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ABSTRACT

Single frequency 2D acoustic full waveform inversion shows promise as an ap-
proach to inverting the acoustic, dispersive 2D acoustic wave equation for the
underlying velocity cube as a function of frequency. A GPU friendly finite dif-
ference time domain kernel and an associated frequency domain optimization
scheme are shown to retrieve a Gaussian anomaly via full waveform inversion
for several acquisition geometries. Although the wave field is single frequency,
the spatial distance of sources and receivers allows their sensitivity kernels to
interfere and form a gradient that can recover the anomaly.

INTRODUCTION

Surface waves naturally propagate in two dimensions along the earth’s surface and not
in depth. However, du to their wavelength their waves’” motion causes disturbances
away from the interface, thus making surface waves sensitive to mechanical properties
away from the interface. This is manifested in a variability of the wave propagation
speed with frequency, i.e. dispersion. Dispersive Scholte waves can be extracted from
ambient seismic noise by cross-correlation (de Ridder and Dellinger, 2011; de Ridder,
2012). Kimman (2011) found that higher modes are often not constructed or very
weak, when the excitations are located at the surface. Furthermore, de Ridder (2012)
shows how Scholte waves reconstructed from ambient seismic noise at Valhall field
contain a single mode dispersive surface wave.

An approximate physical model for a single mode of surface waves is waves trav-
elling in two dimensions given a phase velocity map, ¢(w,x). The amplitudes and
phases of surface waves, in that approximation, are governed by

(V? + 0% (w,x)w”) V(w,x) = F(w)d(x — x,), (1)

where x = (z,y) and V? = 8§+0§. Equation 1 is very similar to a classical 2D acoustic
wave equation, except that the velocity is now a function of frequency. Explicitly
solving for a single frequency renders this difference moot. However, frequency domain
solutions are slow to compute, and implementation of absorbing boundary conditions
is not straightforward. Here we solve equation 1 by a time-domain equivalent, valid
for individual frequencies and independent of boundary condition.
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We want to use equation 1 to image the phase-velocity cube v(w,x) by full wave-
form inversion (FWI) for each frequency separately. But single frequency data gen-
erally does not resolve anomalies in space, because sensitivity kernels have endless
oscillatory behaviour. Conventionally, summing over a finite frequency band collapses
the sensitivity kernels to the classic and familiar banana-doughnut kernels (Dahlen
and Nolet, 2000). However, in this paper we show that a similar effect is achieved by
having sources and receivers throughout and around the target of interest.

This paper starts by connecting a time domain kernel to solutions of the 2D
frequency domain acoustic kernels with frequency dependant velocity. Then a non-
linear optimization algorithm is developed to invert single frequency amplitude and
phase data. Finally we explore the ability of various acquisition grids to invert for a
Gaussian anomaly.

TIME-DOMAIN KERNEL

We seek to compute solutions of equation 1 for single frequencies. Thus assume
that we have a time domain source function acting at a single frequency F(t) =
A sin(w,t 4+ ¢). In a 2D acoustic system this would excite a wave equation as

(V? 4+ 0v72(w,,x)87) d(t,x) = A(x) cos(wot — ¢(x)), (2)

The phase and amplitude of the solution, V(w,x), at frequency wy is simply
computed with a forward Fourier transform

d(w,,x) = /00 d(t, x)exp{iw,t} dt. (3)

o0

If the solution of 2 is computed accurately, then d(w,x) = 0 for w # +w,. The
sourcing terms A(x) and ¢(x) are only non zero where sources act.

To evaluate this inverse Fourier transform, we would need to perform infinite
number of time steps and at minus infinity, practically impossible. However, the
solution is periodic, thus we can suffice with having computed the wave field for as
little as one period. However, we need to initialize the wave field first and wait for
the energy of the source to have spread throughout the medium. The computational
boundaries could be made absorbing, but this is a challenge, especially at the longer
wavelengths that we are interested in modelling. A simpler solution is to extend the
domain and omit updating the boundaries. The domain has to be extended large
enough to avoid reflections to start modulating the phase throughout the inner area
of the model domain that is of interest. This requires a much larger model space, but
keeps coding simple and stable.

