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ABSTRACT

We use a vertical transverse isotropic (VTI) two-way propagation engine to per-
form wave-equation migration velocity analysis. Using reverse time migration
(RTM), we have a chance to characterize the wavefields propagating at large
angles and to image steeply dipping reflectors. By including VTI Thomsen pa-
rameters, we can better describe the properties of the subsurface. We first derive
the migration velocity analysis gradient when using a first-order VTI two-way
wave-equation. Then, we test our method on a synthetic VTI Marmousi model.
The inversion results show that our method can resolve a better velocity model
and a better-focused subsurface image.

INTRODUCTION

Velocity model building has been one of the most challenging problems in the seismic
exploration industry. Wave-Equation Migration Velocity Analysis (WEMVA) has
been widely studied for velocity building and can be implemented either in the data
space (Tarantola, 1984; Woodward, 1992) or in the image space (Sava and Biondi,
2004a,b; Shen, 2004; Shen and Symes, 2008; Guerra et al., 2009). Several advantages
drive us to use the image-space WEMVA instead of data-space WEMVA (which is
also known as Full-Waveform Inversion): 1), migrated image is often much cleaner
than the recorded wavefields; 2), the objective function is directly related to the
final image; 3), image-space WEMVA can use a less accurate initial solution without
encountering the cycle-skipping problems that can plague FWI. In fact, the optimized
output of the image-space WEMVA can be used as the input for FWI (Li and Biondi,
2011).

Since first reported in exploration seismology in the 1930s (McCollum and Snell,
1932), anisotropy has become increasingly important in seismic imaging and explo-
ration. The increasing offset and azimuth in data acquisition has heightened the need
for anisotropic imaging and model building. Until now, the transverse isotropic (TI)
model has been one most commonly used in seismic imaging and has been considered
a better description of the subsurface. Li and Biondi (2011) extend the WEMVA
framework to VTI media using the one-way wave-equation. However, the one-way
wave-equation cannot accurately describe the wave propagation at large angles with
respect to vertical, where anisotropy has larger effects. There have been extensive
studies on anisotropic RTM with increasingly complex subsurface models (Fletcher
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et al., 2009; Zhang and Zhang, 2009), but reliable anisotropic model-building tech-
niques are still needed.

Therefore, we propose an image-space WEMVA method using a VTI two-way
wave-equation as the propagation engine, and evaluate the flatness of the RTM images
in the angle domain. In this paper, we first derive the gradient of the differential
semblance optimization (DSO) objective function with respect to velocity and ε using
a Lagrangian augmented functional. To resolve the ambiguity between velocity and
ε and ensure that our model honors the geology, we use a preconditioning inversion
scheme. Finally, we test the proposed method on a synthetic VTI Marmousi model.

FIRST-ORDER TWO-WAY VTI WAVE-EQUATION

The first-order two-way VTI wave-equation can be derived from Hooke’s law and
Newton’s law using Thomson anisotropy parameters (ε, δ) and setting shear wave
velocity cs = 0 (Duveneck et al., 2008). The first-order system reads as follows:

ρ∂tvx = −∂xpH

ρ∂tvy = −∂ypH

ρ∂tvz = −∂zpV (1)
1

ρc2
∂tpV = −

√
(1 + 2δ)(∂xvx + ∂yvy)− ∂zvz + fV

1

ρc2
∂tpH = −(1 + 2ε)(∂xvx + ∂yvy)−

√
(1 + 2δ)∂zvz + fH

where ρ is the density, c is the velocity, (vx, vy, vz) is the particle velocity vector, and
pV and pH are pressure in the vertical and horizontal directions, respectively. The
source term fV and fH are defined by the source wavelet w(t) as follows:

fV (t) = fH(t) =

∫ τ

−∞
w(τ)dτ. (2)

It is straightforward to see that when ρ = 1, ε = 0 and δ = 0, the first-order system
1 is equivalent to the familiar isotropic acoustic second-order wave-equation:

1

c2
∂2

t p−∇p = w. (3)

