ
(z, x)İ(z + zw, γ, x; s0). (10)

The engineering translation of equation 10 is that first we compute the image pertur-
bation (F11 tan2 γ +F12)

∂JSm

∂ρ
(z, x)İ(z + zw, γ, x; s0), then we backproject this pertur-

bation to model slowness space using the tomography operator ∂I(z + zw, γ, x; s)/∂s.

Since we can compute the gradient in equation 10, any gradient-based optimiza-
tion method can be used to maximize the objective function defined in equation 3.
Nonetheless, in terms of finding the step size, it is more expensive to evaluate equa-
tion 3 (which is an approximation of equation 1 purely based on kinematics) than to
evaluate the original objective function 1. In our implementation we choose 1 as the
maximization goal while using the search direction computed from equation 3.

Extension to 3-D

As we shift from 2-D seismic surveys to 3-D ones, two extra dimensions (cross-line
axis y and subsurface azimuth φ) are added to our seismic image. Therefore we
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denote the prestack image as I(z, γ, φ, x, y). Assuming there are m values for φ, then
φ ∈ {φi : i = 1, 2, ...,m}. Now the maximum-stack-power objective function 1 can be
generalized to

J(s) =
1

2

∑
x,y

∑
z

[∑
φi

∑
γ

I(z, γ, φi, x, y; s)

]2

, (11)

in which we stack the gather along both γ and φ axes.

The next step is to choose a proper residual moveout parameterization for the 3-D
ADCIGs, in which the moveout is a surface (defined by (γ, φ)) rather than a curve
(of γ). There are certainly more than one way to design such parameterization. As
an initial attempt, we choose a straightforward approach, in which we separate the
moveout surface into individual curves by azimuth φ. For each azimuth angle φi,
we assign the curvature parameter ρi and the static shift parameter β, respectively.
Notice that all the curves share the same β parameter, because the center of the move-
out surface at (γ = 0,∀φi) is shared by all curves.

Under this parameterization, the 3-D counterpart of objective function 3 would
be

JSm(ρ(s)) =
1

2

∑
x,y

∑
z

∑
φi

∑
zw

( ∑
γ I(z + zw + ρi tan2 γ, γ, φi, x, y; s0)

)2∑
zw

∑
γ I2(z + zw + ρi tan2 γ, γ, φi, x, y, ; s0)

, (12)

where ρ becomes a vector, ρ = {ρi : i = 1, 2, ...,m}. The gradient formula 4 now turns
into

∂JSm

∂s
=

∑
ρi

∂JSm

∂ρi

∂ρi

∂s
. (13)

Because each φi is treated separately, we can compute ∂JSm/∂ρi in exactly the same
way as we do in the 2-D case.

Analogously, we can define an auxiliary objective function for each image point
that uncovers the s ↔ ρ relationship:

Jaux =
∑
zw

∑
γ

∑
φi

I(z + zw + (ρi tan2 γ + β), γ, φi, x, y; s0)I(z, γ, φi, x, y; s). (14)

Using the same trick of finding partial derivatives for implicit functions, equation 6
is generalized as 

∂Jaux

∂ρ1
= 0

∂Jaux

∂ρ2
= 0

...

∂Jaux

∂ρm
= 0

∂Jaux

∂β
= 0

(15)
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We differentiate equation 15 with respect to s:

∂2Jaux

∂ρ1
2

∂2Jaux

∂ρ1∂ρ2
· · · ∂2Jaux

∂ρ1∂ρm

∂2Jaux

∂ρ1∂β

∂2Jaux

∂ρ2∂ρ1

∂2Jaux

∂ρ2
2 · · · ∂2Jaux

∂ρ2∂ρm

∂2Jaux

∂ρ2∂β
...

...
...

...
...

∂2Jaux

∂ρm∂ρ1

∂2Jaux

∂ρm∂ρ2
· · · ∂2Jaux

∂ρm
2

∂2Jaux

∂ρm∂β

∂2Jaux

∂β∂ρ1

∂2Jaux

∂β∂ρ2
· · · ∂2Jaux

∂β∂ρm

∂2Jaux

∂β2





∂ρ1

∂s

∂ρ2

∂s
...

