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ABSTRACT

The ultimate objective of our research is to study the feasibility of using sub-
sidence measurements for the regularization of linearized waveform inversion of
time-lapse data sets, and for differential travel-time tomography. In this paper,
we focus on developing a robust framework for inverting pore pressure change
in a production reservoir from partial displacement or subsidence data, and on
estimating subsurface displacements from the inverted pore pressure change. We
discuss potential applications of the resulting displacement fields to the estima-
tion of production-induced change of seismic velocities and impedance. Sensitiv-
ity of the proposed framework to the uncertainty and spatial heterogeneity of the
poroelastic subsurface parameters is discussed as well.

INTRODUCTION

Our objective is to study the application of geological and geomechanical constraints
to the regularization of seismic inversion problems. Well tie-ins and use of a priori
information on sediment geometry are examples of such constraints that have found
robust quantitative application in regularized seismic inversion. Although some suc-
cess has been achieved in attempts to connect subsurface velocities and impedance
to poroelastic rock properties (Mavko et al., 2009), the application of such relations
to constraining velocity inversion runs into difficulties stemming from uncertainties
both in the subsurface parameters and in the choice of a semi-empirical rock model to
use. However, displacement and stress measurements are the source of independent
information about the subsurface, and in principle may be used for the regularization
of seismic inversion problems in areas of poor illumination.

More specifically, in the framework of time-lapse seismic imaging, we are interested
in answering the following two questions:

- Can we robustly estimate production-induced changes in seismic velocities and
impedance (with respect to a base-line model) from subsidence measurements?

- Can we subsequently use the updated model for the regularization of time-lapse
inversion where repeat surveys have illumination gaps or are contaminated with
noise?
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While we discuss the second question in the penultimate section, this paper is
mostly concerned with the first question. We begin with an overview of the exist-
ing theory of production-induced deformation, then proceed to the formulation of
our method for modeling displacements from known pressure drop in a “slowly vary-
ing” poroelastic medium. A technique for inverting the pore pressure change from
measured displacements is described next. The proposed modeling and inversion
techniques are demonstrated on synthetic examples based on real-world production-
induced subsidence cases. The section on spatial heterogeneity of elastic earth mod-
els discusses the impact of heterogeneity on modeling and inversion results and puts
forward an extension of the proposed technique for tackling vertically-layered and
arbitrarily heterogeneous media. The paper concludes with a discussion of velocity
and impedance change estimation from strain, with an outline of a process for picking
the appropriate semi-empirical rock model.

PRODUCTION-INDUCED DEFORMATION

Realistic reservoir depletion exhibits asymmetric patterns that might be indicative of
a complex reservoir geometry as well as spatial heterogeneity of the reservoir per-
meability. In particular, differences in production-related pressure change across
multiple wells can help identify reservoir compartmentalization (Zoback, 2010) and
guide the drilling of subsequent production wells, or affect the choice of production-
enhancement techniques. In the general case of an arbitrary linear poroelastic medium,
change in the pore pressure is intricately interconnected with the change in the stress
field, and accurate modeling of the effects of changing pore pressure requires solving
a system of governing equations in a half-space (Wang, 2000), (Segall, 2010). Solving
a boundary-value problem for such a system of equations governing both stress evolu-
tion and fluid flow is challenging – as much due to uncertainty of the subsurface model
parameters as due to the sheer analytical complexity of these coupled equations. The
importance of studying the fully-coupled poroelastic models cannot be overestimated
as the coupled modeling is often the key to explaining counterintuitive behaviour of
some real-world poroelastic models.

In this work we expand on previous studies of the effects of pore pressure change
on the strain and stress fields (Segall, 1992),(Segall et al., 1994) by adopting an
intermediate approach between the fully coupled simulation and uncoupled analytical
solutions. First, we assume that a pore pressure drop is known within the reservoir
and is an arbitrary function of the reservoir coordinates – i.e., we assume partial
fluid-to-solid coupling – and use the analytical expression for the elastostatic Green’s
tensor due to a concentrated centre of dilatation in half-space (Segall, 2010),(Mindlin,
1936) to numerically compute the displacement due to the pore pressure change.
Next, we use the obtained numerical operator in an inversion problem, fitting a pore
pressure drop to a known displacement and subsidence profile. Finally, we extend
the method for layered media. The method is demonstrated on synthetic data based
on a real-world example of subsidence due to the production from a hydrocarbon
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reservoir at Lacq, France (Segall et al., 1994). Extensions of this study to joint
application with time-lapse seismic imaging are discussed as well. This paper is
dedicated to reporting some geomechanical aspects of the joint geomechanics/seismic
imaging effort aimed at applying the author’s optimisation framework to problems of
computational geophysics.