For simplicity, we can rewrite system 1 in a matrix-vector notation:

L(c)p = f , (4)

where p = (vx, vy, vz, pV , pH)T , f = (0, 0, 0, fV , fH)T , and

L =

∣∣∣∣∣∣∣∣∣∣
∂t 0 0 0 ∂x

0 ∂t 0 0 ∂y

0 0 ∂t ∂z 0√
1 + 2δ∂x

√
1 + 2δ∂y ∂z

1
c2

∂t 0

(1 + 2ε)∂x (1 + 2ε)∂y

√
1 + 2δ∂z 0 1

c2
∂t

∣∣∣∣∣∣∣∣∣∣
. (5)
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VTI REVERSE-TIME MIGRATION IMAGING
CONDITION

Traditionally, the subsurface image is often considered as the first gradient of an FWI
objective function with respect to velocity. In this paper, we are going to derive the
VTI reverse-time migration imaging condition according to the same criteria.

We define FWI objective function as

Jw =
1

2
〈d− dest, d− dest〉, (6)

where dest is the data estimated from the current model, which is sampled from
wavefield p, and d is the recorded data.

For the first iteration, dest = 0. Therefore the first gradient in velocity is:

∇cJw =

(
∂p

∂c

)∗

d

= (−L−1∂L

∂c
L−1f)∗d. (7)

Now we introduce the receiver vector field q = (ux, uy, uz, qV , qH)T , which is the
solution of the following equation:

L∗(c)q = f ′. (8)

The equivalent source term in equation 8 is defined as f ′ = (0, 0, 0, f ′V , f ′H)T , where
f ′V = f ′H = d. From equation 5, we have

∂L

∂c
=

∣∣∣∣∣∣∣∣∣∣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 − 2

c3
∂t 0

0 0 0 0 − 2
c3

∂t

∣∣∣∣∣∣∣∣∣∣
, (9)

If we plug equation 8 and 9 into equation 7 and ignore the velocity dependence, we
arrive at the imaging condition as follows:

I = p∗M∗q,

= (Mp)∗q, (10)

where

M =

∣∣∣∣∣∣∣∣∣∣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1

2
∂t 0

0 0 0 0 1
2
∂t

∣∣∣∣∣∣∣∣∣∣
. (11)
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The explicit form of this imaging condition for acoustic RTM is:

I =

∫ tmax

0

1

2
((∂tpH)qH + (∂tpV )qV ) dt. (12)

The scaling factor 1
2

is chosen to make sure that when pH = pV , equation 12 reduces to
the isotropic cross-correlation imaging condition (Claerbout, 1987). For the purpose
of velocity analysis, we often work with extended images and generalized imaging
conditions. Similarly, we define our subsurface-offset-domain common-image gathers
(SODCIGs) I as a column vector:

I = [I−hmax , I−hmax+∆h, · · · , I0, · · · , Ihmax−∆h, Ihmax ]
∗, (13)

where h is the half-subsurface offset, which ranges from −hmax to hmax with an
increment of ∆h. For each element Ih, the extended imaging condition is as follows
(Sava and Formel, 2006) :

Ih = (S+hp)∗M∗(S−hq), (14)

where S+h is a shifting operator which shifts the wavefield by an amount of +h in
the x direction. Notice that (S+h)∗ = S−h.

MIGRATION VELOCITY ANALYSIS GRADIENTS

In this section, we derive the MVA gradients of objective function 15 by two different
approaches: the adjoint method from the perturbation theory, and the Lagrangian
augmented function.

WEMVA is a non-linear inversion process that aims to find the velocity model that
minimizes the residual field ∆I in the image space. Without losing any generality,
we define our objective function by DSO (Shen and Symes, 2008) in the subsurface
offset domain:

J =
1

2

∑
h

〈hIh,hIh〉. (15)

Although we don’t use this DSO objective function in the example, the derivation
follows the same logic, and readers can easily substitute their desired image-space
objective function into the derivation.

