Image gather reconstruction using StOMP
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ABSTRACT

Constructing 3-D angle gathers through cross-correlation poses a computational
problem primarily due to the accompanying increase in volume size which forces
the gathers to be stored in a computationally more expensive memory level.
Compressive sensing can be used to mitigate this challenge. The correlation
volume size can be reduced by both phase encoding and random subsampling.
The full correlation gathers can then by reconstructed using an [/; inversion scheme
known as Stagewise Orthogonal Matching Pursuit. Preliminary results indicate
that almost all angle gather information can be recovered.

INTRODUCTION

Reverse time migration (RTM) is quickly becoming the standard high-end seismic
imaging technique. Significant work has been done on speeding up the kernel (Mi-
cikevicius, 2009; Nguyen et al., 2010; Nemeth et al., 2008; Clapp et al., 2010) but far
less on constructing image gathers(Sava and Fomel, 2003, 2006) needed for rock prop-
erty analysis or velocity updates. Image gather construction is a much less tractable
problem because it is memory rather than compute intensive. The volume size of
the domain increases by one to three orders of magnitude making the dominant cost
reading/writing to distant memories (from main memory rather than a cache, across
the PCI Bus, or from disk).

Donoho (2006) offers an approach termed compressive sensing potential solution
to this computation and storage problem. In compressive sensing, a random subset of
the desired measurements is made. An inversion problem is then set up to estimate
in an ¢1, or preferably /y, sense, a sparse basis function that fully characterizes the
desired signal. For compressive sensing to work, a signal must be highly compress-
ible. For compressive sensing to be worthwhile, the cost of inverting for the basis
function must be significantly less than the cost of acquiring the full signal. Clapp
(2011) showed that correlation gather construction fit the first criteria for a success-
ful compressive sensing problem. Multi-dimensional correlation gathers/angle gathers
are compressible at nearly a 100:1 ratio. The challenge became finding an inversion
scheme that could accurately enough recover the full model. Donoho et al. (2006)
proposed a solution to the second problem, an ¢; version methodology that works
for a large number of unknowns. In this paper, I apply the Stagewise Orthogonal
Matching Pursuit (StOMP) algorithm to correlation gather reconstruction. I show
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that the angle domain representation of the sparsely acquired gathers is similar to the
representation of the full data. I then apply a phase encoding technique, combining
many different correlations to every data point to further improve the inverted model.

IMAGE GATHERS AND WAVELET COMPRESSION

In RTM downward continuation based wave-equation imaging we have a source
s(z,y, z,it,is) and receiver wavefield g(z,y,it,is), where it is a given time and is
is a given shot. We form our migrated image i(z,y, 2) as

ns

I(x,y,z) = Z Z nts(x,y, z,it,is)g(x, y, it, is). (1)

15=0 1t=0

The imaging condition for RTM just replaces the sum over time with a sum over
frequency. This basic imaging condition hides our information about velocity and rock
properties by stacking over all angles illuminated by our source/receiver geometry.

Several solutions to this problem have been proposed that attempt to extract
information as a function of angle from the data. In this paper I focus on the family
of methods that construct shift gathers by cross-correlation. The shift can be a
function of space (Sava and Fomel, 2003) or time (Sava and Fomel, 2006), or both.
In these cases the imaging condition takes the form of

I(z,y, 2, hy, hy, hy) = ZZs(:v—l—hm,y—i—hy,z+hz,it)g(m—hm,y—hy,z—hz,it), (2)

shot ¢

where hg, hy, h, are how much the source and receiver wavefields have been shifted in
a given direction. Introducing these shift gathers poses two problems. The first, and
smaller of the problems, is that computational expense associated with constructing
these gathers, when going beyond a single shift axis, is at least on the same order
of magnitude as the propagation kernel. The larger problem is the expansion of
the volume size anywhere from 20-1000 fold, means that the shift gathers must be
stored a memory level further away from the processor, often on disk, which is often
several orders of magnitude more expensive to access. Finding some way to reduce
the volume size, and better still, the computational expense associated with shift
gather construction, can be highly beneficial. In order for compressive sensing to
be an appropriate way to reduce the volume size it is important to consider the
compressibility of seismic data.

There is significant literature on compressing seismic data. Relatively low com-
pression ratios are achievable by compressing a trace. Significantly higher compres-
sion ratios are achieved by multi-dimensional approaches. Generally, the best results
have used either multi-dimensional wavelets (Mallat, 1999) or its successor curvelets
(Cands and Donoho, 1999). Villasenor et al. (1996) showed that compression ratios of
100:1 were achievable by compressing a 4-D volume (¢, hy, h,, s). Further, Villasenor
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Figure 1: Five neighboring subsurface offset gathers. B and C are one midpoint in
X before and after A. E is one midpoint in Y before A. Note the spatial similarity,
which lends itself to compression. [ER]

et al. (1996) states that the header information was the limiting factor in achieving
even higher ratios.

