
Linearised inversion with GPUs

Chris Leader and Robert Clapp

ABSTRACT

Graphical Processing Units (GPUs) can provide considerable computational ad-
vantages over multi-core CPU nodes or distributed networks by locally acceler-
ating certain types of floating point operations. However, when processing and
inverting exploration scale seismic datasets we encounter two key problems - com-
pounded disk IO (explicit routing through the host is necessary) and the relatively
small memory provided by the GPU (≤ 6 Gbytes, restricting model sizes that can
be allocated). As shown in an earlier discussion the IO bottleneck on the adjoint
side can be somewhat circumvented by using random domain boundaries. Herein
will be discussed how the forward modelling routine must be adapted to create
an adjoint pair such that least-squares iterative inversion can be performed. We
will then analyse how domain decomposition and P2P communication can be
used to propagate over larger model sizes in such a way that communication can
be effectively hidden and subsequently we can observe linear scaling.

INTRODUCTION

For smaller-scale research institutions, which may not have access to high perfor-
mance computing facilities, processing terabytes of seismic data can be a significant
challenge if attainable at all. As discussed in Ohmer et al. (2005) and Foltinek
et al. (2009), GPUs can greatly assist any operation that can be considered as Single
Instruction Multiple Data (SIMD) by running thousands of independent threads con-
currently across the domain; two-way wave propagation can be considered as a SIMD
operation as we are convolving a set stencil many times. However such a set up has
disadvantages; the GPU can not read directly from disk, thus any disk based IO must
be explicitly routed through a host CPU, compounding any such memory access. Fur-
thermore the dynamic memory available on a GPU is 6 Gbytes or less, meaning that
for propagation we are limited to a model size of 793 pt3 for modelling and 600 pts3 for
imaging, assuming we are using acoustic, isotropic propagators. These numbers are
significantly reduced when performing anisotropic and/or elastic propagation. Clapp
(2009) and Leader and Clapp (2011) discuss how Reverse Time Migration (RTM) can
be adapted to minimise disk access during propagation and hence better harness the
computational power of the GPU without sacrificing significant performance for data
movement. This paper will look at extending this system to inversion and also at
how larger model sizes can be used. From here on a basic familiarity of GPU memory
hierarchies and their uses will be assumed, one can to refer to Micikevicius (2009) or
Leader and Clapp (2011) for more in depth discussions of these attributes.

SEP–147

Leader and Clapp 2 Linearised inversion with GPUs

GPU BASED RTM

Reverse Time Migration (Baysal et al., 1983) is increasingly becoming the industry
and academic standard for seismic imaging. The full treatment of the wave equation
provides us with accurate kinematic and amplitude information. Very few assump-
tions about the data (maximum dips, single scattering etc.) are necessary, relative
to one-way wave equation or Kirchhoff imaging techniques. However, this process is
computationally demanding and images still exhibit many artifacts due to the rela-
tively simple nature of the imaging condition (Sun and Zhang, 2009).

We can describe an idealised modelling procedure as in equation 1, which is based
on the first approximation of the Born scattering series. RTM is then the adjoint
of this process, equation 2. Here d is the data, f the source function, G0 are the
respective Green’s functions, m the model, x the 3D model coordinates, xr,s the 3D
source and receiver coordinates and ∗ denotes the complex conjugate. Despite this
mathematical treatment assuming a single scattering, our propagator makes no such
assumption and multiple scattering / diving waves are still positioned correctly.

d(xr,xs, ω) =
∑
xs,ω

f(ω)G0(x,xs, ω)m(x)
∑
xr

G0(x,xr, ω) (1)

m(x) =
∑
xs,ω

f(ω)G0(x,xs, ω)
∑
xr

G0(x,xr, ω)d∗(xr,xs, ω) (2)

Wave propagation can be performed very efficiently on GPUs by taking advantage
of shared memory and read redundancy along the y axis (Micikevicius, 2009). The
main challenge for GPU based RTM comes from the complex conjugate in equation 2.
Since equation 2 is expressed in frequency, this conjugate reverses the sense of time of
the data d relative to the source function f . As such, the source wavefield (4D, in this
case) is forward modelled and saved, and then read back to the GPU at each imaging
time step while back propagating the recorded data for correlation. Typically this
source wavefield is several hundred gigabytes, meaning disk storage is unavoidable
(without compression). In the case where we must transfer the source wavefield from
disk our GPU based RTM scheme is far from optimal, as all computational advantages
are now being counteracted by compounded disk access.

