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ABSTRACT

We presents a technique for imaging both primaries and multiples using linearized
inversion. When used with a suitable migration velocity model, linearized full-
wave inversion (LFWI) makes use of the multiple energy as signal while removing
the crosstalk in the image. By using the two-way propagator in both modeling
and migration, we can image a class of multiply scattered events. Such events
can scatter off sharp-interfaces in the migration velocity many times but only
interact with the (reflectivity) model once. We demonstrate the concept and
methodology in 2D with a synthetic Sigsbee2B model.

INTRODUCTION

Traditionally, seismic imaging techniques only account for the primary reflections. In
the presence of strong reflectors (e.g.. air-water interface, hard water bottom or salt
bodies), multiples can significantly degrade the interpretation of images. Therefore,
much effort has been devoted to developing multiple suppression techniques in the
past few decades.

The well-known multiple-removal tools such as deconvolution (in time, frequency,
and slant-stack domains), Radon-transform demultiple and frequency-wavenumber
(f-k) demultiple are limited unless the geology of the subsurface is simple. In the
presence of complex geology, multiples are not totally separable from primaries by
criteria such as periodicity, moveout velocity, and spectra. In model-based technique,
which predict multiples with wavefield extrapolation (Morley, 1982; Berryhill and
Kim, 1986; Wiggins, 1988; Lu et al., 1999), the accuracy of the predicted multiples
strongly depends on the model used. Surface-related multiple elimination (SRME), a
convolution-based technique (Riley and Claerbout, 1976; Tsai, 1985; Verschuur et al.,
1992), is more generally applicable. But this method requires an overlap of source
and receiver locations and cannot suppress internal multiples. Despite substantial
progress in multiple elimination, complete removal of surface-related and internal
multiples without distorting the primary signals remains a challenge.

One motivation to make use of multiples is that they can provide subsurface infor-
mation not found in primaries. For a given pair of source and receiver, the sub-surface
reflection point of a multiple is located differently than that of a primary. For a multi-
shot seismic survey, migrating the multiples translates to higher fold for regions well
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Figure 1: The ray-path for a (a) singly scattered event, (b) a doubly scattered event
and (c,d) triply scattered events. Single circles (in purple) indicate scattering off
the migration velocity while double circle (in green) indicate scattering off the model

m(x). [NR]

imaged by the primaries and more subsurface illumination for regions not covered by
the primaries. In addition, despite the advance of multiple suppression techniques,
complete removal of all multiples from the primaries still remains a challenge. Migrat-
ing such signals would result in crosstalk artifacts. Finally, multiples are even more
sensitive to velocity information than the primaries, because they travel a longer path
in the subsurface. Multiple signals can potentially be used as part of an iterative ve-
locity building tool. Reiter et al. (1991) made an early attempt to capitalize on the
potential of multiples by formulating a prestack Kirchhoff time-migration method
that includes the first-order water-layer reverberation in the migration operator. Be-
cause ocean bottom cable data could not be decomposed into up- and down-going

components at the time, such work was limited to deep water datasets.
When surface-related multiples have been explicitly separated from the primary
reflections (e.g., using SRME), they can be imaged independently from the primary
reflections by using shot-profile (Guitton, 2002) or source-receiver (Shan, 2003) depth
migration. Muijs et al. (2007) image primary and free-surface multiples for OBS
data by decomposing data into up-going and down-going constituents, followed by
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downward extrapolation and a 2D deconvolution-based imaging condition. All these
techniques image the surface-related multiples by transforming the primary signal
into a pseudo-source for migration with the multiple signals using the one-way wave
equation. Recently, Liu et al. (2011) extend the technique to the two-way wave
equation. While these techniques are computationally efficient, their images contain
crosstalk artifacts caused by the interference of wavefields not associated with the
same subsurface reflector. A robust technique is needed to get the benefit of multiple
imaging without compromising image quality. We propose using linearized full-wave
inversion (LFWI) to use multiple energy as signal while removing the crosstalk in the
image.