∂ρm

∂s

∂β
∂s


= −



∂2Jaux

∂ρ1∂s

∂2Jaux

∂ρ2∂s
...

∂2Jaux

∂ρm∂s

∂2Jaux

∂β∂s


. (16)

We can calculate the m + 1 by m + 1 Jacobian matrix elements and the right-hand
side based on equation 14:

∂2Jaux

∂ρi
2

=
∑
zw

∑
γ

Ï(z + zw, γ, φi, x, y; s0) tan4 γI(z + zw, γ, φi, x, y; s)

∂2Jaux

∂ρi∂ρj
≡ 0 ∀ i 6= j

∂2Jaux

∂ρi∂β
=

∑
zw

∑
γ

Ï(z + zw, γ, φi, x, y; s0) tan2 γI(z + zw, γ, φi, x, y; s)

∂2Jaux

∂β2
=

∑
zw

∑
γ

∑
φi

Ï(z + zw, γ, φi, x, y; s0)I(z + zw, γ, φi, x, y; s)

∂2Jaux

∂ρi∂s
=

∑
zw

∑
γ

İ(z + zw, γ, φi, x, y; s0) tan2 γ
∂I(z + zw, γ, φi, x, y; s)

∂s

∂2Jaux

∂β∂s
=

∑
zw

∑
γ

∑
φi

İ(z + zw, γ, φi, x, y; s0)
∂I(z + zw, γ, φi, x, y; s)

∂s
. (17)

Denoting matrix F = {Fi,j} to be the inverse of the Jacobian, then


∂ρ1

∂s

∂ρ2

∂s
...

∂ρm

∂s

 = −



F1,1 F1,2 · · · F1,m−1 F1,m F1,m+1

F2,1 F2,2 · · · F2,m−1 F2,m F2,m+1

...
...

...
...

...
...

Fm−1,1 Fm−1,2 · · · Fm−1,m−1 Fm−1,m Fm−1,m+1

Fm,1 Fm,2 · · · Fm,m−1 Fm,m Fm,m+1





∂2Jaux

∂ρ1∂s

∂2Jaux

∂ρ2∂s
...

∂2Jaux

∂ρm−1∂s

∂2Jaux

∂ρm∂s

∂2Jaux

∂β∂s


. (18)

Finally, plugging equation 18 and 17 back into the model gradient expression 13, we
get

∂J

∂s
= −

∑
zw

∑
γ

∑
φi

∂I(z + zw, γ, φi, x, y; s)

∂s
(Gi tan2 γ + Gm+1)İ(z + zw, γ, φi, x, y; s0),

(19)
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in which

[
G1 G2 · · · Gm Gm+1

]
=

[
∂JSm
∂ρ1

∂JSm
∂ρ2

· · · ∂JSm
∂ρm

] 
F1,1 F1,2 · · · F1,m F1,m+1

F2,1 F2,2 · · · F2,m F2,m+1
...

...
...

...
...

Fm,1 Fm,2 · · · Fm,m Fm,m+1

 .

(20)
In practice, there are some caveats when taking the inverse of the Jacobian matrix.
The Jacobian can be ill-conditioned when all elements in one row or column are close
to zero. For example, if the image point is not illuminated from a certain azimuth
direction φj, i.e. I(z, γ, φj, x, y) = 0, then the jth row and column of the Jacobian
would be zero. In order to avoid numerical overflow under this circumstance, we
pre-exclude those azimuth angles with poor illumination energy from the Jacobian,
and we invert a subset of the original Jacobian that contains only image gathers at
well-illuminated azimuth angles.

Gaussian anomaly example

In this example, the model is 2.4 km in x, 2.4 km in y and 1.0 km in z; the grid
sampling is 20 m in x and y, 10 m in z. The receivers are fixed during the entire
survey, spanning a rectangular area from (−0.8 km,−0.8 km) to (+0.8 km, +0.8 km
with receiver spacing of 20 m in both x and y. The shot locations cover the same
region as the receivers do, and the shot spacing is 100 m. This leads to a survey of 81
receivers and 17 shots along both x and y. A total of 32 frequencies are calculated,
ranging from 5 Hz to 40 Hz. There is one flat reflector at a depth of 0.6 km. A constant
starting velocity of 2 km/s is used. The true model is a constant background velocity
(2 km/s, same as the starting velocity), but with a 0.6 km width, 0.25 km height
Gaussian anomaly at the center, with a peak value of 3 km/s. Figure 1 shows the
true velocity model.