As a side note, apart from its potential application to the regularization of seismic
inversion, numerical modeling of deformation due to changing pore pressure is one
of the key problems of reservoir geomechanics (Zoback, 2010). Reservoir depletion
has been demonstrated to have appreciable effect on stress both inside and outside of
the producing reservoir (Zoback, 2010),(Geertsma, 1973),(Segall, 1992),(Segall et al.,
1994),(Zoback and Zinke, 2002),(Segall and Fitzgerald, 1998). While some simpli-
fying assumptions with regard to reservoir geometry (e.g., an infinitely wide and
thin horizontal layer) yield a simple law for the horizontal stress change with the
pressure decline within the reservoir (Zoback, 2010),(Segall and Fitzgerald, 1998)),
estimating induced stress-field changes around the reservoir requires more elaborate
models of reservoir depletion (Geertsma, 1973),(Segall, 1992). Simple disk-shaped
and radially-symmetric reservoir shapes proved adequate for many simple situations,
but compartmentalization and heterogeneous permeability inside realistic reservoirs
point to a departure of the pore pressure decline from simple axisymmetric patterns
(Zoback, 2010). Compartmentalization with impermeable barriers still allows for
the application of a radially-symmetric pore pressure change law to individual reser-
voir compartments. However, an asymmetric pore pressure drop should be able to
account for the effects of partial permeability or complex spatial geometry. Since
a computationally-efficient technique for modeling and inverting asymmetric reser-
voir depletion patterns is an important by-product of our study, it is hoped that
the computational tools and methods developed for this study will find independent
application to the study of production-induced stressing and deformation.

Figure 1: Reservoir dome. The
effective depth of the reservoir is
3.5km, effective radius ≈ 8km and
width ≈ .35 km. [ER]
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GOVERNING EQUATIONS

We begin by formulating a closed system of four equations that describes a homoge-
neous quasi-static linear poroelastic medium (Segall, 2010):

µ∇2ui +
µ

1− 2ν

∂2uj

∂xi∂xj

= α
∂p

∂xi

− fi = 0, i = 1, 2, 3 (1)

and

Sα
∂p

∂t
− κ

η
∇2p = −α

∂

∂t
(∇ · u)) . (2)

In the above equations ui, i = 1, 2, 3 is a spatially-distributed displacement vec-
tor field, p is the pore pressure change, fi is a differential body-force distribution,
µ, ν, α, κ, η are the shear modulus, Poisson’s ratio, Biot coefficient, permeability and
fluid viscosity, respectively. The storage coefficient Sα is a known function of medium
parameters (Segall, 2010):

Sα =
3α(1− 2ν)(1− αB)

2µB(1 + ν)
, (3)

where B in equation 3 is Skempton’s pore pressure coefficient – the ratio of induced
pore pressure to the mean normal stress for undrained loading conditions. Note
that the subsurface stress is absent from equations 1,2 but can be computed using
the constitutive laws after these equations have been solved. Also note that the
displacement and pore pressure in these equations are relative to a reference state,
not the total values. The equilibrium equation 1 and flow equation 2 are fully coupled
and are obtained from combining the constitutive laws for a poroelastic medium with
quasi-static field equations. The equations are “quasi-static” in the sense that the
stress field is assumed to be in a state of static equilibrium even though changes of
the pore pressure in time induce changes of the stress field. We can think of this as
a “slow-change” asymptotic approximation, both in time and space.

The most “mathematically accurate” way of computing the displacement field
and associated pore pressure change is to solve a boundary-value problem for 1,2
with known data (e.g., known pressure evolution within existing wells, measured
earth displacements or estimated stresses) used as boundary or initial conditions.
However, even in the simplest cases of a homogeneous medium, analytical solutions
of boundary-value problems for equations 1,2 is challenging. Uncoupling equations 1
and 2, where permissible, could result in more tractable problems, both analytically
and numerically. For example, assuming a known pore pressure change, we can solve
equation 1 for the displacement field ui, using α ∂p

∂xi
in the right-hand side as a “body

force” distribution (Geertsma, 1973),(Segall, 1992).

In our approach we use the elastostatic Green’s tensor gk
i (x, y, z, ξ, η, ζ) for the

pure elastic equilibrium equation in the left-hand side of equation 1 to compute the
displacement ui as

ui = −α

∫
V

gk
i

∂p

∂xk

= α

∫
V

∂gk
i (x, y, z, ξ, η, ζ)

∂xk

p(ξ, η, ζ)dξdηdζ, (4)
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assuming fi = 0 (including body forces is trivial). The elastostatic tensor gk
i (x, y, z, ξ, η, ζ)

in equation 4 has the meaning of the displacement along axis i at point (x, y, z) due to
a concentrated force along axis k at point (ξ, η, ζ) (Wang, 2000),(Segall, 2010). From
equation 4 we can see that the divergence of the elastostatic tensor has the meaning
of deformation due to a concentrated dilatational force.