Adjoint method from the perturbation theory

A perturbation, δc, of the velocity model c, induces a perturbation δp in the source
wavefield vector p, a perturbation δq in the receiver wavefield vector q, a perturbation
δI in the extended image cube I, and hence a perturbation δJ in the objective function
J . To the first order and using chain rule, δJ and δc have following relationship:

δJ =
∑
h

∂J

∂Ih

∂Ih

∂p

∂p

∂c
δc +

∑
h

∂J

∂Ih

∂Ih

∂q

∂q

∂c
δc. (16)
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Now we can define the gradient by the back-projection of a unit perturbation in the
objective function:

∇cJ =
∑
h

(
∂J

∂Ih

∂Ih

∂p

∂p

∂c

)∗

+
∑
h

(
∂J

∂Ih

∂Ih

∂q

∂q

∂c

)∗

= (∇cJ)1 + (∇cJ)2 . (17)

Let’s analyze the first term in equation 17 in detail, and the second term follows the
same reasoning.

(∇cJ)1 =
∑
h

(
∂J

∂Ih

∂Ih

∂p

∂p

∂c

)∗

=
∑
h

(
∂p

∂c

)∗ (
∂Ih

∂p

)∗ (
∂J

∂Ih

)∗

=
∑
h

p∗
(
−∂L

∂c

)∗

L−∗
(

∂Ih

∂p

)∗ (
∂J

∂Ih

)∗

= p∗
(
−∂L

∂c

)∗

L−∗
∑
h

(
∂Ih

∂p

)∗ (
∂J

∂Ih

)∗

(18)

where (
∂J

∂Ih

)∗

= h∗hIh, (19)

and (
∂Ih

∂p

)∗

= (S+h)∗M∗(S−hq)

= S−hM
∗(S−hq). (20)

Plugging equation 19 and 20 into equation 18, we can rewrite equation 18 explicitly
as follows: (

∂J

∂c

)
1

= p∗
(
−∂L

∂c

)∗

L−∗
∑
h

S−hM
∗(S−hq)h2Ih (21)

Similarly, we can obtain the explicit form for the second term in equation 17:(
∂J

∂c

)
2

= q∗
(
−∂L

∂c

)
L−1

∑
h

S+hM(S+hp)h2Ih (22)

Substituting equation 21 and equation 22 for the corresponding terms in equation 17,
we now have derived the explicit form for the DSO gradient.
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Lagrangian augmented functional method

We are now going to use the recipe with the augmented functional that Plessix (2006)
provides to derive the image-space DSO gradient. First, let us form the Lagrangian
augmented functional, L:

L(p,q, Ih, λ, µ, γh, c) = (23)∑
h

1

2
〈h Ih, h Ih〉

+ 〈λ, f − L(c)p〉
+ 〈µ, f ′ − L∗(c)q〉
+

∑
h

〈γh, (S+hp)∗M∗(S−hq)− Ih〉 (24)

Then the adjoint state equations are obtained by taking the derivative of L with
respect to state variables p, q and Ih:

∂L
∂p

= −L∗(c)λ +
∑
h

(S+h)∗M∗(S−hq)γh = 0, (25)

∂L
∂q

= −L(c)µ +
∑
h

(S−h)∗M(S+hp)γh = 0, (26)

∂L
∂Ih

= −γh + h2Ih = 0,∀ h. (27)

Equation 25, 26, 27 are the adjoint-state equations. Variables λ = (λx, λy, λz, λV , λH)T

and µ = (µx, µy, µz, µV , µH)T are the adjoint-state fields and the solution of the
adjoint-state equations 25 and 26. Variable γh is the scaled image slice at the sub-
surface offset h.

Now the gradient of the objective function 15 with respect to velocity is:

∇cJ =

〈
λ, − ∂L

∂c
p

〉
+

〈
µ, − ∂L∗

∂c
q

〉
=

(
−∂L

∂c
p

)∗

λ +

(
−∂L∗

∂c
q

)∗

µ, (28)

If we combine equations 25, 26, and 27 with equation 28, we will arrive at the same
solution as in the previous section.