In the next section, we discuss how to image with multiples with LEWI for the
streamer geometry and the OBN geometry. We then show the results of our inversion
scheme from a layered model and a 2D Sigsbee2B model for the OBN geometry.

THEORY

LFWI poses the imaging problem as an inversion problem by linearizing the wave-
equation with respect to our model (m(x)). We define our model to be a weighted
difference between the migration slowness (s,(x)) and the true slowness (s(x)):

m(x) = (s(x) = 50(%))s0(X) (1)

Assuming that the earth behaves as a constant-density acoustic isotropic medium, we
linearize the wave equation and apply the first-order Born approximation to get the
following forward modeling equation:

A" (%, %, w) = Y W fi(w) G (%, %, w)m(x)G(x, X, ) (2)

where d™°? represents the forward modeled data, w is the temporal frequency, m(x)

is a function of the image point x, fs(w) is the source waveform, and G(xs,x) is the
Green’s function of the two-way acoustic constant-density wave equation over the
migration slowness. Note that G is actually w-dependent and is a function of s,(x)
only. It is important to point out that the adjoint of the forward-modeling operator
is the migration operator:

m,,,(x) = Z WA (w)G* (%, X, w) G (X, X, ) d (X, X, W) (3)

The inversion problem is defined as minimizing the least-squares difference be-
tween the synthetic and the recorded data:

S(m) = [|Lm — d|f* = [|d"* - d| (4)
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where L is the forward-modeling operator that corresponds to equation 2.

At first glance, equation 2 seems to only generate singly scattered events (e.g.
Figure 1 a). To clarify, the term scattering includes both diffraction and reflection.
However, if we construct our propagator (G(x,y)) using the two-way wave equation,
equation 2 can actually generate multiply scattered events. In figure 1 b, the ray
path reflects off a salt flank and then the horizontal reflector. If the sharp salt-flank
boundary already exists in the migration velocity, then the scattering off the salt flank
is automatically generated by the propagator (Green’s function). Figure 1 (¢) and
(d) shows two triply scattered events. Single circles (in purple) show scattering off
the migration velocity, while double circles (in green) show scattering off the model
m(x).

Multiple imaging with towed streamer

For a towed-streamer geometry, one only needs to introduce (i) the free-surface and (ii)
sharp boundaries into the migration velocity s,(x) to begin modeling both primaries
and multiples. If the sea-bottom has a sharp interface in s,(x), then equation 2 can
model all surface-related multiples as shown in Figure 2 (a). The same is true for
ocean-bottom data, which we will discuss next.

Multiple imaging with ocean-bottom node

In an ocean-bottom survey, the signal (Figure 3) can be classified into up-going (in
red) and down-going signal (in grey) with respect to the receivers. The lowest order
of the up-going signal is the primary reflection. The lowest order of the down-going
signal is the direct-arrival. Since the direct-arrival does not carry any information
about the subsurface, the next order of down-going event, the mirror signal, is used
for conventional migration of down-going OBN data.

We will referred the mirror signal as the down-going primary from now on. This
is not to be confused with the up-going primary. One can apply LEFWI on the ocean-
bottom hydrophone recording without decomposing the up- and down-going signal.
However, using only the hydrophone without up-down decomposition for imaging is
less favorable due to the following reasons:

1. The migration image contains more crosstalk artifacts due to the migration of
the up- and down-going modes. Although inversion can, in theory, push out
the crosstalk artifacts, it requires more iterations.