In order to apply equation 4 to practical reservoir models and computation of
surface subsidence, the corresponding Green’s function should be constructed for a
half-space with the free-boundary condition imposed on its bounding plane (Segall,
2010). We use the analytical expression for the Green’s function obtained by Mindlin
(Mindlin, 1936) – see Appendix A for the details. The integral in the right-hand
side of 4 is taken over the reservoir domain and hence singularities corresponding
to (x, y, z) = (ξ, η, ζ) do not appear. However, the terms in non-diagonal tensor
components that contain r2 − z − ζ in the denominator blow up at locations directly
above (or below) the reservoir and must be truncated in a numerical quadrature.
Another important aspect of using an analytical expression for the Green’s function is
that the divergence in the right-hand side of equation 4 can be calculated analytically.
However, in our implementation we compute the divergence using central differences
of the second-order of accuracy.

MODELING DISPLACEMENTS FROM
PORE-PRESSURE DECLINE

We can use operator 4 for forward-modeling the displacement field from a specified
pressure change. Note that operator 4 is a non-stationary convolutional integral op-
erator for a homogeneous medium. The convolution is non-stationary due to the
presence of z + ζ in the elastostatic Green’s tensor. Integration along the horizon-
tal axes can be accelerated by applying the operator in the wavenumber domain.
However, integration along the vertical axis should still be carried out separately for
different values of z, hence the integration kernel is effectively four-dimensional. As-
suming the reservoir to be thin in comparison with its lateral extents, which is always
the case, we can replace the vertical integral with a mean value of the integrand times
the reservoir thickness:

ui(x, y, z) = α

∫
V

h(ξ, η)
∂gk

i (x, y, z, ξ, η, S(ξ, η))

∂xk

p(ξ, η, S(ξ, η))dξdη, (5)

where S(ξ, η) is the middle surface of the reservoir and h(ξ, η) is the reservoir depth.
For a non-flat reservoir, gk

i effectively depends not only on differences x − ξ and
y − η but on integration variables as well. In our implementation we compute 5 as
a full convolutional operator, allowing slowly-varying asymptotics of the solutions by
introducing scaling factors that depend on both (x, y, z) and (ξ, η, ζ).

An implementation of this method is provided by the poroelastic_green.F90

module of the author’s exp_tk Fortran 2003 object-oriented framework described in
Appendix B.
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We test our approach on synthetic data generated for a reservoir model based
on the assumed geometry of the gas reservoir near Lacq, France, described by Segall
et al. (1994). The reservoir is assumed to be anticlinal dome-shaped, with the depth
of the reservoir approximated as

D(ρ) = 3.5− 1.4

(
exp

[(ρ

5

)2
]
− .5

)
, (6)

where ρ is the distance to the center of the reservoir, and all the distances are measured
in km (see Fig 1). The reservoir thickness is estimated to be ≈ .35 km. In the first test
we apply the forward-modeling operator 5 to an axisymmetric synthetic pore pressure
drop similar to the pore pressure change used by Segall et al. (1994) and given by

p(ρ) = 55× exp

[(ρ

8

)4
]
, (7)

(see Fig 2(a)). The pressure in equation 7 and the rest of the paper is measured in
MPa, and ρ is the distance to the center of the reservoir. The result of displacement
modeling using an 81 × 81 reservoir grid and 101 × 101 surface grid is shown on
Fig 2(b). Linear poroelasticity predicts a linear relationship between the maximum
subsidence and the maximum pore pressure decline. Segall et al. (1994) predicts that
the subsidence rate for the axisymmetric model is bracketed between .7 mm/MPa for
the reservoir thickness of .25 km and 1.37 mm/MPa for the thickness of .45 km. The
subsidence rate indicated by Fig 2(b) for the value of the reservoir thickness of .35
km is in a good agreement with that prediction. i
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Figure 2: a) Contour plot of the axisymmetric pore pressure drop given by equation 7.
b) Contour plot of the subsidence above the reservoir of Fig 1 due to the axisymmetric
pore pressure decline of Fig 2(a). [ER]

Next, we apply the modeling operator to the asymmetric synthetic pore pressure
drop given by

p(ρ) = 55× exp

[(
ρ

8(1 + sin φ− π/4)

)4
]
, (8)
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where ρ, φ are the distance and azimuth from an off-centre point (3 km,3 km), with a
steeper decline in pore pressure along the northeast-southwest directions (see Fig 3(a)).
The pressure decline given by equation 8 is not based on any specific real-world ex-
ample but is rather chosen as a somewhat extreme case of an asymmetric pressure
decline pattern mismatching the reservoir geometry. The result of modeling displace-
ments due to the asymmetric pore pressure decline within the reservoir, using the
same reservoir and surface grids as above, is shown on Fig 3(b).
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Figure 3: a) Contour plot of the asymmetric pore pressure drop given by equation 8.
b) Contour plot of the subsidence above the reservoir of Fig 1 due to the asymmetric
pore pressure decline of Fig 3(a). [ER]

The following table summarizes the medium parameters taken from (Segall et al.,
1994) that are used in our tests:

Parameter SI Imperial
ν .25 dimensionless
α .25 dimensionless
µ 23. GPa 3.34 Mpsi

The Biot coefficient α is computed as

α = 1− Kund

Kmin

, (9)

with Kund, Kmin being the undrained bulk modulus and the bulk modulus of rock
mineral grains, respectively (Mavko et al., 2009).

