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ABSTRACT

In most discussions of interpolation methods, it is the worst-case behavior that
dominates the analysis. From a systems point of view, one really should analyze
how that interpolation is used in producing an end product in order to determine
the interpolation’s suitability. In this report I look at the summation opera-
tors slant stack, NMO and Kirchhoff migration as the “systems” and determine
that their output quality can be significantly better than the traditional take
on interpolation would suggest. In one scenario, I even found nearest neighbor
interpolation did the job even better than linear interpolation.

INTRODUCTION

Many geophysical imaging and analysis tools involve summation over various trajec-
tories within their input data. It is rare indeed that such summations do not involve
intermediate interpolation among adjacent or nearby samples. Such interpolations
are generally imperfect and so can degrade the final result—a subject of interest to
me for some time (Levin, 1994). In a recent broad brush presentation of Kirchhoff
time migration to an introductory C++ class at Stanford, I presented the slide:
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and asserted

“Normally, an interpolator is selected based on its guaranteed-to-be-no-
worse-than fidelity. However in the present case the distribution of many
thousands or even millions of fractions of a sample to interpolate is uni-
form and so I focused in on the average rather than the worst case. From
this perspective, looking at the amplitude behavior halfway between the
3rd and 4th curves plotted in the slide, the quite inexpensive linear in-
terpolation does a good enough job in retaining fidelity. A similar plot of
phase accuracy yields the same conclusion.”

To understand this concept, let us take the very simple case of a single function
replicated with linear delay and sampled with unit spacing as illustrated in Figure
1. Applying linear moveout and stacking would ideally reproduce that function. In
order to apply the linear moveout we need to interpolate. Let us first consider what
happens if we use simple nearest neighbor interpolation.

Figure 1: Simple dipping syn-
thetic section. [ER]

We generally abhor nearest neighbor interpolation because it (a) is a discontinuous
function of position and (b) can yield interpolated values that don’t even have the
correct sign. When stacking is included, though, to a good approximation we may
assume the interpolation points are randomly distributed between samples following
a uniform distribution. This means that the output values on our stack at x0 are
approximately ∫ x0+1/2

x0−1/2

f(x)dx

which is convolutional filtering of f(x) by a boxcar having Fourier transform

F (ω) = sinc(ω/2) . (1)

Figure 2 illustrates the filter and its spectrum. Note that within the Nyquist limits −π
to π, the spectrum (1) is positive, indeed greater than or equal to 2/π. Therefore we
can compensate for the nonflat spectrum by simple zero-phase spectral rebalancing
after the stack, avoiding the expense of costly high quality sinc-like convolutions
before stack.
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Nearest Neighbor Interpolation: B-0
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Figure 2: Nearest neighbor boxcar filter (left) and its spectrum (right). Figure from
Fomel (2000). [NR]

Seeing that nearest neighbor interpolation works unexpectedly well, let us turn
our attention to linear interpolation. Following the same line of reasoning leads to
a triangular convolution illustrated in Figure 3 which is a convolution of the nearest
neighbor boxcar with itself and hence a spectrum that is the square of (1). This
linear interpolation result is poorer than nearest neighbor, requiring more post-stack
spectral compensation and concomitant noise magnification at higher frequencies!
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Linear Interpolation: B-1
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Figure 3: Nearest neighbor boxcar filter (left) and its spectrum (right). Figure from
Fomel (2000). [NR]

EXAMPLES

For my first example I created a dipping planar synthetic with a Ricker wavelet on
it. (Figure 4) This 26.556◦ dip is at an azimuth of 67.44◦ and the central frequency
of the Ricker wavelet is 64.22 Hz, slightly more than half the Nyquist frequency. The
wavelet was imposed by calculating the analytic Ricker formula directly onto the trace
samples and not by post-convolving a spike trace synthetic. I then did an areal slant
stack along the same dip and azimuth as the plane with the output at the location of
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Figure 4: Dipping 3D synthetic
used for slant stack test. [NR]

the first inline and crossline trace. I used nearest neighbor interpolation for this slant
stack. Figure 5 shows the result overlain with what a perfect slant stack would have
produced. Quite a respectable result even without spectral reshaping. (When spectral
compensation is included, the result of nearest neighbor interpolation is nearly perfect
as shown in Fig. 7.) Figure 6 shows the corresponding output for linear interpolation
which, indeed, is not as accurate, agreeing with the analysis above.

Figure 5: Comparision of the per-
fect theoretical result with the
output of slant stacking the data
in Fig. 4 parallel to the planar
event using nearest-neighbor in-
terpolation. [ER]

Figure 6: Comparision of the per-
fect theoretical result with the
output of slant stacking the data
in Fig. 4 parallel to the planar
event using linear interpolation.
[ER]

Of course, field data have many events, not just one, and summation operations
will generally involve both constructive and destructive summation. Taking a first
look at this topic, I modified the planar synthetic to have about 75 uniformly dis-
tributed individual parallel plane arrivals with amplitudes constructed according to
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Figure 7: Comparision of the per-
fect theoretical result with the
output of slant stacking the data
in Fig. 4 parallel to the pla-
nar event using nearest-neighbor
interpolation followed by spectral
compensation with the reciprocal
of formula 1. [ER]

a Gaussian distribution. (Figure 8.) Using this synthetic, I deliberately slant stacked
horizontally (Fig. 10 which requires no interpolation) and again at a dip that was not
parallel to the plane of the synthetic. (For Fig. 11 I opted to interchange the X and Y
axis dips.) It is clear that nearest-neighbor interpolation created just about as much
destructive cancellation as one would expect from a high order interpolation. Nearest