Extension to update anisotropic parameters

The extension from isotropic model updates to anisotropic updates is straightfor-
ward. Built on the derivations in the last section, we can easily get the gradients for
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anisotropic parameters ε and δ as follows:

∇εJ =

〈
λ, − ∂L

∂ε
p

〉
+

〈
µ, − ∂L∗

∂ε
q

〉
=

(
−∂L

∂ε
p

)∗

λ + q∗
(
−∂L

∂ε

)
µ, (29)

∇δJ =

〈
λ, − ∂L

∂δ
p

〉
+

〈
µ, − ∂L∗

∂δ
q

〉
=

(
−∂L

∂δ
p

)∗

λ + q∗
(
−∂L

∂δ

)
µ, (30)

where

∂L

∂ε
=

∣∣∣∣∣∣∣∣∣∣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2∂x 2∂y 0 0 0

∣∣∣∣∣∣∣∣∣∣
, (31)

∂L

∂δ
=

∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
∂x√
1+2δ

∂y√
1+2δ

0 0 0

0 0 ∂z√
1+2δ

0 0

∣∣∣∣∣∣∣∣∣∣∣
. (32)

It is well-known that δ is the parameter most poorly constrained by surface seismic.
Therefore, in our study, we assume that δ is obtained from well logs or seismic-well
ties, and we invert only for velocity and ε.

Physical interpretation and implementation of the DSO gra-
dient

In this subsection, we interpret each term in the DSO gradient formulation, and
provide the readers with some hints for implementation. We find the Lagrangian
formulation is easier to interpret, and readers can clearly relate the corresponding
terms to the adjoint formulation. We will only discuss the physical meaning and the
implementation for the first term in the gradient (Equation 28 and 25). Then similar
reasoning can be argued using reciprocity.

First, for each image slice in the subsurface-offset domain Ih, we compute a
weighted image γh using equation 27. Then we move on to equation 25. We can
rearrange the independent and commutable operators as follows:

L∗(c)λ =
∑
h

S−h (S−hM
∗q) γh. (33)
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Operator M∗ corresponds to differentiating qV and qH once reversely in time and
setting ux, uy, and uz fields to zero. Notice that the directions of propagation and
differentiation in time of wavefield q are the same. Therefore, we can compute the time
derivative during the same process as the propagation. Then we shift the reverse-time
derivative q by −h in x, and multiply it with the weighted image γh. This product
is shifted again by −h. Finally, we sum over the contributions from all subsurface-
offset image slices to get an effective source term fp. Next, we solve equation 33 for
λ backward in time, using fp as the source.

At the same time, in equation 28 −∂L
∂c

is a sparse matrix, with non-zero elements
only for pV and pH . We can therefore write everything out explicitly:

(∇cJ)1 =

∫ tmax

0

2

c3
[(∂tpH)λH + (∂tpV )λV ] dt. (34)

The explicit forms for the complete gradients are:

∇cJ =

∫ tmax

0

2

c3
[(∂tpH)λH + (∂tpV )λV ] dt

+

∫ tmax

0

2

c3
[(∂tqH)µH + (∂tqV )µV ] dt (35)

and

∇εJ = −
∫ tmax

0

[(∂xvx)λH + (∂yvy)λH ]dt

+

∫ tmax

0

[(∂xqH)µx + (∂yqH)µy]dt. (36)

Preconditioning the DSO gradient

Velocity model building is a highly underdetermined and nonlinear problem. There-
fore, prior knowledge of the subsurface is needed to define a plausible subsurface
model. In the formulation of Tarantola (1984), prior information is included as the
covariance and the mean of the model. In this study, we assume the initial model
we use is the mean, and the covariance of the model has two independent compo-
nents: spatial covariance and collocated cross-parameter covariance (Li et al., 2011).
In practice, instead of regularizing the inversion using Tarantola (1984), we use a pre-
conditioning scheme (Claerbout, 2009): smoothing filtering to approximate square-
root of the spatial covariance, and a standard-deviation matrix to approximate the
square-root of the cross-parameter covariance.