Modeling subsidence using operator 5, we are able to fully account for the asym-
metric nature of the depletion pattern by using the most general form of Green’s
tensor for a homogeneous half-space. In that respect, our approach represents an ad-
vancement of the purely analytical techniques for axisymmetric reservoirs presented
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in (Geertsma, 1973) and (Segall et al., 1994). However, the assumption of homo-
geneity, which is required for our being able to use analytical expressions for the
Green’s tensor, is a serious limitation that may significantly impair the applicability
of our method, especially bearing in mind that our ultimate objective is to estimate
subsurface displacements from observable subsidence. Later in the paper we pro-
pose a computationally efficient extension of our method that is capable of tackling
heterogeneity.

ESTIMATING PORE-PRESSURE DECLINE FROM
DISPLACEMENTS

Denoting the operator in the right-hand side of equation 5 as A, the problem of
recovering the pore pressure decline from specified displacements can be cast as a
least-squares minimisation problem:

‖Ap− u‖L2 → min. (10)

To solve 10 we use the object-oriented Fortran 2003 optimisation framework exp_tk

developed by the author that implements multiple general-purpose optimisation meth-
ods. The implementation is fully decoupled from underlying model and data struc-
tures and can be used in a variety of applications. The tools described in Appendix B
implement forward modeling and inversion, with the latter performed by applying a
Krylov solver (Trefethen and Bau, 1997),(Bjork, 1996) with a user-specified number
of iterations.
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Figure 4: a) Axisymmetric pore pressure decline inverted from the forward-modelled
subsidence of Fig 2(b) on a sparse 11× 11 grid after 4 solver iterations. b) Contour
plot of the inverted axisymmetric pore pressure of Fig 4(a). [ER]

We test the inversion code first by inverting the previously modelled displacement
for the axisymmetric and asymmetric pore pressure decline patterns of of Fig 2(a) and
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3(a). Fig 4(a) and Fig 4(b) show the result for the axisymmetric pore pressure decline
inverted on a sparse 11 × 11 grid in 4 iterations. We employ a multigrid approach
(Iserles, 2008) where the inversion result obtained on a sparser grid is supplied as an
initial approximation to the inversion on a denser grid. The inversion result for the
11× 11 grid was supplied as an initial approximation to the pressure decline for the
inversion on the denser 81 × 81 grid, and the resulting inverted axisymmetric pore
pressure decline after 2 more iterations is shown on Fig 5(a) and Fig 5(b).
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Figure 5: a) Axisymmetric pore pressure decline inverted from the forward-modelled
subsidence of Fig 2(b) on a denser 81 × 81 grid after 2 more solver iterations (total
6). b) Contour plot of the inverted axisymmetric pore pressure of Fig 5(a). [ER]

We have run a similar test for the asymmetric pore pressure decline of Fig 3(a)
and equation 8. The result for the sparse grid and 5 iterations is shown on Fig 6(a)
and Fig 6(b). The result of 2 more solver iterations on the denser grid is shown on
Fig 7(a) and Fig 7(b).

Comparison of Fig 5(b) with Fig 2(a) and of Fig 7(b) with Fig 3(a) indicates a
good agreement of the inverted pore pressure decline with the synthetics, violated
mostly by the distortions near reservoir edges. Due to the least-squares problem
being ill-conditioned for large data and model spaces, convergence on denser reservoir
grids cannot be achieved without a good initial approximation. This issue has been
successfully resolved by using the multigrid approach.

Note that although this test confirms the correct operation of our forward/inverse
operator pair, by applying our inverse solver to the data modelled using the underlying
forward-modeling operator we commit an inversion crime. True applicability of our
method will be demonstrated in the next section where we apply it to a synthetic
extrapolated from real subsidence data. While we are able to recover asymmetric
pore pressure decline from as little data as can be contained in just one component of
the measured displacement field, it is important to understand the sensitivity of our
result to the uncertainty of the reservoir model parameters. Using operator 5 requires
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Figure 6: a) Asymmetric pore pressure decline inverted from the forward-modelled
subsidence of Fig 3(b) on a sparse 11× 11 grid after 5 solver iterations. b) Contour
plot of the inverted asymmetric pore pressure of Fig 6(a). [ER]
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Figure 7: a) Asymmetric pore pressure decline inverted from the forward-modelled
subsidence of Fig 3(b) on a denser 81 × 81 grid after 2 more solver iterations (total
7). b) Contour plot of the inverted asymmetric pore pressure of Fig 7(a). [ER]
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prior knowledge of medium and reservoir parameters, and using Mindlin’s analytical
expressions for elastostatic Green’s tensor assumes homogeneity of the medium. In the
numerical implementation of our method we effectively depart from the assumption
of homogeneity by assuming instead local homogeneity or slow relative spatial change
of medium parameters on the scales of reservoir length and depth. More precisely,
our computational framework allows recasting operator 5 as