The reason we cannot simply back propagate the source wavefield is due to the
fact that we artificially remove boundary reflections during forward modelling. This
violates the conservation of energy, and these source wavefields are consequently not
time reversible. A solution for this is to pad our domain with random boundaries
(Clapp (2009); Fletcher and Robertsson (2011); Shen and Clapp (2011)); boundary
reflections are now incoherently scattered, and since we are not removing any energy
it is time reversible, to within computational precision. Our multiplicative imaging
condition and subsequent stacking across the shot axes reduce any residual boundary
noise to imperctible levels after around 50 or so shots / realisations. For a detailed

SEP–147

Leader and Clapp 3 Linearised inversion with GPUs

discussion of how to set up these boundaries and their scattering properties one can
refer to Clapp (2009) or Leader and Clapp (2011).

Relative to source saving RTM we need to perform an extra propagation - the
reversal and back propagation of the source wavefield, whereas previously we would
just read back the appropriate wavefield slice. Fortunately, this extra computation is
far faster than the wavefield reading scheme. In the case whereby the entire source
wavefield is held by the CPU, and only CPU-GPU transfers are needed, the random
boundary method is about 25% faster (Figure 1). For this to be the case the prob-
lem has to either be very small or the wavefield must be compressed or decimated,
which will take extra computation. Once we have to use the disk we see the random
boundary scheme is several times faster.

Figure 1: Relative speeds for RTM
implementations for propagation,
imaging, damping, injecting and
IO. The bold numbers are nor-
malised elapsed times. (a) shows
the most naive disk set up, (b) an
optimised disk set-up with asyn-
chronous transfer, (c) the case
where the 4D wavefield can be
held by the CPU memory and (d)
random boundaries. [NR]

GPU BASED LINEARISED INVERSION

GPU propagation augmented with random boundaries means no IO is required during
propagation of either wavefield, making this a very computational effective scheme
(relative to source saving.) However RTM images are often still artifact laden - low
frequency artifacts can be prevalent near salt, acquisition footprints are noticeable,
resolution is decreased (since we are squaring the source function) and random bound-
ary noise may remain. All of these imperfections can be reduced by extending this
scheme to least-squares inversion.

The inverse of our data modelling system can be approximated by constructing
the adjoint pair of such a system and iterating in a least-squares sense. This is known
as linearised inversion since we are assuming we know the kinematic model (the
background velocity) and are trying to retrieve the high frequency (perturbation) part
of the Earth model. This amounts to describing our slowness function as s2(x,y, z) =
b(x,y, z)+m(x,y, z). As an algorithm it can be described by Algorithm 1. Here F is
our operator, F ′ its adjoint, r the data-space residual, m the current model estimate,

SEP–147

Leader and Clapp 4 Linearised inversion with GPUs

dobs the input data, gg the gradient and rr the back-projected residual. The stepper
then updates the current model estimate and data-space residual. Since we are not
changing our boundaries between iterations, we first forward our source wavefields
and save the final slices necessary for back propagation. These can then be back
propagated along with the receiver wavefield in the gg = F ′r step of the algorithm.

Algorithm 1 Linearised inversion with random boundaries

Initialise
Create random boundaries
Propagate source wavefield, save final slices
r = Fm− dobs

while iter < niter; iter++ do
gg = F ′r
rr = Fgg
(m, r) =stepper(m, r, gg, rr)

end while
Output m

The adjoint process, F ′, is identical to the aforementioned RTM scheme with
random boundaries. Now we must try and implement the forward process, F , in the
most computationally efficient way. Initially we must think about our stencil. To take
the spatial derivative of the wavefield we convolve the data with a star-shaped stencil,
for an 8th order scheme in 3D this stencil is 25 points in total, as each direction shares
the centre value. Previously we only needed to define the velocity value at the centre
of our stencil, as the forward procedure was spraying the information to neighbouring
grid cells. The adjoint of this propagation requires velocity values to be defined along
the entirety of the stencil, as we now need the information from all points being
calculated to carry to all new points. This means that in addition to allocating our
wavefield values in the GPU kernel, we must also allocate the same number of velocity
points.

