
Polarity preserving decon in “N log N” time

Jon Claerbout

ABSTRACT

A slight modification to Fourier spectral factorization enables deconvolution to
preserve and enhance seismogram polarities. It spikes the center lobe of the
Ricker wavelet. It works by tapering at small lags the antisymmetric part of the
time-domain representation of the log spectrum.

INTRODUCTION

On a microscopic scale, the arrival of seismic events is always emergent, consequently
use of strict causality in mathematical analysis often leads to disappointing results.
Here we see how a slight modification to Fourier spectral factorization allowing slight
noncausality (half period) easily handles the Ricker wavelet, a commonly observed
emergent waveform.

Conflicting goals

Two goals of seismogram source waveform estimation conflict. They are:

1. Preserve and clearly exhibit the polarity of seismic reflections.

2. Estimate and use for data processing a source waveform that is causal, namely,
the response vanishes before the excitation.

When we honor one, we find trouble with the other. This conflict will be defined and
resolved here.

Prevalence of Ricker wavelet

The conflict is most directly seen and addressed in the specific case of the Ricker
wavelet. It is generally seen on the water bottom and on any strong reflector such as
the top of salt and often the bottom of salt. The Ricker wavelet obscures recognition
of multiple reflections by their polarity alternations. (For example, look ahead to the
left side of Figure 2.)
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Definition of Ricker wavelet

We use the term “Ricker wavelet” to describe any wave shape resembling the second
derivative of a Gaussian. The reason Ricker wavelets are so prevalent in marine
seismology is this: The water surface negative reflection coefficient causes two ghosts,
one at the gun, the other at the receiver. At each location the slightly delayed surface
reflection (of negative polarity) applies a finite difference to the image. Consequently,
any impulsive reflector looks like a band-limited second derivative. Land seismometers
measure neither displacement nor velocity. Essentially, they are devices that measure
acceleration. Band limiting their output again produces wavelets like the Ricker
wavelet.

Symmetrical decon preserves polarity. Hooray!

The most primative deconvolution is a symmetrical filter, for example FT−1(1/|D(ω)|)
where |D(ω)| denotes the amplitude spectrum of the data. The output FT−1(D/|D|)
of this filter is spectrally white. This decon filter converts a Ricker wavelet to an
impulse at its center. Hooray! Notice this impulse will have the opposite polarity of
that of predictive decon which attempts to spike the first lobe of the Ricker wavelet.

Figure 1: The non-causality
needed is defined by the small
backward distance from the center
of the Ricker wavelet to its onset.
[NR]

Causal decon 
spikes here.

We spike here.

How symmetric decon fails

Symmetric decon is wonderful the way it preserves polarity, but it has one feature that
is really embarassing. About 150ms after the air gun blast is a bubble collapse blast.
At early times they are quite different in frequency content and size, but because
the bubble contains mostly the lower frequencies, its relative contribution becomes
much stronger later in the record. What symmetric decon does with this bubble is
horrifying. It gives a precursor 150ms before the water bottom. And also before every
other event!
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How predictive decon fails

Traditional predictive decon attempts to convert the Ricker wavelet to an impulse at
its onset. This works badly because the onset time of the emergent signal, the Ricker
wavelet, is not well defined.

GETTING THE BEST OF BOTH WORLDS

The good news is that it is possible to have the best of both worlds, both to deal time-
symmetrically with the Ricker wavelet and non-time-symmetrically with the bubble.
Furthermore, we do it rapidly in fast Fourier N log2 N time. The Ricker wavelet is
quite short, about 15ms, while the bubble delay is quite long, about 150ms, so the
separation of the two is not delicate.

The less happy news is that the required theory is quite deep and not well known.
It was first invented by famous mathematicians about 1940, and did not reach text-
book status until my 1974 book FGDP, with code included in my newer book PVI
1992. Luckily, I have been teaching this material for many years now and believe I
can extract the essence without great pain for you.

Spectral factorization

A causal function is one that vanishes at negative time. Too short a summary is to
say the exponential of a causal is a causal. What is meant is if we take the Fourier
transformation of a causal function, exponentiate it, and then inverse transform we
will again have a causal function. This is the heart of spectral factorization, an
obscure mathematical calculation addressing interesting practical applications.

