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ABSTRACT

To perform linearised inversion on seismic exploration scale datasets we are con-
tinually looking for methods to accelerate computation and reduce data handling
overhead. One option to accelerate reverse time imaging is to use random domain
boundaries for the source wavefield computation, alleviating much of the required
IO in favour of some additional computation. Additionally, data handling prob-
lems can be addressed by phase-encoding data (weighting, shifting, summing) and
then inverting for a common model between realisations. Both random boundary
and phase-encoding methods rely on wavefield incoherency during correlation and
stacking to build a clean image. Here we investigate if these can be effectively
used together, or if these techniques combined create wavefields that are too in-
coherent, slowing convergence as a function of cost when compared to linearised
inversion without phase-encoding. We show that by using multiple realisations
per iteration we can improve convergence and create cleaner reflectivity images.

INTRODUCTION

Reverse time migration (RTM) can provide accurate subsurface images because it
applies the full, two-way wave equation. Thus steep dips, multiples, and prismatic
waves can be imaged. However, RTM is the adjoint of an idealised modelling oper-
ator and not a full inverse operation, meaning that images can suffer from artefacts
such as acquisition footprints, low-frequency noise and decreased resolution. We can
approximate the inverse of this modelling procedure by using iterative least-squares
inversion. However this can quickly become prohibitively expensive as each iteration
is roughly twice the cost of a single migration. Furthermore, the formulation of RTM
(the adjoint procedure) requires the source-side wavefield to be modelled, reversed,
and sequentially correlated with the receiver-side wavefield. This modelling and re-
versal provides computational difficulties, as we have to save and re-inject a 4D source
wavefield when applying 3D RTM. These two problems - inversion cost and source
wavefield time reversal, - can be solved by taking advantage of correlation attributes
and data redundancy.

When modelling the source wavefield we have to use a finite computational do-
main. This domain creates artificial boundary reflections, which must be removed else
they create high-amplitude, coherent artefacts within the image. However, removing
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these boundary reflections causes the modelling to be non-reversible, thus the entire
wavefield must be saved and reused when correlating with the recorded data. We can
use random boundaries (Clapp (2009); Fletcher and Robertsson (2011); Shen and
Clapp (2011)) to make this computation time-reversible. By only saving the final
wavefield snapshots we can now back propagate the wavefield to within numerical
accuracy. Provided that boundary reflections are sufficiently incoherent, the RTM
imaging condition and subsequent stacking over shots can reduce any residual inco-
herent noise to an imperctible level. Such a method is particularly useful for GPU
computing. Here data must be read from disk, to the CPU, and then sent to the
GPU, compounding any disk access. By removing the need for disk-saved source
wavefields we accelerate GPU based RTM significantly.

We can address the inversion cost in a slightly different way. One method is to
reduce the data size that we are imaging by combining sources. This can be done by
shifting, weighting and summing shots to create one or several ’super shots’ (Morton
and Ober (1998); Romero et al. (2000)). The weights and shifts that we apply to
individual shots are referred do as the encoding. Such a method can also be used
for full waveform inversion (Gao et al. (2010);Krebs et al. (2009)). We can either
combine sources into a single super shot or several super shots. When combined into
one super shot the inversion is now independent of the number of sources, reducing the
inversion cost by roughly this number (assuming full aperture for all shots). However,
many crosstalk artefacts are seen when wavefields from different source experiments
correlate coherently. These are slowly reduced when iterating, but by changing the
encoding between iterations these are suppressed much faster. Romero et al. (2000)
and Krebs et al. (2009) show that by using a single sample random encoding the best
convergence rates are seen. The caveat of such a scheme is that we must recalculate
the initial residual each time (since we have changed our observed data), making this
method about 1.5 times more expensive.

Both random boundaries and phase-encoding can be very effective in accelerating
linearised inversion. However, they both introduce a considerable amount of noise
into the system and rely on correlation, stacking and inversion to reduce this. By
combining these methods we may be making the system too incoherent, slowing
the inversion process down as a function of cost. Here we investigate convergence
properties of these techniques and how we can try to create cleaner gradients within
each iteration.

INVERSION WITH RANDOM BOUNDARIES

Under a single Born scattering assumption we can describe the recorded data as

d(xr,xs, ω) =
∑
xs,ω

f(ω)G0(x,xs, ω)m(x)
∑
xr

G0(x,xr, ω). (1)
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The adjoint process can thus be written as

m(x) =
∑
xs,ω

f(ω)G0(x,xs, ω)
∑
xr

G0(x,xr, ω)d∗(xr,xs, ω). (2)

Where d is the data, G0 are the respective Green’s functions, m the model, x the
three-dimensional model coordinate, xr,s the three-dimensional source and receiver
coordinates, ω temporal frequency, f(ω) the source waveform and ∗ denotes the com-
plex conjugate. It is this complex conjugate that reverses the sense of time, meaning
that in the time domain we back propagate the source and receiver wavefields and
correlate them at each imaging time step. This complex conjugate and the subsequent
source wavefield modelling create the need for either saving this wavefield or forming
a time-reversible source wavefield. Random boundaries scatter this wavefield inco-
herently whilst adhering to the conservation of energy; after propagation correlation
and stacking will reduce residual noise.