Mathematically, the preconditioned model perturbation dn of the subsurface is
defined as follows:

dm = BΣdn, (37)
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where m = [c ε]T . The smoothing operator B is a diagonal matrix:

B =

∣∣∣∣ Bc 0
0 Bε

∣∣∣∣ . (38)

with different smoothing operators for velocity and ε, according to the geological
information in the study area. The standard deviation matrix Σ:

Σ =

∣∣∣∣ σcc σcε

σεc σεε

∣∣∣∣ . (39)

can be obtained by rock-physics modeling and/or lab measurements (Bachrach et al.,
2011; Li et al., 2011).

We call n the preconditioning variable, and it relates to the original model m as
follows:

m = BΣn + (m0 −BΣn0), (40)

where n0 and m0 are the initial models in preconditioned space and physical space,
respectively. Now, the gradient of the objective function 15 with respect to this
preconditioning variable n is

∇nJ = (
∂m

∂n
)∗∇mJ

= Σ∗B∗∇mJ, (41)

where ∇mJ = [∇cJ ∇εJ ]T .

In a steepest-decent inversion framework, the initial preconditioning model n0 is
obtained by minimizing the following objective function:

Jinit =
1

2
〈m0 −BΣn0,m0 −BΣn0〉 . (42)

For the ith iteration
ni+1 = ni + αi∇nJ, (43)

mi+1 = BΣni+1

= BΣni + αiBΣ∇nJ

= mi + αiBΣΣ∗B∗∇mJ. (44)

Equation 44 suggests an interesting consideration in the context of nonlinear inversion:
left-multiplying the gradient with a (semi)positive-definite matrix is equivalent to
preconditioning with the square-root of the matrix; thus, the resulting direction is
still a descent direction (Claerbout, 2009).

NUMERICAL TEST

In this section, we present the tests of our method on a synthetic VTI Marmousi
model. We perform the tests in three steps: objective-function test, single parameter
inversion, and joint inversion for two parameters.
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Objective function test

We test our method on a VTI Marmousi model. First, synthetic Born data is gen-
erated using the models in Figures 1 and 2. The maximum offset is 3 km. Next, we
perturb the ε model (Figure 2(a)) by a very smooth δε field, as shown in Figure 3(a).
We change the perturbation from -50% to 50% of the true ε model, and calculate the
corresponding objective function respectively.

Ideally, we’d like to choose an objective function that reaches a local minimum at
the correct model and is quadratic around the correct model, so that a gradient-based
inversion scheme is guaranteed to converge. Based on the results, we choose an angle
domain objective function instead of the DSO objective function (Equation 15):

J =
1

2
〈DRI,DRI〉, (45)

where R is the Radon transform operator, and D is the derivative operator along the
ray-parameter axis.

As shown in Figure 3(b), the angle-domain objective function has a minimum at
the correct epsilon model, and has a semi-quadratic shape with respect to the model
perturbation. Therefore, this objective function is a good measure of the error in
the anisotropic model. Notice that the tilting effect toward negative ε perturbation
is caused by the limited acquisition geometry. This effect is negligible for velocity
perturbation, because velocity has a first-order effect on the flatness of the angle
gather, while ε’s effect is second-order. We can increase the acquisition offset to
mitigate this tilting effect and help the inversion.

Single parameter inversion

In this subsection, we invert for the anisotropic parameter ε alone. In this test, we
model the synthetic data using very smooth ε (Figure 4(a)) and δ (Figure 4(b)) models
as suggested by many field applications. To better constrain the inversion for ε, we
also increase the maximum offset in the acquisition to 6 km.

