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ABSTRACT

Understanding the relationships between vertical velocity, anisotropic parameters
ε, δ and traveltime is important both for parametrization of waveform inversion
and proper interpretation of waveform inversion results. Forward modeling indi-
cates that traveltime is more sensitive to vertical velocity and ε than to δ. This
suggests that δ may be fixed during an inversion for vertical velocity and ε. When
vertical velocity and ε are directly parametrized, ε changes little during the in-
version. A more balanced sensitivity kernel can be obtained by using different
parametrizations, such as the vertical and horizontal velocities, or the logarithms
of slowness and ε.

INTRODUCTION

Full Waveform Inversion (FWI) (Tarantola, 1984; Pratt et al., 1998; Mora, 1987)
iteratively updates model by trying to match input data with modeled data. It
estimates subsurface velocity more accurately than conventional techniques, such as
ray-based methods (Hampson and Russell, 1984; Olson, 1984; White, 1989), especially
in geologically complex areas. This is because FWI predicts kinematics of recorded
data more accurately by using finite-difference wave-equations, compared with ray-
based methods using high frequency approximations of wave propagation. However,
the dynamics of recorded data are not very accurately predicted by current FWI
methods. In other words, successful field-data application of FWI usually relies more
on matching kinematics of recorded data.

With longer-offset data (> 10km) commonly acquired these days, matching kine-
matics means matching data traveltime over the entire offset range. For such large
offset ranges, anisotropic effects, if they exist, are no longer negligible. In the presence
of anisotropy, if isotropic FWI is used, the inversion results will not correctly reflect
the true subsurface attributes (Ghilami et al., 2011). More specifically, isotropic FWI
of diving waves mostly recovers the horizontal velocity in anisotropic media. Migra-
tion using such a velocity will place reflectors at incorrect depths. To avoid this,
anisotropic parameter estimation should be part of the inversion process. Such in-
version can be carried out in several ways. One way is to perform single-parameter
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inversion for each parameter sequentially. Alternatively, joint inversion performs si-
multaneous inversion of multiple parameters, called joint inversion. Joint inversion
is usually better, since the results of the first approach are sensitive to the order in
which the inversion is performed. On the other hand, given the original definition of
anisotropic parameters (Thomsen, 1986), direct changes in those parameters them-
selves usually result in very small changes in data kinematics, where as changes in
velocity affect the data kinematics much more significantly (Plessix and Cao, 2011).
For the purpose of simultaneous inversion, it is important to understand quantita-
tively how much the data kinematics change as a function of anisotropic parameters
and velocity, and to come up with an effective parametrization of the model.

In this paper, I first describe the acoustic vertical transversely isotropic (VTI)
wave-equation and the sensitivity kernel calculation. Then I use synthetic data exam-
ples to illustrate the sensitivity of the data kinematics to the anisotropic parameters
and the velocity, in terms of both forward modeling and sensitivity-kernel calculation.

FORWARD MODELING

Exact anisotropic wave equations are in the form of elastic wave equations. Acoustic
anisotropic wave equations can be obtained by various approximations of the exact
elastic equations. One way to do this is to set shear-wave velocity to zero in the exact
elastic wave equations. Detailed derivations can be found in several papers (Zhang
and Zhang, 2009; Crawley et al., 2010; Duveneck et al., 2008). The resulting acoustic
anisotropic wave equations are a system of second-order equations:
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where p and r are horizontal and vertical stress, respectively, vp is vertical p-wave
velocity and ε and δ are anisotropic parameters (Thomsen, 1986).

To illustrate the traveltime sensitivity of data to parameter changes, I use part
of the BP 2002 benchmark model. The original synthetic model has only p-wave
velocity; the anisotropic parameters were created from the velocity model according
to typical Gulf of Mexico anisotropic parameters. Velocity, ε and δ models are shown
in Figure 1.

Four different modeling experiments with modeled shot records are shown in Fig-
ure 2. The first experiment is the VTI anisotropic modeling using all three fields
shown in Figure 1. The second experiment is the same VTI modeling but with δ = 0.
The third experiment is isotropic modeling using the velocity field only, and the
fourth is isotropic modeling using the horizontal p-wave velocity, which is defined
as vh = vp

√
1 + 2ε. Figure 3 shows the refraction traveltime difference of the latter

three shots compared to the first shot. It can be seen that traveltime is insensitive
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Figure 1: Reference model for various modeling experiments. Top: velocity model;
middle: ε model; bottom: δ model. [ER]

to δ changes, but is sensitive to ε changes. Also, isotropic modeling using the hori-
zontal p-wave velocity results in non-trivial traveltime differences, which means that
even using isotropic FWI, the retrieved model is not necessarily the horizontal p-wave
velocity, as was previously thought (Ghilami et al., 2011).