Previously we were using texture memory to store our velocity values to take
advantage of caching and automatic boundary control features (Leader and Clapp,
2011). What we can now do is save the relevant velocity values to shared memory,
taking care that we do not saturate the memory. For large stencil sizes this can require
the use of smaller blocks. By defining our local velocity array in the same way that
we do our wavefield values, we can still take advantage of shared memory. This extra
memory allocation and computation causes this adjoint propagator to be about 81%
the speed of forward propagation. By only using texture memory we see this drop to
around 43%, and by using global memory this decreases to 38%. On a Tesla GPU
this final speed would be slower again, since Fermi cards provide some global L1 and
L2 cache options. In order to make the system fully adjoint the source wavefield must
be propagated through the same random boundary as in the corresponding RTM, but
we can damp the data wavefield. Since we are now using equation 1 we have no time
reversal problems, because the sense of time for both the source wavefield and the

SEP–147

Leader and Clapp 5 Linearised inversion with GPUs

data wavefield are the same.

The stepper is performed on the CPU. The reasons for this are twofold - firstly we
want to transfer our data and image back to the CPU for writing purposes, so doing
the model update on the CPU creates no unnecessary data transfer. Additionally,
our solver is just a series of vector operations (dot products and subtractions) and
such operations can not be accelerated by the GPU. They no longer have a SIMD
corollary and global memory operations on the CPU are faster than on the GPU,
often by a factor of 2 or 3.

Results from this linearised inverse scheme can be seen in Figure 3, in which we
are attempting to recover the reflectivity model shown in Figure 2. Here we have 60
inline shots at a spacing of 100m and two crossline shots at a spacing of 1km, receivers
are in a dense 825x200 grid. We can clearly see the inverse scheme improving the
resolution of the top of the salt and mitigating the associated low-frequency artefacts.

Figure 2: A 2D slice from the re-
flectivity model that we are at-
tempting to recover. [ER]

DYNAMIC BOUNDARIES

As in Figures 2 and 3, we see inversion improve the images considerably, particularly
when dealing with low frequency artifacts. However the remaining random boundary
artifacts still seem to stack out fairly slowly, at a rate of about

√
N , where N is the

iteration number. One option we have is to change these boundaries as a function
of iteration, now we would expect to see a quicker reduction in boundary artifacts
between iterations. This can be done by seeding our random boundary by iteration
number, as well as shot position.

Our algorithm becomes Algorithm 2, giving us an additional propagation per iter-
ation (recalculating the random source wavefield slices). For a typical model size this
will increase computation time by around 14%. When doing phase encoded linearised
inversion we can get this for free, since recalculation of the initial residual is needed
during each iteration (Krebs et al., 2009). This system can be referred to as dynamic

SEP–147

Leader and Clapp 6 Linearised inversion with GPUs

Figure 3: RTM and linearised inversion example 2D slices. (a) shows the raw RTM
result, (b) raw inversion after 5 iterations, (c) RTM with lowcut bandpass filter and
(d) inversion after 5 iterations and lowcut filter. [CR]

SEP–147

Leader and Clapp 7 Linearised inversion with GPUs

Algorithm 2 Linearised inversion with random boundaries

Initialise
r = Fm− dobs

while iter < niter; iter++ do
Create random boundaries
Propagate source wavefield, save final slices
gg = F ′r
rr = Fgg
(m, r) =stepper(m, r, gg, rr)

end while
Output m

random boundaries, as opposed to static random boundaries. Furthermore our op-
erator is now non-linear since we have altered our velocity function and hence our
operator. This means theoretically we now have to use a non-linear solver. However
since the operator difference is only manifested in the image noise there are some
cases where a conjugate direction solver gives acceptable convergence characteristics.
We see this system become useful in areas of poor shot sampling, where boundary
artifact stacking-out can be slow, however in many cases the extra computation does
not seem to outweigh improved convergence. As a function of iteration number we
see slightly better residual performance (when using steepest descent for both), but
when we look at this as a function of cost we see very little difference. Then, by
comparing static boundaries with a conjugate direction solver to dynamic boundaries
with a steepest descent solver, we get worse performance with dynamic boundaries
as a function of cost.