Compared with the true ε model, our initial ε model (Figure 5(a)) has negative
perturbation of about 50% in the shallower part. Because a perfect velocity model is
used in this case, the moveout at large angles is so small that it is almost undetectable
to human eyes (Figure 5(b)). However, our inversion scheme is very sensitive to
the residual moveout and successfully updates the ε model in the correct direction.
Figure 6 shows the inverted ε model and the corresponding angle-domain common-
image gathers after 40 iterations. Comparing with the initial angle gathers (Figure
5(b)), we can see that the slightly curving events at large angles are flattened and the
inverted ε model is closer to the true one.
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Figure 1: Smooth velocity model (a) in m/s and reflectivity model (b) used to generate
the synthetic Born data. [CR]
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Figure 2: The ε model (a) and δ model (b) used to generate the synthetic Born data.
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Figure 3: (a) The δε model to test the objective function. (b) Objective function
vs. ε perturbation. The angle-domain objective function 45 has a minimum at the
correct epsilon model, and has a semi-quadratic shape with respect to the model
perturbation. [CR]
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Figure 4: (a) True ε model and (b) true δ model used to generate the synthetic data.
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Figure 5: (a) Initial ε model and (b) initial angle-domain common-image gathers
using initial ε model. Gathers are taken at every 10 common image point from x = 4
km to x = 8 km. [CR]
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Figure 6: (a) Inverted ε model and (b) final angle-domain common-image gathers
using inverted ε model in (a). Compared with Figure 5(b), panel (b) shows more
even energy across different angles. Gathers are taken at every 10 common image
point from x = 4 km to x = 8 km. [CR]
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Joint inversion for two parameters

The tests in the previous sections show that we have a reliable objective function and
successful inversion results for a single parameter. However, joint inversion for more
than one parameter for each grid in the subsurface is far more challenging because
of the ambiguity between parameters. As a result, the preconditioning scheme using
geological and rock-physics information is crucial for its success.

In this test, we use the same synthetic data as in the last section. Unlike in the last
example where we use the perfect velocity model, the starting models for velocity and
ε are both inaccurate. The initial velocity model and ε model are shown in Figures
7(a) and 5(a), respectively. The angle gathers generated using these initial models
are shown in Figure 7(b). Significant moveout in the angle-gather events indicates
that the initial model is far from the true model. In fact, the initial velocity has
a maximum of 15% error compared with the true velocity (Figure 1(a)), while the
initial ε is about 50% smaller than the true value in the shallow part of the model.
Notice that the error in velocity has a much larger effect on the kinematics of the
seismic wave, hence a larger effect on the flatness in the angle domain.

After 40 iterations, we obtain the inverted velocity and ε models as shown in
Figure 8(a) and 8(b). Comparing Figure 8(a) with Figure 1(a), we can conclude that
the inversion has successfully recovered the high-resolution vertical structure in the
shallow part of the model. Due to the limited illumination, the steep structure in
the deeper part of the model is not well resolved. Comparing Figure 6(a) and Figure
8(b), we notice that, because of the error in velocity, the inversion does not converge
to the same solution. This is an indication that we have not completely resolved the
ambiguity between velocity and ε.

Angle gathers generated by the inverted model are shown in Figure 8(c). They
are extracted from the same common-image points as in Figure 7(b). The improved
model flattens the gathers across the whole section. Notice that the low-frequency
energy in the water is the commonly seen wave-path energy for RTM images.

CONCLUSIONS

In this paper, we define an image-space inverse problem to solve for an optimized
anisotropy model. To better describe the properties of the subsurface and the wave
propagation, we use the first-order VTI two-way wave equation to compute our
Green’s function. Test results on objective function show that flatness in the an-
gle domain is a valid measure of both velocity and anisotropic parameter ε. The
results of single-parameter and joint inversions demonstrate that we have success-
fully resolved the high-frequency structure in velocity and successfully improved the
anisotropic model where we have enough angle coverage. The updated image has
flattened the gathers in the angle domain.
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Figure 7: Initial velocity model (a) in m/s and the angle gathers (b) obtained using
initial velocity model. Initial ε model is shown in Figure 5(a). Model error causes
significant curvatures in the angle gathers. Gathers are taken every 100 common
image points from x = 0 km to x = 9 km. [CR]
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