2. The energy in the up-going primary is stronger than that in the down-going
primary. If the up-down modes are not separated in the data space, it is difficult
for the inversion to apply data weighting to balance the contribution from the
two modes.
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Figure 2: (a) Ray paths for the primary, the first-order, and the second-order multiples
for the towed-streamer acquisition geometry. (b) Ray paths for the down-going mir-
ror and the down-going first-order multiples for ocean-bottom-node acquisition. (c)
Ray paths for the down-going second-order multiples for ocean-bottom-node acquisi-
tion. Purple-solid circles show scattering off either the free-surface or the background
velocity model. Green-double circles show scattering off the reflectivity model. [NR]
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Figure 3: For a given pair of source and receiver, the sub-surface reflection point of a
multiple event is different than that of a primary event. [NR]

3. Up-down decomposition by PZ summation can alleviate loss signal at the notch
frequencies. A benefit that is loss if imaging only with the hydrophone.

In this study, we focus on imaging different orders of down-going signals as shown
in Figure 2 b and c. To simulate the final down-going leg of the wave path, an areal
shot is pre-calculated by first injecting the source wavelet at the receiver location,
letting the wavefield propagate, and then capturing the signal at the sea surface
(Figure 4). To generate the incident wavefield, the saved areal shot is re-injected at
the sea-surface with a -1 factor. The re-injected signal is then allowed to travel back
and forth in the water column using a reflecting top boundary and a well-defined
velocity contrast at the sea-bottom. This algorithm can correctly simulate the ray
path traversed by the down-going primary and higher-order multiples.

The focus of this report is on imaging the higher-order multiples for OBN data
with the method illustrated in Figure 4. In particular, we compare the image output
between migration with the down-going primary and LEWI with both the down-going
primary and the down-going multiples.

SYNTHETIC EXAMPLE

We apply LEWI on two models. The first one is a simple one-layered model that
allows us to keep track of different kinds of migration artifacts. The second model is
the more complicated Sigsbee2B model.
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Figure 4: Illustration on the migration of the second-order signal. For the incident
wavefield, an areal shot is pre-calculated to simulate the final down-going leg of the
wave path. To generate the incident wavefield, the saved areal shot is re-injected at
the sea-surface with a -1 factor. The re-injected signal is then allowed to travel back
and forth in the water column using a reflecting top boundary and a well-defined
velocity contrast at the sea-bottom. [NR]

One-layered model

We construct a one-layered model (Figure 5 a) with ocean-bottom geometry. The
only sharp interface in the migration velocity is the seabed. Figure 5 b shows the
synthetic data. The labels d;, dy and ds correspond to the first, second, and third
order events as shown in figure 2 b and ¢. Note that we used equation 2 to generate the
synthetic data. Hence, internal multiples are absent. Figure 5 ¢ shows the migration
image 1,,;,. The migration image is made up of signal mg;, and crosstalk artifacts
Matak- In the figure, the label A indicates spurious reflectors generated by migrating
the primary signal (d;) as if it were a multiple. B is the correct reflector in the image.
C' is an artifact generated by migrating the multiple signal (dy or ds) as if it were a
primary reflection. In equation form, they are denoted as follows:

Mimig = Msignal + [Mataik] = Mp + [Ma + mc] (5)
mya = L'od; +L'sd; +L'yd; + ...
mp = L'1dy +L'ody +L'sds + ...
me = L'ydy +L'idg+ Lisds + ...

where m,, mp,and m¢ correspond to the parts of the image labeled with A, B,
and C in Figure 5 ¢. L'y, L'y, and L5 are migration operators that correspond to
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Figure 5: (a) Original one layered model, (b) synthetic data, (c) migration image and
(d) inversion image. [CR]

different orders of reflection events. Figure 5 d shows the inversion result. Notice
that the artifacts are removed from the image. In conventional imaging, if there were
residual multiple energy in the data, then artifacts of type C' would show up in the
image. Treating those as real signal would negatively affect the interpretation of the
sub-surface.