u(x, y, z) = m(x, y, z)F [r(ξ, η, ζ)p(ξ, η, ζ)] (11)

where F is a homogeneous modeling operator, and m(x, y, z) is a medium hetero-
geneity factor that, in the simplest case of slow-variability asymptotics (Maharramov,
2011),(Maslov, 1990),(Danilov et al., 1995), is equal to

m(x, y, z) =
1

µ(x, y, z)(1− ν(x, y, z))
, (12)

where the overscore in equation 12 represents some average value of the corresponding
medium parameter. The scaler r in the right-hand side of equation 11 is related to the
heterogeneity of reservoir parameters, most notably the Biot coefficient. Equation 11
should include additional terms containing spatial derivatives of the Biot coefficient,
but we ignore those terms under the assumption of mild spatial heterogeneity. Equa-
tion 11 suggests the following procedure for assessing the impact of the uncertainty in
the values of the elastic moduli outside of the reservoir, assuming that r in equation
11 is 1 (i.e., reservoir parameters are integrated into F ). The uncertainty of the pore
pressure change due to a concentrated displacement δ(x− x0, y − y0, z − z0) (along a
fixed coordinate axis) is given by

∆p(ξ, η, ζ) = F−1 [δ(x, y, z)]×∆
1

m(x0, y0, z0)
, (13)

where the uncertainty ∆ 1
m(x0,y0,z0)

is computed from the associated uncertainties of

the constituent medium parameters (e.g., moduli). Easy computation of the modeling
operator and its inverse and the applicability of a multiscale/multigrid approach, as
demonstrated in this paper, allow for a straightforward application of equation 13
to either estimating uncertainty or computing the mathematical expectation of the
inverted pore pressure change.

APPLICATION TO EXTRAPOLATED LACQ
SUBSIDENCE

In this section we describe the result of applying our inversion technique to estimating
pore pressure decline from the measurements of subsidence for the reservoir described
in Segall et al. (1994). Note that the subsidence data in (Segall et al., 1994) was one-
dimensional, along the northwest-southeast line, so we extrapolated the data smoothly
between the opposite azimuths (see Fig 8(a) and Fig 8(b)).
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Figure 8: a) Subsidence data from the Lacq reservoir, extrapolated onto a plane
from northwest-southeast profile described in (Segall et al., 1994). b) Contour plot
of Fig 8(a). [ER]

Since only the vertical displacement at the surface is known to us, we use the option
of the inversion tool (see Appendix B) that constrains the modelled displacement
components to just the vertical component. The result of running 2 iterations of
our inversion algorithm on an 11 × 11 grid is shown on Fig 9(a),9(b). Results of
the subsequent refinement in 2 more iterations over the 81 × 81 grid is shown on
Fig 10(a),10(b).
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Figure 9: a) Pore pressure decline inverted from the subsidence of Fig 8(b) on a sparse
11 × 11 grid after 2 solver iterations. b) Contour plot of the inverted pore pressure
decline of Fig 9(a). [ER]

And finally, and most importantly, the symmetrized part of the reconstructed pore
pressure drop is in excellent agreement with the input parameters of the symmetric
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Figure 10: a) Pore pressure decline inverted from the subsidence of Fig 8(b) on a
denser 81 × 81 grid after 2 more solver iterations (total 4). b) Contour plot of the
inverted pore pressure decline of Fig 10(a). [ER]

pore pressure profile used in (Segall et al., 1994) to (approximately) model the same
subsidence data but using an axisymmetric pressure decline model. In particular,
the peak pore pressure drop of 55 MPa at the end of the study period has been
reconstructed precisely.