Start with Z-transforms. Given a time function (1, u1, u2, u3, · · · ) its Z-transform
is U(Z) = 1+u1Z +u2Z

2 +u3Z
3 + · · · . When you identify Z = eiω∆t and Z5 = eiω5∆t

the Z-transform is clearly a Fourier series. An example of a causal function is uτ . It
is causal because uτ = 0 for τ < 0 likewise, U(Z) has no powers of 1/Z.

We may exponentiate U(Z) by a frequency domain method or a time domain
method. Easiest is the frequency domain method. Write eU(Z(ω)) for all ω, then
Fourier transform to time. More interesting is the time domain method. The
polynomial U has no powers of 1/Z. The power series for an exponential is eU =
1 + U + U2/2! + U3/3! + · · · . Inserting the polynomial for U into the power series
for eU gives us a new polynomial (infinite series) that has no powers of 1/Z. Further-
more, this new polynomial always converges because of the powerful influence of the
denominator factorials. Thus we have shown that the “exponential of a causal is a
causal”.

Let S̄(Z(ω)) be an amplitude spectrum S̄(ω) > 0 with logarithm Ū = log S̄. The
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exponential is the inverse of the logarithm

S̄ = elog S̄ = eŪ (1)

Both S̄ and Ū are real symmetric functions of ω. In the time domain, |S̄|2 corresponds
to an autocorrelation. In the time domain, Ū merely corresponds to a real symmetric
function ūτ . Adding some phase function Φ(ω) to Ū will shift the time function sτ ,
likely shifting each frequency differently.

S = elog S̄+iΦ = eŪ+iΦ = eU (2)

Keeping Ū fixed keeps the spectrum S∗S fixed. Let uτ now correspond to the Fourier
transform of U(ω) = Ū + iΦ. The time symmetric part of uτ corresponds to Ū(ω)
while the antisymmetric part of uτ corresponds to the newly added phase Φ(ω). How
shall we choose Φ(ω)? Let us choose the antisymmetric part of uτ instead, choose
it to cancel the symmetric part of uτ on the negative τ axis. In other words, let us
choose uτ to be causal. Recalling that “exponentials of causals are causal” we have
thus created a causal sτ . Hooray! Hooray because sτ has the same spectrum S̄ that
we started with. We started with a spectrum S̄ and constructed a causal wavelet
sτ with that spectrum. Good trick! This is called “spectral factorization.” Causal
decon is simply taking your data D and dividing by a causal source waveform S.

Mostly causal decon

Now for the innovation. There are many pitfalls in the log domain. Seismologists are
accustomed to ignoring the scale of their signals. Let the plot program figure out a
suitable scale, we think. Once you take the logarithm of a signal, you are in a different
world. If you double the log, you have squared the original signal. Got to be careful!
What you can do safely with log signals is add or subtract something. This has the
effect of scaling the original signal. Create an anticausal function uanti

τ = sgn(τ)uτ .
The signum function sgn(τ) is −1 for τ < 0 and +1 for τ > 0. Adding this anticausal
function to uτ zeros the negative lags while doubling the positive lags. Because it
is antisymmetric it changes the phase spectrum. It does not change the amplitude
spectrum. We can use any anti-symmetrical function we wish to monkey with the
phase while not changing the amplitude. We could add the antisymmetric function
uanti

τ , but that would simply do traditional causal decon. Instead, near the origin we
taper uanti

τ towards zero. This creates symmetric Ricker-like behavior near the origin
while leaving causal behavior further away. The tapering zone used here extends
beyond the Ricker width, about 20ms, but not so far as the bubble delay, about
150ms, an easy distinction. A parallel analysis is found in another paper in this
report (Claerbout et al. (2012)).

It’s easy. Figures 2 and Figure 3 show the desired behavior. Hooray! The results
are lovely. Better yet, they are not the end but the beginning. They are based on the
simple notion that we want a white output spectrum. Our real goal is a sparse time
function, not a white one. The results in these figures are simply the starting point
of another paper in this report.