Random boundary noise in an RTM image is stacked out at a rate of
√

N , where
N is the number of sources; often we see better performance than this. By using a
different random boundary for each shot experiment we see random noise levels at
an acceptable level after combining around 50 shots. Some effects of this can be seen
below, where we use a GPU based RTM algorithm and model and migrate 100 shots
over a section of the SEAM velocity model (Figure 1), simulating a marine survey. We
then perform 5 iterations of least-squares linearised inversion with the same dataset.
Here we have 50 inline shots at 100m spacing, 2 crossline shots with 1km spacing
and 825x200 receivers. Comparison of such a scheme compared to source saving are
shown in Clapp (2009).

Figure 1: A 2D slice from the re-
flectivity model that we are at-
tempting to recover. [ER]

As expected, in Figure 2 we see image quality improve when extending this proce-
dure to an iterative least squares inversion. The footprint from the limited acquisition
begins to dissipate and we see generally higher frequency content and more balanced,
geologically accurate amplitudes. However, since only a limited number of iterations
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Figure 2: RTM and linearised inversion example 2D slices. (a) shows the raw RTM
result, (b) raw inversion after 5 iterations, (c) is (a) after a lowcut wavenumber filter
and (d) is (b) after the same lowcut filter. [CR]
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Figure 3: An example of source self-correlation. a) shows the real data after encoding
10 shots. b) shows the modelled data when the water column noise has not been
muted. Artifacts similar to direct arrivals not present in a) can be seen. [CR]

have been performed some artefacts remain, from both the random boundaries and
from the inverse system.

When blindly extending this process to an inversion, relatively poor convergence
can be seen, especially with respect to the data space residual. The reason for this can
be seen when looking at this residual. The random boundary image (the gradient, in
this case) features noise in the water column and a source location imprint artefact.
When modelling data over this image we see an artefact manifested as a direct arrival
from the source self-correlating. This can be removed by either muting the water
column in the image or by time muting the remodelled data before back-propagation.
An example of this under a phase-encoded setting is shown in Figure 3. Furthermore,
we can improve convergence by changing the random boundaries as a function of
iteration number, as well as a function of shot position.

The computational advantage for GPU based RTM is considerable. We can con-
sider three scenarios - when the source wavefield must be entirely saved to disk, when
the source wavefield can held in the CPU memory and when using random bound-
aries. One should note the last of these requires an extra computation - the source
wavefield back propagation during RTM. In total computation time asynchrous disk
wavefield transfer is nine times slower than random boundary RTM, and if the source
wavefield can be compressed and stored on the CPU memory this is 1.5 times slower.
Of course, these conclusions are strongly related to the speed of the disks being used.
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Figure 4: Compute time comparisons for three RTM regimes. Green denotes IO,
yellow propagation, blue damping, red injection and purple imaging. (a) uses asyn-
chronous disk transfers, (b) assumes the entire source wavefield can be held in CPU
memory and (c) uses random boundaries. [NR]

PHASE ENCODING WITH RANDOM BOUNDARIES

Phase encoding can have multiple meanings; herein we describe the process of weight-
ing and combining shots to reduce data size. We do this by creating a matrix of
weights and applying it to our data.

d̃(xr, ps, ω) =
∑
xs

α(xs, ps)d(xr,xs, ω) (3)

Now d̃ denotes our phase encoded data, α is a sequence randomly selecting either
1 and -1, and ps is some sort of realisation index. When combining all shots together
ps will be 1. For the forward process we propagate a source function encoded with
the same sequence α.

Augmenting random boundary linearised inversion with phase encoding requires
some additional thought. In the case where we combine all shots to one super shot,
we are now propagating 100 weighted shots through the same random boundary.
On a shot by shot basis this is acceptable, as each wavefield will be incident on the
boundary at a different angle and hence scatter differently. However, when performing
this conventionally we formulate a gradient for each shot separately and then sum
them to create our final gradient, reducing our noise by

√
N . Furthermore, there

are only two coherent wavefields (the source and receiver) that can correlate with the
scattered field to induce noise. When combining all shots together, we do not quite see
this behaviour because we now have every scattered field (unique per shot) correlating
with every scattered field and with every coherent field, of which there are now 2N .
Fortunately, the correlation of scattered fields should also be a random walk reduction
at
√

N . Typically with phase encoded linearised inversion after nshots iterations one
expects to see an acceptably clean image. When including random boundaries we
see a noisier image, as expected, but all key features are present. Images can still
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be artefact-laden, especially in areas of low illumination, but this is typical of both
random boundary and phase-encoded imaging when done independently.