The kernel is started and run for enough time steps to have the energy of one
period to propagate beyond all receivers, assuming one period is enough to stabilize
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the amplitude and phase of the wave field. This propagation time length is based on
a minimum velocity. Then the code steps through two periods while the receiver wave
field is kept. We do not need to have a memory variable for the source function or to
collect the wave field at the receiver locations. Instead, we upload one sinusoid with a
phase from -17 to 3.57. A simple mod function statement reduces any absolute phase
to fall within that range. The value for a sinusoid with a phase shift of up to +x
can easily be retrieved. And similarly the value of a cosine is available though a shift
of .5m. The discrete inverse Fourier transform is performed on the fly. No memory
transfer needs to occur between CPU and GPU while the modelling is running through
the time steps.

An upside of this algorithm is that is is embarrassingly parallel over shots and
frequencies, not memory intensive and boundary conditions can be neglected. The
downside of this approach is that each frequency inversion requires solving a time-
domain waveform inversion, hence this approach is suboptimal and is only imple-
mented here because of the straightforward implementation on CUDA of the 2D
waveform inversion with the special excitation source 15. An alternative approach
to this problem is to solve the waveform inversion for equation 1 in the frequency
domain using a Helmhotz solver that lends itself to efficient CUDA implementation.

OPTIMIZATION SCHEME
The FWI objective function Jpwy can be written as:
Jewi(v) = [|d(v) — dobs|3, (4)

where v is the velocity model, d(v) is the computed data, and d,s is the observed
data. d(v) is computed as:

d(xs, X, w; V) = f(xs,w)G(xs, X, w; V)d(x, — X), (5)

where f(xs,w) is the source function, w is frequency, x; and x, are the source and
receiver coordinates, and x is the model coordinate. In the acoustic, constant-density
case the Green’s function G(x;,x,w;Vv) satisfies:

(V? + 02 (x)w?) G(xs,%,w) = §(x5 — X). (6)
We then separate the model into a background and a perturbation:
v72(x) = b(x) + m(x). (7)

where b(x) is the background component, which is the current model in slowness
squared units, and m(x) is the perturbation component. After this separation, we
can use Taylor expansion on the data around the background component as follows:

d(v) _d(b)+g—3\bm+.... (8)
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By neglecting the higher-order terms in the data series, we can define the linearized
modeling operator L as:

Ad(v) = g—3|bm = L(b)m. (9)

The first order Born approximation can be used to define the operator:

Ad(x,, %, w;b,m) = —w’f(w) > G(x,, x,w;b)m(x)G(x,%,,w;b),  (10)

where the Green’s functions now satisfy the acoustic wave equation as follows:

(V2 + b(x)w?) G(xs,%,w) = 6(x — X), (11)
(V? + b(x)w?) G(x,%X,,w) = 6(x — X;). (12)

We can now compute the model gradient g(x) as follows:

g(x) = 0Jewt _ynq, (13)

om

Finally, we can update the model with the gradient:
bnew(x) = b(x) — ag(x), (14)

where « is the step size. To estimate the step size, we first evaluate the objective
function with the gradient scaled to have a maximum of 2% and 4% of the minimum
value of the current model. Using these two points as well as the objective function
value at the current model, which is already computed in the gradient calculation,
we fit a parabola. If the parabola has positive-side minimum, i.e. both the curvature
and the x-axis shift are positive, a new objective function evaluation is performed at
the parabola minimum. Then, the two or three evaluations are compared and the
scale that resulted in the smallest objective function is used as the step size given
that the objective function decreases. Otherwise, the line search is repeated after
shrinking the gradient by a factor of 4. The optimization scheme is implemented
on the CPU in Fourier domain notations using frequency domain Green’s function
solutions computed on the GPU.

TEST GEOMETRIES

A series of nine examples of single frequency FWI are run for a Gaussian anomaly,
each with different source and receiver geometry and with a 2 Hz wave field. The
Gaussian shape has a standard deviation of 350 m and an amplitude of 10% on a
background velocity of 1500 m/s (Figure 1).