SEP–147



Claerbout 5 Polarity preserving decon

Figure 2: Left is Yilmaz and Cumro shot profile 33. Right is the result of “polar-
ity preserving deconvolution.” Observe enhanced visibility of alternating polarity of
multiple reflections. [ER]

Figure 3: Shot waveform extracted from a constant offset section from the Gulf of
Mexico. Peaks at zero lag as does symmetric Ricker wavelet, but for unknown reasons
the peak heights are not in the (-1,2,-1) proportions of a Ricker wavelet. [ER]
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DISCUSSION AND CONCLUSION

This paper introduces the notion that by manipulating the uτ we may make improve-
ments on the old mathematical method of blind deconvolution. We were uncommonly
successful here in dealing with our most commonly observed wavelet, the Ricker
wavelet. This success suggests other improvements might flow from manipulations of
the uτ for other purposes.

For example, given only a single seismogram, we may wish to limit the number
of degrees of freedom for the filter estimation. We have long known this can be done
by smoothing the data spectrum. Another method is to limit the range, or taper the
range of uτ coefficients. Such ideas are untried, so not yet compared.

Likewise, many shot waveforms have been recorded and tabulated. Perhaps it
makes sense to map these wavelets to the “lag-log” space uτ to better understand
their statistics.

I see no immediate application, but we might recall that spectral factorization
is also applicable for complex-valued signals. Then the spectrum is non-symmetric.
This arises when time-dependent signals have been previously Fourier transformed
over space.

Shuki asks, “What about seafloor receivers where there is one ghost, not two?” I
reply, “Perhaps the same code can be used, but instead of gateing on the range ±τ
being 3/4 period for the Ricker wavelet, it might be instead 1/4 period for the the
primary lobe.

APPENDIX

Subroutine ftu below is an ancient FT program from my book FGDP with conven-
tional scaling consistent with Z-transforms. Data length must be a power of two.
Subroutine kolmogoroff below was taken from my book PVI, converted from energy
spectra to amplitude spectra. An insert in the middle implements the innovation of
this paper; it diminishes the asymmetric part of uτ near |τ | = 0. A cosine squared
weight was arbitrarily chosen. The suppression range was chosen from the origin to
half way to an expected bubble on 4ms data.

While looking at the code you might notice that you also have the ability to taper
large lags to shorten your filter response. This might be useful when you want to crop
off downgoing multiples from your source waveform. It would also be helpful when
you have insufficient data to be estimating long source waveforms.

subroutine kolmogoroff( n, cx) # Spectral factorization.

integer i, n # input: cx = amplitude spectrum

complex cx(n) # output: cx = FT of min phase wavelet

integer lag
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real weight, asym

do i= 1, n

cx(i) = clog( cx(i) )

call ftu( -1., n, cx)

do i= 2, n/2 {

cx(i) = cx(i) * 2.

cx(n-i+2) = 0.

}

# BEGIN stuff added to remove a little of the asymmetric part.

lag = 15 # lag = 60ms/4ms where 60ms is half way to bubble.

do i = 2, lag {

asym = (cx(i) - cx(n-i+2))/2.

weight = cos( .5* 3.1416 * (i-1.)/(lag-1.))**2

cx(i) = cx(i) - weight * asym

cx(n-i+2) = cx(n-i+2) + weight * asym

}

# END stuff added to remove a little of the asymmetric part.

call ftu( +1., n, cx)

do i= 1, n

cx(i) = cexp( cx(i))

return; end

subroutine ftu( signi, nx, cx )

# complex fourier transform with traditional scaling

#

# 1 nx signi*2*pi*i*(j-1)*(k-1)/nx

# cx(k) = -------- * sum cx(j) * e

# scale j=1 for k=1,2,...,nx=2**integer

#

# scale=1 for forward transform signi=1, otherwise scale=1/nx

integer nx, i, j, k, m, istep, pad2

real signi, arg

complex cx(nx), cmplx, cw, cdel, ct

do i= 1, nx

if( signi<0.)

cx(i) = cx(i) / nx

j = 1; k = 1

do i= 1, nx {

if (i<=j) { ct = cx(j); cx(j) = cx(i); cx(i) = ct }

m = nx/2

while (j>m && m>1) { j = j-m; m = m/2 } # "&&" means .AND.

j = j+m
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}

repeat {

istep = 2*k; cw = 1.; arg = signi*3.14159265/k

cdel = cmplx( cos(arg), sin(arg))

do m= 1, k {

do i= m, nx, istep

{ ct=cw*cx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct}

cw = cw * cdel

}

k = istep

if(k>=nx) break

}

return; end
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