HETEROGENEOUS MODELS

Although the asymptotic technique discussed in an earlier section addresses to some
extent the issue of inhomogeneous models, it is inherently limited to moderate hetero-
geneity. However, practical applications of this method would require a more accurate
handling of heterogeneity. Because layered models are of particularly high importance
due to their commonality, we first consider modeling displacements for a vertically
heterogeneous and horizontally slowly-varying medium. Rather than trying to solve a
heterogeneous analogue of system 1 and 2, we will assume that one or all components
of the displacement at a fixed depth z = zmax immediately above the reservoir are
known a priori. For example, we may use operator 5 to model displacements near the
reservoir where the effect of the spatial heterogeneity of elastic parameters is limited.
With displacements at z = zmax and free-surface boundary conditions at z = 0, the
problem of modeling subsurface displacements is reduced to solving a boundary-value
problem for the elastostatic system:

µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+

2µν

1− 2ν

∂uk

∂xk

δij =σij,

∂σij

∂xj

=0, (14)

SEP–147



Maharramov 14 Reservoir depletion with applications

where indices run from 1 to 3, σij denote the stress tensor components, summation
is carried out on repeating indices and body-force distribution is zero. The boundary
conditions used with system 14 are the following:(

∂ui

∂x3

+
∂u3

∂xi

)
+

2ν

1− 2ν

∂uk

∂xk

δi3|z=z0 =0,

ui(x, y, zR) =si(x, y), (15)

where si(x, y), i = 1, 2, 3 is a known displacement field at a fixed depth. Although sys-
tem 14 is comprized of purely elastostatic equations, it allows us to model fluid-to-solid
coupling via the boundary condition at z = zR that can be approximately computed
using operator 5. For a laterally-homogeneous medium – or under the assumption
of slow lateral variability and pseudo-differential operator ordering, (Maslov, 1976) –
equations 14 can be Fourier-transformed in x1, x2, and the resulting system discretized
in depth:

v1(z + ∆z)− v1(z −∆z)

2∆z
=v4(z)

v2(z + ∆z)− v2(z −∆z)

2∆z
=v5(z)

v3(z + ∆z)− v3(z −∆z)

2∆z
=v6(z)

µ(z + ∆z)v4(z + ∆z)− µ(z −∆z)v4(z −∆z)

2∆z
=

−(k2
x + k2

y +
k2

x

1− 2ν(z)
)µ(z)v1(z)− kxky

1− 2ν(z)
µ(z)v2(z) +

ikx

1− 2ν
µ(z)v6(z)

µ(z + ∆z)v5(z + ∆z)− µ(z −∆z)v5(z −∆z)

2∆z
=

−(k2
x + k2

y +
k2

y

1− 2ν(z)
)v2(z)− kxky

1− 2ν(z)
v1(z) +

iky

1− 2ν
v6(z)

µ(z + ∆z)v6(z + ∆z)− µ(z −∆z)v6(z −∆z)

2∆z
=

1

1 + 1
1−2ν(z)

[
−(k2

x + k2
y)v3(z) +

ikx

1− 2ν(z)
v4(z) +

iky

1− 2ν(z)
v5(z)

]
, (16)

where kx, ky are the horizontal wavenumbers and ∆z is a depth step, v1,2,3 are
Fourier-transforms of the three displacement components u1,2,3 and v4,5,6 are their
z-derivatives. At the boundaries z = 0 and z = zR the central differences should
be replaced with backward and forward differences (Iserles, 2008), and the bound-
ary conditions 15 Fourier-transformed in a similar manner. In combination with the
Fourier-transformed boundary conditions the above system is reduced to indepen-
dent 6Nz × 6Nz linear systems for finding vi(∆zj), i = 1, . . . , 6, j = 1, . . . , Nz for each
wavenumber pair kx, ky, where Nz is the number of depth steps.

Solution of the above system is efficiently parallelized, with individual 6Nz × 6Nz

sparse systems solved independently. Furthermore, each of the systems is banded
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Figure 11: Contour plot of the dis-
placements modelled from the ax-
isymmetric pore pressure decline
of Fig 2(a). [ER]
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with the bandwidth of 13 elements and therefore can be solved in a linear time and
memory O(Nz) (Trefethen and Bau, 1997).

Fig 11 and Fig 12 show the results of modeling surface subsidence from the ax-
isymmetric and asymmetric pore pressure decline synthetics of Fig 2(a) and Fig 3(a).
Here Nz = 20 with a 100 m depth step, the displacement field at the depth of 2 km

was computed using operator 5. Although the above approach allows both elastic
medium parameters (e.g., shear modulus µ and Poisson’s ratio ν) to be vertically
heterogeneous, the latter, as the ratio of the axial and transverse strains, is usu-
ally less affected by compaction, and hence we left it constant at .25. However, the
depth-dependent shear modulus is given by the formula

µ(z) =
23GPa

1. + (zR − z)/zR

. (17)

Comparison of Fig 11 and Fig 12 with the results of Fig 2(b) and Fig 3(b) obtained
above using a homogeneous model indicate larger subsidence in the heterogenous case
that is consistent with a greater compliance of the overburden as determined by the
heterogeneous shear modulus of equation 17.