First, we compute the initial subsurface ODCIG (offset-domain common-image
gather) with the offset hx, hy range being ±100 m. The acquisition geometry we use
can provide full azimuth for the inner portion of the model. We choose to generate
ADCIGs along three azimuth angles: 0◦, 30◦ and 60◦.

Figure 2 shows the derivatives of the semblance objective function over the move-
out parameter ρi, with each panel representing a distinct azimuth: 0, 30 and 60 de-
grees. Since the migration velocity is slower than the true one, most of the ADCIGs
would be curving upward, therefore a proper objective function should instruct the
inversion to decrease the curvature. Figure 2 verifies the consistency between the
numerical result and our theoretical expectation. Notice in each plot, there are some
positive values on the direction perpendicular to the azimuth orientation. This is
caused by the fact that at these locations, the seismic energy traveling through the
designated azimuth probes a much smaller anomaly. (Imagine we have a spheric
anomaly centered around the origin: x2 + y2 + z2 = 1, the strength of the anomaly
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decreases by distance from the center. If we intercept the anomaly with vertical
plane y = 0, the anomaly seen on the section is strong because the section passes
through the center of the sphere. However, if we intercept the sphere with y = 0.7,
the anomaly seen on that plane would be much weaker and smaller, because the part
of the anomaly seen on this plane is far away from the center.) In this case, the
ADCIG at near angles are affected by the anomaly but the far angles are not, there-
fore showing the opposite curvature. This phenomenon might hinder the tomography
algorithm from finding a good update. Fortunately, with more than one azimuth,
the curvatures observed from the alternative azimuth would offset this effect. This
example shows one of the advantages of having multiple azimuth image gathers.

Figure 3 shows the first model gradient (in velocity) calculated using our approach.
Qualitatively, the method works as we expected. The update is concentrated around
the anomaly’s location and the sign of the update is correct.

Figure 1: The true velocity model, with positive Gaussian anomaly in the center.
[ER]

(a) (b) (c)

Figure 2: The ∂J/∂ρi term for (a) φ = 0◦, (b) φ = 30◦ and (c) φ = 60◦. The values
correlates well with the curvatures of the ADCIGs at each (x, y) location. [CR]
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Figure 3: First gradient of the velocity model calculated by our 3-D RMO WEMVA
implementation, i.e. ∆v predicted by our WEMVA objective function. [CR]

3-D transforms between offset and angle domain

Our RMO-based WEMVA approach operate exclusively on subsurface angle domain
CIGs, however, compared to ADCIGs, subsurface offset domain CIGs are much
friendlier for computer implementation. The image-space tomographic operator on
ODCIGs also has a simpler formula and can be straightforwardly implemented (Tang
et al., 2008). Therefore transforming between ODCIGs and ADCIGs is required for
our approach. Tisserant and Biondi (2003) and Biondi and Tisserant (2004) pre-
sented the theory for this tranformation. We review the key steps in the offset to
angle transformation:

1. Perform Fourier transform I(hx, hy, x, y, z) → I(hx, hy, kx, ky, kz).

2. For each (kx, ky, kz),

• apply Fourier transform I(hx, hy) → I(khx, khy)

• map I(khx, khy) → I(γ, φ) based on the following relations (Tisserant and
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Biondi, 2003): [
k′

x

k′
y

]
=

[
cos φ − sin φ
sin φ cos φ

] [
kx

ky

]
k′

hx = kz

√
1 + (k′

y/kz)2 tan γ

k′
hy =

k′
yk

′
xk

′
hx

k′2
y + k2

z[
khy

khy

]
=

[
cos φ sin φ
− sin φ cos φ

] [
k′

hx

k′
hy

]
. (21)

3. Apply inverse Fourier transform I(γ, φ, kx, ky, kz) → I(γ, φ, x, y, z).

Similarly, the backward transform (angle to offset) is done by reversing the order of
the procedures above.