MODEL PARAMETRIZATION AND
SENSITIVITY-KERNEL CALCULATION

For inversion, there are several ways to parametrize the model space, which con-
tains vertical p-wave velocity and the anisotropic parameters ε and δ. However, due
to insensitivity of the data to the δ parameter, currently I consider a model space
consisting of only vertical p-wave velocity and ε; i.e. δ is fixed during inversion.
Using gradient-based inversion methods, different parametrization leads to different
model updates. In joint inversion, it is unfavorable to have updates that result in
little or almost no change in one of the model components. Quantitatively, for a
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Figure 2: Shots from different modeling experiments: a) VTI modeling using all
three fields shown in Figure 1; b) same as a) except that δ = 0; c) isotropic modeling
using only the velocity field; d) isotropic modeling using horizontal p-wave velocity
vh = vp

√
1 + 2ε. [ER]

model space that contains two components m1 and m2, update directions gm1 and
gm2 should be chosen such that gm1/m1 ≈ gm2/m2. This can be achieved by using
proper parametrization.

I compare three different parametrizations and their corresponding model updates
(sensitivity kernels). For sensitivity-kernel calculation, I first calculate the full data
residual by subtracting dcal, which is modeled from the smoothed version of the true
model (Figure 4) from dobs, which is modeled from the true model. I consider only a
single trace refraction of the total data residual for this study.
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Figure 3: Refraction traveltime difference of shots compared to the VTI case. [ER]

Naive parametrization

The most naive parametrization directly inverts velocity and ε. However, to avoid
higher-order term involving both variables, equation 1 can be rewritten as follows:
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By combining this with equation 2, we can obtain

m1,0
∂2∆p

∂t2
−m2,0

∂2∆p

∂x2
−
√

1 + 2δ
∂2∆r

∂z2
= −∆m1

∂2p0

∂t2
+ ∆m2

∂2p0

∂x2

m1,0
∂2∆r

∂t2
−
√

1 + 2δ
∂2∆p

∂x2
− ∂2∆r

∂z2
= −∆m1

∂2r0

∂t2
, (4)

SEP–147



Shen 6 VTI FWI

Figure 4: Smooth model for generating dcal: a) velocity model; b) ε model; c) δ model.
[ER]
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This establishes a linear relationship between model perturbation and data perturba-
tion, and can be used to calculate the sensitivity kernel. Figure 5 shows the relative
sensitivity kernels of the two model parameters, which are defined as

kmi
= gmi

/mi,0, (6)

where gmi
is the sensitivity kernel, and kmi

is the relative sensitivity kernel. the
clipping value of the top figure is over sixteen orders of magnitude larger than the
bottom figure, which means if we are to use this parametrization for our inversion,
there will be almost no updates of the anisotropic parameter.
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Figure 5: Relative sensitivity kernel of parameter: a) vp
−2; b) 1 + 2ε. Clipping value

of the top figure is 1e10, clipping value of the bottom figure is 2e− 6. [ER]

Velocity parametrization

Another parametrization is to use velocities for both variables. Defining m1 = vp
2

and m2 = vp
2 (1 + 2ε), equation 1 can be rewritten as follows:
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Using similar procedure to the one described in the previous section, we can obtain
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This is the linear relationship between model perturbation and data perturbation, and
can be used to calculate the sensitivity kernel. Figure 6 shows the relative sensitivity
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Figure 6: Relative sensitivity kernel of parameter: a) vp
2; b) vp

2 (1 + 2ε). Both figures
are clipped at the same value. [ER]

kernel of the two model parameters. Both figures are clipped to the same value. Since
both variables are parametrized as velocities, their updates are of similar strength,
and this is an effective parametrization.

Logarithmic velocity parametrization

A slightly different parametrization is to define m1 = ln (vp
−2) and m2 = 1 + 2ε. Us-

ing this parametrization, equation 1 can be rewritten as follows:
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Figure 7: Relative sensitivity kernel of parameter: a) a−1 ln (vp
−2); b) (1 + 2ε). Both

figures are clipped at the same value. [ER]

Using a procedure similar to the one described in the previous section, we can obtain
a matrix form expression:∣∣∣∣em1,0 ∂2
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This is the linear relationship between model perturbation and data perturbation,
and can be used to calculate the sensitivity kernel. Figure 7 shows relative sensitivity
kernel of the two model parameters. Both figures are clipped to the same value. With
this parametrization, updates of both variables are of the same order of strength.
I show in another paper [citation] that such parametrization results in very good
inversion results.

CONCLUSIONS

The forward modeling experiment suggests that it is important to include anisotropy
as part of the inversion. For joint inversion, proper parametrization can give balanced
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updates to each model variable. Velocity parametrization and logarithmic slowness
parametrization are both good candidates in that sense. Actual inversion using these
parametrization needs to be further studied.
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