Although depth-varying models are common in geomechanical applications, and
the diffusive nature of production-induced deformation favors slowly-varying models,
there exist practical applications where strong lateral heterogeneity should be taken
into account (for example, in subsalt regions). The widely accepted approach to
tackling such problems consists of application of the finite elements method (Iserles,
2008) to the coupled poroelastic system (Kosloff et al., 1980). While finite elements
can handle arbitrary spatial heterogeneity, the main disadvantage of this approach
is the necessity to solve a potentially very large system of linear equations with very
sparse but generally unstructured matrix.

A possible extension of our approach for tackling arbitrary heterogeneity could be
summarized as follows. If system 14 can be factorized

∇ · µ(x1, x2, x3)

[(
∂ui

∂xj

+
∂uj

∂xi

)
+

2ν

1− 2ν

∂uk

∂xk

δij

]
=(

c1
∂

∂x3

+ P1(
∂

∂x1

,
∂

∂x2

)

)
×(

c2
∂

∂x3

+ P2(
∂

∂x1

,
∂

∂x2

)

)
u, (18)

where P1 and P2 are some pseudo-differential operators and c1, c2 are some functions,
then given the boundary conditions 15, the boundary-value problem 14,15 can be
solved by solving

(
c1

∂

∂x3

+ P1(
∂

∂x1

,
∂

∂x2

)

)
U = 0, (19)
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upward, starting from the initial condition at depth z = zR, followed by solving(
c2

∂

∂x3

+ P2(
∂

∂x1

,
∂

∂x2

)

)
u = U, (20)

downward, starting from the free-surface boundary condition on the surface. Some
factorisations 18 are trivial, as when the operator 20 maps the displacement field to
the stress field, we effectively recover our original elastostatic system and obtain the
well-known depth-extrapolation method for 6 variables (Segall, 2010). However, find-
ing a factorisation that requires less than 6 variables may potentially lead to a method
where the eigenmodes that correspond to exponentially increasing and decreasing so-
lutions decouple in up and down-going extrapolation operators similar to the one-way
wave equation (Claerbout, 2011). However, the author’s attempts to construct lin-
ear operator factorisations 18 involving operators mapping only 3-component vector
functions so far resulted in rank-deficient systems. The three displacement compo-
nents may have to be complemented with an additional variable in order to achieve a
pseudo-differential operator factorisation. The benefits of finding such factorisations
and stable methods of solving factorized equations would extend beyond the solution
of the uncoupled poroelastostatic system.

PREDICTING VELOCITY AND DENSITY CHANGES
FROM DEFORMATION

Keeping in sight our ultimate objective of using geomechanical observables to regu-
larize seismic inversion, we now turn to the question of estimating change in velocity
and density due to production-induced deformation. At this point we assume that we
have inverted the pore pressure decline from known subsidence and can forward-model
spatial displacements in the overburden due to the pore pressure change. Given a
modelled displacement field u123, we can compute the strain

εij =

(
∂ui

∂xj

+
∂uj

∂xi

)
(21)

and compute density change as

∆ρ(x1, x2, x3) ≈ −ρ(x1, x2, x3)εii, i = 1, . . . , 3. (22)

Given the estimated density change 22 and strain 21, we can proceed to estimating the
induced change in seismic velocities in two different but potentially complementary
ways. The first approach would be to use empirical velocity-density relations (Mavko
et al., 2009),(Gardner et al., 1974). However, polynomial and power-law empirical
forms of Gardner’s relations may produce significant errors due to the presence of
cracks or flaws in the rock. While useful as an average over many rock types, the
applicability of such empirical relations to estimating minute changes in pressure and
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shear wave velocities at this point is moot. A more promising possibility is to use a
linear empirical relation between the pressure-wave velocity and path-length change

dVP

VP

= −Rε33, (23)

where VP is the pressure wave velocity (for normal-incidence pressure waves). While
the dimensionless coefficient R in equation 23 is generally unknown, and estimates
of R from empirical relations for different rock type suffer from the same kind of
uncertainties as the velocity-density relations, a reasonable estimate can be obtained
from observable time-shifts using the relation

dt

t
= (1 + R)ε33 (24)

(Hatchell and Bourne, 2005). The time-shifts can be extracted from time-lapse seismic
data using a cross-correlation technique similar to the one used by Hale (2009) and
Ayeni (2011). We propose to use equation 24 to estimate the coefficient R where the
time-shifts can be resolved, and then use the obtained value to estimate the velocity
change (and time-shifts) from equations 23 and 24 where the time-lapse data has
illumination gaps or is noisy.

CONCLUSION AND PERSPECTIVES

We have developed a computationally efficient method for modeling deformation from
pore pressure decline and for inverting pore-pressure change from observable defor-
mations/subsidence. The method has been implemented for both slowly-varying and
layered media and tested on synthetics based on real-world examples of production-
induced subsidence. We propose an approach to using observable deformations for
estimating velocity change based on empirical rock-property relations.