(a) (b)

Figure 4: Graphical illustration of the mapping from the (γ, φ) plane to the (khx, khy)
plane. Each dot in (a) maps to a corresponding dot in (b); similarly, each quadrilateral
patch in (a) maps to a corresponding patch in (b). [CR]

The mapping between (γ, φ) and (khx, khy) is highly irregular (Biondi, 2003). Fig-
ure 4 shows the mapping from a regularly sampled (γ, φ) mesh to the (khx, khy) domain
given fixed kz = 1/2, kx = 1/4 and ky = 1/4 (assume the Nyquist wave number is
1). We can see the mapping brings distortion, and the density of the samples on
(khx, khy) becomes non-uniform. A proper interpolation scheme is very important
to reduce the artifacts caused by such irregularity. This issue becomes more serious
for the backward transform (angle to offset), because the azimuth angle φ is usually
not sufficiently sampled; simply placing all available samples on the (γ, φ) plane onto
their mapped locations on (khx, khy) plane would leave many holes unfilled. On the
other hand, under mapping relation 21, it is easy to map from a given (γ, φ) value
to (khx, khy), but it is difficult to do the reverse due to the algebra. Therefore, it
is very difficult to iterate over all points on (khx, khy), find the corresponding (γ, φ)
coordinates, and fetch the values on these coordinates.
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We choose a simple yet effective scheme to perform this mapping. Instead of map-
ping from sample points to sample points (dots in Figure 4), we map from quadri-
lateral patches to quadrilateral patches, assuming each patch contains uniformly the
value of the sample located in its center. We use a classic polygon-filling algorithm
for this mapping. After that, a slight amount of smoothing is applied on the output
to remove potential discontinuities along the boundaries of the patches.

We use the previous synthetic example to demonstrate the necessity of this scheme.
We start with an initial subsurface ODCIG by migrating the data using the starting
velocity model, as shown in Figure 5(c). Then we apply our forward and backward
offset-angle transforms to the ODCIG sequentially (Figure 5(b)). For comparison,
we also compute the result using the transform that simply does sample-to-sample
mapping (Figure 5(a)). A good transform pair should make the resulting ODCIG
resemble the original one as closely as possible. Notice there is no way we can retrieve
a result exactly same as the original gather, because the information in azimuth range
(60◦, 180circ) is lost in the angle domain CIG. Nonetheless, it is obvious that Figure
5(b) is less distorted than Figure 5(a) is. Our mapping scheme would reduce the
artificial noise that arises during the transform of image perturbation from angle
back to offset domain.

DISCUSSION

Although it is not a main point in this paper, the computational efficiency is also a
crucial challenge for the 3-D extension. As the image gathers become 5-D, the cost of
wave-equation operators grows extremely fast as the problem size scales up. Besides
choosing a smaller model space, phase-encoded shot records can be used to reduce
the number of wave-field simulations. The other bottle neck is the huge amount
of disk IO when doing the cross-correlation imaging condition for many subsurface
offsets. Based on the recently emerging research topic of compressive sensing, Clapp
(2011) proposes a promising idea to reduce the amount of IO required. The author
shows that if we randomly compute only a subset of the original full 5-D image, for
typical seismic data, we can confidently recover the full image without losing useful
information.

CONCLUSION

We presented our initial work to extend the proposed RMO-based WEMVA approach
to three-dimensional case. We upgraded the theory to deal with multiple azimuth
angle-domain CIGs, and we paid close attention to the mapping algorithm between
angle and offset domain, in order to reduce artifacts introduced by this irregular
mapping. We showed a synthetic example as a verification for our primitive imple-
mentation.
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(a) (b)

(c)

Figure 5: (a) The result of applying forward and backward offset-angle domain trans-
form on an ODCIG, in which the sample-to-sample mapping is used; (b) the same de-
scription as (a), except that the patch-to-patch mapping is used. The original ODCIG
is shown in (c). All three gathers are chosen at location x = 0.2 km, y = −0.06 km.
Notice that the intermediate ADCIG we generate does not have full azimuth cover-
age ([60◦, 180◦] excluded), therefore an exactly identical reconstruction of the original
ODCIG is not possible. [CR]
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