Sigsbee2B model

We apply LFWI to the Sigsbee2B model with the ocean-bottom geometry. Figure
7 shows the migration velocity and the reflectivity model used for this study. There
are two interfaces in the migration velocity. One comes from the salt and the other
comes from the basement reflector. These sharp interfaces along with the free surface
boundary condition will generate the multiples. We first generate the down-going
primary only data by applying the conventional mirror-imaging forward modeling
operator. This is done by positioning the nodes at the mirror point across the sea-
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Figure 6: (a) The ray-path of a mirror signal. (b) The raypath of the same signal
in mirror imaging. The apparent position of the receiver is not at twicce the ocean
depth above the sea bed. This assumes the sea surface is a perfect reflector. Note
that the top boundary is absorbing. [NR]

surface as shown in Figure 6. We then add 20 % of the down-going multiple energy
to the down-going primary only data as shown in Figure 8. This is to simulate the
case when multiple-elimination techniques cannot completely remove the multiples.
We will refer to this synthetic simply as the noisy primary data. Figure 8 (b) shows
the synthetic that contains first- and higher-order reflections. We will refer to this as
the primary-multiple data.

Figure 9 shows the result of applying migration and linearized inversion to the
data. Panel (a) is the conventional image in which we assume a primary-only mi-
gration operator on the primary data. The red arrow indicates the artifacts in the
migration image that correspond to noise included with the primary. Panel (b) is
the linearized inversion result with the primary-only operator. Note the substan-
tial improvement between migration and inversion. It has been shown (Wong et al.,
2011)that linearized inversion can enhance the resolution of the image, suppress the
migration artifacts, and increase the relative amplitude of true reflectors. Next, panel
(c) shows the migration result achieved by applying a primary-multiple migration op-
erator to the primary-multiple data. There are many crosstalk artifacts in this image.
Without addressing the crosstalk, it is difficult to argue that panel (c) is better than
panel (a). Panel (d) is the linearized full-wave inversion (LFWI) result. The annota-
tion indicates that LEWI can properly remove the crosstalk artifacts.

In terms of convergence, since this is a classical inverse crime study, our objective
function decreases to two percent of its initial value after 40 iterations.

SEP-1/7



Wong et al. 10 Linearized full-wave inversion

o
a8
Bo

>

o

=3

S

1.6 1.8 2 22 24 126 28 3 32 34
velocity (km/s)

N1
N
£¢]

* =

o

o

o

0 2000 4000 6000 8000 10000
x(m)

Figure 7: (a) Migration velocity model and (b) original reflectivity model. [ER]

DISCUSSION

Note that this technique does not migrate all orders of multiples. It only migrates
multiples with a single scattering off the model m(x) and other scattering off the
sharp boundary in the migration velocity model. Considering that multiples with
high amplitude in the data are often generated by sub-surface interfaces of high
impedance contrast, this technique can account for most of the significant multiples
in the data.

Our method is model-based. One obvious consideration is the accuracy of the
migration velocity. A conservative way of applying LEWI would be to put in sharp
interfaces that are easy to estimate (e.g. the free-surface, sea-bottom, and top-salt).
However, what happens if there is a mis-positioned salt flank in the migration veloc-
ity? This may open an avenue for velocity estimation. As an imaging tool, LFWI
works as well as other model-based multiple-prediction-subtraction methods.

We recommend applying LEWI for surveys where multiple removal is an issue. An
appropriate field study for this method would be a shallow-water dataset with a deep
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Figure 8: (a) The synthetic primary (lowest-order) data with 20 % multiple energy
(the noisy primary data). (b) The primary and multiples synthetic data (the primary-
multiple data). [CR]

target zone. In this case, each order of multiples overlaps with the previous order,
and the conventional multiple-prediction-subtraction techniques might not deliver.

CONCLUSION

We demonstrated a method for imaging both primaries and multiples using linearized
full-wave inversion (LFWI). LEWI not only increases the sub-surface illumination by
using the multiple energy as signal, but also addresses the issue of crosstalk in the
image. We demonstrate the concept and methodology with a 2D layered model and
the Sigsbee2B model.
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Figure 9: (a) Migration with the noisy primary data, (b) inversion with the noisy
primary data, (c¢) migration with the primary-multiple data, (d) inversion with the
primary-multiple data, (e) reflectivity model, and (f) velocity model. [CR]
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