It should be noted that comparing the l2 norm of the residuals in this case is
slightly misleading, since the high frequency noise we have slightly reduced is not
well represented by this measure. When looking at the images more differences are
notable than implied by this scalar fitting methodology. Additionally if we used a
better non-linear solver we would fully expect to see more comparable performance.

DOMAIN DECOMPOSITION

In the case where our model size exceeds that of our computing system we must break
up our domain. When using Fermi GPUs the global memory is 6 Gbytes, when using
Tesla GPUs we are confined to 4 Gbytes. These limited memories severely restrict
models that can be allocated. For propagation we have to allocate a minimum of
three 3D fields - two wavefield slices and the velocity model (the third wavefield slice
can replace the first) which confines us to a symmetric model of 793 pts3 including
padding regions. For RTM we need two slices for the source wavefield, two for the
receiver wavefield, the velocity model, the image and the data. Assuming our time
and depth axes are comparable in length, our restriction is now around 600 pts3. We

SEP–147

Leader and Clapp 8 Linearised inversion with GPUs

are often concerned with models more at the scale of 1000 pts3, and for wide azimuth
data sets we may have dimensions larger than this. The solution is to decompose our
domain, as in Figure 4. Performance does not strongly depend on the axis over which
we decide to break our domain, but for current algorithm design cutting the domain
along the y axis is the most effective. We want to only cut along one dimension,
rather than say break our domain into cubes along two dimensions, as this minimises
the quantity of halo transfer needed (Figure 4).

Figure 4: A diagram of how to decompose the model, dark grey regions are allocated
on both neighbouring GPUs [NR]

We need our sub-domains to overlap along the y-axis by half the stencil length,
else information would be lost between domains. Between time steps this halo re-
gion must be transferred and then synchronised before moving to the next time step.
CUDA 4.0 and above used with Fermi cards allows for Peer to Peer (P2P) GPU
communication and data transfer. Previously it was necessary to explicitly route all
information transfer between GPUs first through the CPU, which was significantly
slower. Additionally, neighbouring GPUs can now operate on a Unified Virtual Ad-
dress space (UVA), meaning there is no risk of dereferencing a pointer that has the
same address on a different GPU. In fact it is now possible to dereference pointers
on other GPUs or on the host, by virture of this UVA. Arrays can not span GPUs,
however.

The main technique of making such a method scale linearly is by using asyn-
chronous memory copies and kernel calls. When doing this it is possible to overlap
communication with computation, hiding halo communication time. This can be
done by associating certain calls to separate GPU streams, where a stream can be

SEP–147

Leader and Clapp 9 Linearised inversion with GPUs

considered as a command pipeline. Within a stream, calls are serial, however different
streams can execute concurrently. By restricting halo computation and communica-
tion to one such stream, and the other data (internal) computation to another, we can
hide the halo communication. Some simplified CUDA code using streams is displayed
below for reference.

for(i_gpu=0; i_gpu < n_gpus; i_gpu++){

cudaSetDevice(i_gpu);

kernel<<<...halo_region[],halo_stream[i_gpu]>>>(...);

kernel<<<...internal_region[],internal_stream[i_gpu]>>>(...);

}

for(i_gpu=0; i_gpu < n_gpus; i_gpu++){

cudaMemcpyPeerAsync(...halo_stream[i_gpu]);

}

for(i_gpu=0; i_gpu < n_gpus; i_gpu++){

cudaStreamSynchronise(...halo_stream[igpu]);

}

for(i_gpu=0; i_gpu < n_gpus; i_gpu++){

cudaMemcpyPeerAsync(...halo_stream[i_gpu]);

}

for(i_gpu=0; i_gpu < n_gpus; i_gpu++){

cudaDeviceSynchronise();

}

The key part to remember here is that kernel calls and async calls can overlap,
providing they are defined to separate streams. So initially we loop through devices,
then each one will calculate its halo region data. Once this is done, each GPU will
move onto the internal data calculation. Whilst this is being calculated, each GPU
moves onto the three communication loops. First off, each GPU sends its halo data
to the right and receives from the left, then each device is synchronised, then each
device sends to the left and receives from the right. Now each GPU has the relevant
halo information for the next time step. Finally we synchronise to ensure all internal
data computation is done before moving to the next time step.