We have several options to mitigate this. The best results are seen by combining
several random subsets of shots, calculating a gradient for each subset and combining
these to form the gradient for a single iteration. Whilst this appears more compu-
tationally demanding, the fact that single super-shot GPU based inversion is not
further parallelisable over shots makes this approach seem more appealing. Over a
node containing 8 Fermi M2090 cards we can create the gradient for 8 different super
shots and combine these for little extra time cost, giving a cleaner gradient per iter-
ation. We now see more favourable convergence characteristics and slightly cleaner
images. With naive phase encoded inversion we see a convergence to 60% within
the data-space residual norm after 100 iterations with 50 combined shots. With a
water column mute applied we see convergence to 56% and with multiple, stacked
realisations we see convergence to 53%. Once the data error is below 50% we tend
to see very gradual improvements for all situations. One full, non-encoded iteration
with random boundaries (roughly the same cost) takes us to 74% data error.

Figure 5: The reflectivity model
that we are inverting for. [ER]

Figure 6 compares the results of conventional, separated linearised inversion with
phase encoded inversion, over the 3D model shown in Figure 5. Here we had 120 shots
in total, 60 inline at 100m spacing and two crossline at 1km spacing. Again, receivers
were in a 825x200 grid. Images (a) and (c) are equivalent in computational cost, as
are images (b) and (d). The first noticeable aspect are the low-frequency artefacts
present in the non-encoded image. These occur due to wavefields moving in the same
direction correlating and are prevalent over high-reflectivity, high-contrast features
such as salt boundaries. Often the first several iterations of linearised inversion will
work on removing these artefacts before focusing on other areas, as can also be seen
in Figure 2. The second noticeable aspect is that the frequency content of the phase
encoded image is much higher. The resolution, especially on the salt edges, is greater;
high-frequency noise is also present, but this is expected. The additional iterations
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Figure 6: Linearised inversion examples. (a) shows the model after one iteration of
conventional inversion, (b) the model after two iterations, (c) phase encoded inversion
after 80 iterations - equivalent cost to (a) and (d) phase encoded inversion after 160
iterations - equivalent cost to (b). [CR]
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performed here have successfully begun to remove the effect of the source wavelet in
the image, whereas in the RTM image this wavelet is squared. Figure 7 shows these
same images after a low-cut bandpass filter and some light amplitude gain. The filter
has removed the low-wavenumber noise, but at the expense of the vertical salt edge.
The conventional images look much improved, but the resolution and general content
of the phase-encoded images still seem preferable.

Figure 7: The same set of results as in Figure 6 but each with a low-cut spatial
frequency filter and some amplitude gain. [CR]

Figures 6 and 7 show that for equivalent cost, even when augmented with random
boundaries, phase encoded linearised inversion can yield high quality images. This
scheme is also incredibly well-adapted for GPU computing - there is no IO during
propagation in the forward or adjoint scheme, and the objects we need to copy to the
GPU are all the size of the model, the size of one shot, or smaller.

Residual behaviour with iteration number can be seen in Figure 8. As a reference
point for separated inversion after two iterations the respective normalised residual
difference norms (normalised to 100) were 88.9 and 79.9, which are not significantly
smaller than those shown. However, in terms of cost the former of these would
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Figure 8: Normalised residual evolution as a function of iteration number. [NR]

appear at 80 iterations, the latter at 160. With this is mind we see that our phase-
encoding scheme is doing a vastly more efficient job at data fitting, in an l2 sense.
However, when interpreting these scalar fits we must consider that the l2 residual norm
does not well represent high-frequency noise, and so two images with an apparently
similar residual may have quite different high-frequency noise characteristics. It is
due to this that we must take the phase encoded scheme to so many iterations.
Typically, we will need at least nshots/2 if not nshots iterations for a clean image
here. With conventional inversion we need 5-10 iterations to remove the low-frequency
salt artefacts and many more for amplitude and acquisition imbalances.

CONCLUSIONS

Both phase encoding and random boundary propagation can be very effective in accel-
erating linearised inversion. We presented the individual benefits and how combining
these methods can lead to a powerful inverse scheme with reference to inverse imaging
on GPUs. We can conclude that these techniques can be used together, and accept-
able images are obtained within the cost of a conventional RTM migration. However,
to improve convergence we can see that a mute must be applied to avoid direct-arrival
type artefacts in the Born-modelled data, and that we can improve convergence again
by stacking separate gradient realisations per iteration. For future work we will ex-
plore the best method of cleaning the gradients between iterations and will update
the non-linear solver to see if we can improve our convergence rate once we are within
50% data error.
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