Figure 8: First slice of dipping
3D synthetic with sparse reflec-
tors and Gaussian amplitude dis-
tribution used for slant stack test.
[ER]

neighbor slant stack parallel to that dip yielded the expected high quality result show
in Figure 9. Stacking horizontally, which requires no interpolation, or (destructive)
slant stacking along a plane oriented with the X and Y axis interchanged resulted in
equally small output amplitudes (a fraction of a percent) as expected.

Figure 9: Comparision of nearest
neighbor and high order interpola-
tion slant stacking the data in Fig.
8 parallel to the planar event us-
ing nearest-neighbor interpolation
followed by spectral compensation
with the reciprocal of 1. [ER]
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Figure 10: Horizontal stack of the
data in Fig. 8 gained by a factor
of 100 over that in Fig. 9. [ER]

Figure 11: Slant stack over a non-
parallel direction of the data in
Fig. 8 gained by a factor of 100
over that in Fig. 9. [ER]

My second example is another situation where summation is expected to be almost
exclusively constructive: 3D normal moveout. Figure 12 shows the result of applying
NMO stack to a synthetic (flat dip) 3D CDP with maximum offsets of 12.8 and 25.6
km in the X and Y directions respectively. No spectral reshaping is shown because
those results almost perfectly overlay their inputs. This anomaly arises because of
NMO stretch which changes the shapes of the waveforms being stacked. In field data
statics, deconvolution, and AVO effects will further modify the input waveforms,
making spectral compensation analysis complicated and data dependent.

Figure 12: NMO stack compari-
son of nearest-neighbor, linear and
high order interpolaton. Here no
spectral compensation has been
applied. [ER]

Closely related to NMO stack is common reflection surface (CRS) imaging which
estimates and sums over prestack specular reflection surfaces (Jäger et al., 2001;
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Hertweck et al., 2004). I generated and CRS processed a prestack synthetic for a
dipping plane and got the result in Figure 13. With the exception of an apparent one
sample shift, probably a small coding bug, again nearest-neighbor did a fine job and
outperformed linear linear interpolation.

Figure 13: CRS zero-offset trace
for a dipping planar synthetic us-
ing nearest neighbor, linear and
high-order interpolation. [ER]

Transitioning further into the balance between constructive and destructive inter-
ference, for a fourth example, I poststack migrated the synthetic of Fig. 4 with the
same constant velocity used to create it. Using nearest-neighbor interpolation, the
output at the first inline and crossline trace location is shown in Figure 14. Linear
interpolation produces Figure 15 and highly accurate interpolation produces 16. In
this case, increasing the order of the interpolant does increase accuracy, however the
level of residual artifact is disconcerting.

Figure 14: Poststack 3D Kirchhoff
time migration of the dipping pla-
nar synthetic using just nearest-
neighbor interpolation. [ER]

The fundamental difference between the last example and the previous ones is that
poststack Kirchhoff migration sums only a few samples coherently to form an image
point sample. With prestack Kirchhoff, however, the number of coherent samples
forming an image point sample is much larger. Figures 17 and 18 show 3D prestack
Kirchhoff migration of a horizontal planar event. (Couldn’t get the dipping plane
version working in time.) There is no longer annoying precursor noise in these results.
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Figure 15: Poststack 3D Kirchhoff
time migration of the dipping pla-
nar synthetic using linear interpo-
lation. [ER]

Figure 16: Poststack 3D Kirchhoff
time migration of the dipping pla-
nar synthetic using high-order in-
terpolation. [ER]

Figure 17: Prestack 3D Kirchhoff
time migration of a horizontal pla-
nar synthetic using just nearest-
neighbor interpolation. No at-
tempt was made to taper aperture
or apply phase corrections. [CR]

Figure 18: Poststack 3D Kirchhoff
time migration of a horizontal pla-
nar synthetic using linear interpo-
lation. No attempt was made to
taper aperture or apply phase cor-
rections. [CR]
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DISCUSSION AND CONCLUSIONS

We have clearly seen a significant difference between slant stacking (or NMO stacking)
and migration in how interpolation affects the result. This is a reflection (no pun
intended) on the fact that the former is adding signals in phase while the latter
is relying on massive destructive interference to suppress those data that shouldn’t
contribute to the output. (See, e.g., Levin (2004).) The constructive interference
in the 3D poststack migration example is over a fairly small patch and has led to
some unwanted noise and other artifacts. However full prestack Kirchhoff migration
suppresses the noise and confirms the original conclusion that it is the average case,
not the worst case, of interpolation that should be the focus of integral operator
system analysis.
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Given a source location S, a receiver location R and the plane        )=0, where   is a unit normal, 

to find the reflection point P, drop a perpendicular w from   to the line connecting P to R.  Snell’s Law 

says that running w in the other direction connects to the line between P and S.  So we have: 
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