Having just one source and one receiver (Figure 2) severely limits the ability of
the acquisition to retrieve a Gaussian anomaly. The final model, achieved after only
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4 iterations, basically resembles the sensitivity kernel of one source-receiver couple.
Using two receivers and one source (Figure 3) does not improve the situation much.
The two sensitivity kernels now interfere, but together they still don’t resemble the
Gaussian anomaly we attempt to retrieve. A survey using a line of receivers and
a single source starts to do better (Figure 4) but the range resolution is still quite
poor. However, an acquisition with one source and a field of receivers suffers from a
range interference of the outer side lobes between individual source-receiver sensitivity
kernels (Figure 5). Two sources and a line of receivers (Figure 6 ) drastically improves
the range resolution over just one source (Figure 4). And similarly for a field of
receivers using just two sources (Figure 7). The next two experiments show the result
of a line of sources. The first is essentially a conventional borehole geometry, where
a line of sources and a line of receivers flank the target (Figure 8). This is capable of
retrieving the the velocity anomaly in the cross-line direction reasonably well, but fails
to resolve the Gaussian anomaly in the in-line direction. It actually retrieves negative
values as big side lobes of the anomaly. This problem is only partially overcome when
there is a field of available receivers (Figure 9). When sources and receivers encircle
the anomaly, we achieve excellent retrieval (Figure 10) in just 5 iterations. However,
retrieval is limited by the wavelength of the single frequency data.
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CONCLUSIONS

A time domain kernel to compute a frequency domain solution of the Green’s function
is successfully implemented on GPU’s. If the source receiver distribution illuminates
the target from sufficient geometries, individual sensitivity kernels interfere and con-
struct gradients for updates in a FWI scheme. A single frequency full waveform
inversion scheme is not applied in a multi-scale velocity refinement as is the standard
for the waveform inversion process, but the approach is still able to recover Gaussian
anomalies in space.
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APPENDIX

Our objective is to invert the frequency-dependent velocity function c¢(w,x) from
observed solutions to our postulated surface wave propagation equation 1 in the fre-
quency domain, where F'(w) is an arbitrary excitation source waveform. As has been
noted above, 2D waveform inversion can be directly applied to this problem, with the
only exception that inversion results for individual frequencies are treated as separate
values of the frequency-dependent velocity ¢(w,x) and not applied in a multi-scale
velocity refinement of the standard for the waveform inversion process. While the ap-
plicability of 2D the waveform inversion is conceptually obvious, technical challenges
arise in adapting specific implementations of the waveform inversion to equation 2.
Our time domain CUDA implementation of the 2D acoustic equation solves equation
2 with an excitation source of the form

A sin(w,ot + ¢)0(x — x5). (15)

The choice of the source 15 is dictated by the considerations of our CUDA imple-
mentation. We will now show how the time-domain kernel working with sources 15
can be adapted to solve the waveform inversion problem in the frequency domain
for an arbitrary waveform source F(w). First, Fourier-transforming 2, we can see
that recovering the velocity from a solution to 2 with the source 15 is equivalent to
recovering the velocity from a solution to

w3u

AL, »
Aut =5 = 2 [696(w — wo) — e “8(w +wo)] (16)

By choosing ¢ = m/2 we get

2 16 ) + 5+ wo)]
in the right-hand side of 16. Now assuming that the velocity is an even function of
the frequency, and that we attempt to reconstruct the velocity from 2 with F(w) =
F(—w), we can see from equation 16 that we can equivalently run 2D waveform
inversion 2 for frequencies w € [0, Nyq] with A = 2F(w),¢ = 7/2 in 15. For an
odd waveform (but still even velocity) for each w we use A = 2F(w),¢ = 0. An
arbitrary waveform can be represented as the sum of an even and odd components,
and equation 2 will have a linear combination of two source terms 15 in the right-hand
side.
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Where was the American Declaration of Independence
signed?

At e bAton.

What is the meaning of the word ‘varicose’?
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What is the highest frequency noise that a human
can register?
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