The GPU devices are linked by PCIe switches and these switches are duplex,
meaning each GPU can send and receive simultaneously - providing they are in dif-
ferent directions. This means a given device can send data to the GPU on its left and
receive from the GPU on its right at the same time. We use the stream synchronise
call because the moment a device tries to send and receive in the same direction the
switch can stall, costing time. A pictorial demonstration of this is show in Figure 5.

Such a system assumes we have neighbouring GPUs on the active node in question,
linked by PCIe switches. If one has GPUs on separate nodes (such as in a distributed
network) MPI must be used for the halo communication. Unsurpisingly this is slower,
albeit only by a factor of around 1.5x.

SEP–147

Leader and Clapp 10 Linearised inversion with GPUs

Figure 5: A diagram of the two
stages of GPU halo communica-
tion, simplified to 1D [NR]

For acoustic propagation our internal computation time is always in far excess
of halo transfer time (by an order of magnitude or so), meaning communication is
always hidden and our domain decomposition scales linearly with model size, hence
it is optimised. For TTI propagation this communication time approaches that of
the internal data calculation, meaning for highly elastic and anisotropic media care
must be taken to optimise the decomposition to ensure one is never waiting for com-
munication. The moment we are waiting for information transfer we are not fully
harnessing the potential of the GPU.

CONCLUSION

We conclude that GPUs can be effective when running linearised inversion. By storing
a velocity stencil in shared memory, as well as the wavefield values, we can perform
accelerated adjoint propagation. By augmenting this with a random boundary based
RTM scheme and a CPU based model stepper we can perform least squares iterative
linearised inversion very efficiently, with little time lost for data movement.

At the point when our domain size exceeds our GPU memory it is possible to
decompose this domain across multiple devices, whether one has multiple GPUs per
node, multiple nodes with single GPUs, or any combination thereof. By making halo
communication calls overlap with internal data computation it is largely possible to
hide all communication, meaning our time scaling with model size is still linear.

Combining these schemes gives us the potential to perform large scale inversion
at a high level of fine grain parallelism.

SEP–147

Leader and Clapp 11 Linearised inversion with GPUs

ACKOWLEDGMENTS

Thanks to Paulius Micikivicius at NVIDIA for his invaluable help with GPU trou-
bleshooting, his prompt response with domain decomposition queries and his willing-
ness to share codes.

REFERENCES

Baysal, E., D. Kosloff, and J. Sherwood, 1983, Reverse time migration: Geophysics,
45, 1514–1524.

Clapp, R. G., 2009, Reverse time migration with random boundaries: SEG Technical
Program Expanded Abstracts, 28, 2809–2813.

Fletcher, R. P. and J. O. A. Robertsson, 2011, Time-varying boundary conditions
in simulation of seismic wave propagation: SEG Technical Program Expanded
Abstracts, 30, 2957–2961.

Foltinek, D., D. Eaton, J. Mahovsky, P. Moghaddam, and R. McGarry, 2009, Industry
scale reverse time migration on GPU hardware: SEG Technical Program Expanded
Abstracts, 28, 2789–2793.

Krebs, J. R., J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee, A. Baumstein, and
M.-D. Lacasse, 2009, Fast full-wavefield seismic inversion using encoded sources:
Geophysics, 74, WCC177–WCC188.

Leader, C. and R. Clapp, 2011, Memory efficient reverse time migration: Stanford
Exploration Project Report, 143.

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA:
GPGPU, 2.

Ohmer, J., F. Maire, and R. Brown, 2005, Implementation of kernel methods on the
GPU: DICTA’05 Expanded Abstracts, 78.

Shen, X. and R. G. Clapp, 2011, Random boundary condition for low-frequency wave
propagation: SEG Technical Program Expanded Abstracts, 30, 2962–2965.

Sun, J. and Y. Zhang, 2009, Practical issues of reverse time migration: True amplitude
gathers, noise removal and harmonic-source encoding: ASEG Expanded Abstracts.

SEP–147