While all the main building blocks required for regularizing time-lapse inversion
with subsidence-based constrains are in place, an integrated seismic/geomechanical
data set is required to validate our approach. While the deformation modeling and
pore pressure inversion components can be tested on synthetic data, testing the reg-
ularization approach requires real data. Time-lapse synthetics would be generated
using the same kind of techniques for modeling production-induced velocity change
as we intend to use for the regularization, hence purely synthetic tests cannot com-
pletely validate our approach.
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APPENDIX A

The elastostatic Green’s tensor gk
i (x, y, z, ξ, η, ζ) has the meaning of the displacement

along axis i at point (x, y, z) due to a concentrated force along axis k at point (ξ, η, ζ).
The analytical expression for the components of the Green’s tensor in the elastic half-
space with a free-surface boundary condition are given by the following equations
(Mindlin, 1936):

g1
1 =w

(
3− 4ν

r1

+
1

r2

+
(x− ξ)

r3
1

+
(3− 4ν)(x− ξ)2

r3
2

)
+

+w

(
2(r2

2 − 3(x− ξ)2)zζ

r5
2

+
4(1− ν)(1− 2ν)(r2

2 − (x− ξ)2 − r2(z + ζ))

r2(r2 − z − ζ)2

)
g1
2 =(x− ξ)(y − η)w

(
1

r3
1

+
3− 4ν

r3
2

− 6zζ

r5
2

− 4(1− ν)(1− 2ν)

r2(r2 − z − ζ)2

)
g1
3 =(x− ξ)w

(
z − ζ

r3
1

+
(3− 4ν)(z − ζ)

r3
2

− 4(1− ν)(1− 2ν)

r2(r2 − z − ζ)
− 6zζ(z + ζ)

r5
2

)
g2
1 =g1

2

g2
2 =w

(
3− 4ν

r1

+
1

r2

+
(y − η)

r3
1

+
(3− 4ν)(y − η)2

r3
2

)
+

+w

(
2(r2

2 − 3(y − η)2)zζ

r5
2

+
4(1− ν)(1− 2ν)(r2

2 − (y − η)2 − r2(z + ζ))

r2(r2 − z − ζ)2

)
g2
3 =(y − η)w

(
z − ζ

r3
1

+
(3− 4ν)(z − ζ)

r3
2

− 4(1− ν)(1− 2ν)

r2(r2 − z − ζ)
− 6zζ(z + ζ)

r5
2

)

g3
1 =(x− ξ)w

(
z − ζ

r3
1

+
(3− 4ν)(z − ζ)

r3
2

+
4(1− ν)(1− 2ν)

r2(r2 − z − ζ)
+

6zζ(z + ζ)

r5
2

)
g3
2 =(y − η)w

(
z − ζ

r3
1

+
(3− 4ν)(z − ζ)

r3
2

+
4(1− ν)(1− 2ν)

r2(r2 − z − ζ)
+

6zζ(z + ζ)

r5
2

)
g3
3 =w

(
3− 4ν

r1

+
5− 12ν + 8ν2

r2

+
(z − ζ)2

r3
1

+
(3− 4ν)(z + ζ)2 − 2zζ

r3
2

+
6zζ(z + ζ)2

r5
2

)

w =
1

16πµ(1− ν)

r1 =
√

(x− ξ)2 + (y − η)2 + (z − ζ)2

r2 =
√

(x− ξ)2 + (y − η)2 + (z + ζ)2

APPENDIX B

The methods of this paper have been implemented in the author’s Fortran 2003
object-oriented framework exp tk. A parallelized forward-modeling and inversion
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utility PEMODEL for modeling and inverting 3D displacements has been implemented
by the author as part of this study, and as a joint exercise with applying the author’s
new optimisation framework to problems of geophysical imaging and computational
geophysics (Maharramov, 2011). PEMODEL can be found at

EXP_TK_INSTALL_DIR/exp_tk_0.5/src/tests/poroelastic_deform

Source file comments contain a description of the command-line options used with
the utility. Fortran F003 module poroelastic_green.F90 implements the poroelas-
tostatic modeling operator and its adjoint. Solution of problem 14,15 is implemented
in the forward-modeling utility ZPEMODEL. ZPEMODEL can be found at

EXP_TK_INSTALL_DIR/exp_tk_0.5/src/tests/depth

Module poroelastic_depth.F90 implements the corresponding modeling operator.
Banded systems 16 are solved using LAPACK95 computational routine gbtrs (Barker
et al., 2001) following optional equilibration to improve the stability for very sharp
vertical contrasts of elastic moduli.

The framework has no external dependencies except for Intel Fortran compiler,
version 12.0 or higher and Intel Math Kernel Library version 9.0 or higher. The plots
of this report have been generated using Matlab from the binaries and headers output
by PEMODEL and ZPEMODEL.
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