Subsurface offset gathers potentially represent even higher, up to six, dimen-
sional data. To test compressibility, I used a 4-D volume (z,y, z, h,) of dimensions
(32,32,400,64). Figure 1 shows one of these subsurface offset gathers and its neighbors,
note the similarlity. Following Villasenor et al. (1996), I chose the 9/7 bi-orthonormal
transform (Antonini et al., 1992) used in JPEG compression. Figure 2 shows the re-
sulting transform space and a histogram of the absolute values. I then used several
different thresholds throwing away 90%, 95%, 98%, and 99% of the data in the wavelet
domain respectively. Figure 3 shows the result of transforming these thresholded vol-
umes back into the space-domain. The resulting images are near-perfect at 95% and
potentially acceptable at 98%. This translates into an acceptable compression ratio
of approximately 30:1.

COMPRESSIVE SENSING
Compressive sensing is a statistical technique attributed to Donoho (2006), but whose

start could be placed as early as the basic pursuit work of Mallat and Zhang (1993).
A compressive sensing problem at its heart is a special case of a missing data problem.
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Figure 2: Panel A shows the wavelet domain representation of the 4-D volume used in
this experiment. Panel B shows a zoom into a portion of the wavelet domain. Panel
C shows a histogram of the wavelet domain values. Note how the vast majority of
the values are nearly zero. [ER]

In geophysics, we often think of a missing data problem as solving for a model m given
some data d which exist in the same vector space. We have a masking operator R (1
where the data is known, 0 elsewhere). We add in some knowledge of the covariance
of the model through a regularization operator A. We then estimate the best model
from the following system of equations in a /5 sense,

0 ~ Iq :Kz(d—Rm)
0~ry, =/((Am), (3)

where rq and ry, are the result of taking the ¢ norm of the first and second equations.
The success of this approach relies on the accuracy of A to describe the covariance
of the model.

Compressive sensing approaches the problem from a different perspective. It starts
from the notion that there exists a basis function that d can be transformed into
through the linear operator LT in which very few non-zero elements are needed to
represent the signal. The compressive sensing approach is then to set up the missing
data problem in two phases. First, estimate the elements of the sparse basis function
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Figure 3: The result of zeroing the smallest values of the wavelet domain represen-
tation shown in Figure 2A. All four panels show the same subsurface offset gather
shown in Figure 1. A shows the result of clipping 90% of the values; B, 95%; C, 98%;
and D,99%. Note how the reconstructed gather is nearly identical up to a 98% clip.
[ER|

m through,
O~r=/;(d—RLm), (4)

where we are now estimating m in the ¢; sense. We can then apply L to recover the
full model. The magic of compressive sensing is that you only need to collect a small
multiple, typically 4-5, more data points than the number of non-zero basis elements.
In the case of correlation gather compression this would indicate collecting in the
range of 5% of the correlations should be sufficient to recover the entire model, much
smaller than what the Nyquist-Shannon (Nyquist, 1928) criteria would suggest.

STOMP ALGORITHM

The most difficult challenge in solving a compressive sensing problem is often finding
an effective ¢; (preferably £y) solver. These solvers generally have difficulty converging
and are notoriously slow. The large size of any cross-correlation volume (10e7 to 10e8
elements) or, with a compressed basis still 10e5-10e6, make most ¢; solver approaches
impractical. Donoho et al. (2006) noted this problem with many ¢; approaches and
suggested an alternative, Stagewise Orthogonal Matched Pursuit (StOMP).
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StOMP attempts to leverage the power of ¢ solver with the ¢, properties of
approaches such as basic pursuit (Chen et al., 1998). The basic idea is to iteratively
select the most important model elements by mapping into the model space and
selecting model locations with the largest amplitudes. An /5 inversion problem is
setup allowing only the locations selected in the previous step to be non-zero. The
problem is mapped back into data space, the residual is recalculated, and the process
is repeated. Algorithm 1 describes the approach in more detail.

Algorithm 1 StOMP algorithm
residual r = d
non-zero elements M = EmptySet
model m =0
operator L
for StOMP iterations do
g=LTr
Meaningful non-zero elements N = Clip(g)
M=MUN
m = (MTLTLM)>ML™r
r=r -+ LMm
end for

As a first attempt to use this method, I randomly subsampled a 4-D cr-correlation
space (2, hy, cmp,, cmp,) by a factor of 25 to form d. I used the multi-dimensional
wavelet compression operator W described in Clapp (2011), choosing 4 levels in z, 3
levels in h, 2 levels in emp, and cmp, as L. Figure 4 shows two Common Reflection
Point (CRP) gathers in the subsurface offset and angle domain. Figure 5 shows a
portion of the wavelet domain representation of the cross-correlation gathers, note
how few samples are non-zero.

The “art” of StOMP is choosing the number of iterations and the clipping scheme
to use to select important basis elements. In this example, I took a rather crude ap-
proach. I did StOMP iterations increasing the number selected non-zero elements to
approximately match the level of sparsity observed in the wavelet domain representa-
tion. Figure 6 shows the same two subsurface offset gathers and their corresponding
angle gathers. I used a large value clipping scheme that guaranteed 4% non-zero basis
elements after 10 iterations Clapp (2011) showed that subsurface offset gathers could
be compressed by a factor of 100 and still retain most relevant information. Note
that though there is visible noise in the subsurface offset gathers the angle domain
representation is quite similar. Figure 7 shows the resulting wavelet domain which
appears to be significantly dissimilar to Figure 5. From C and D of Figure 6 however
it appears that most of this difference doesn’t map into coherent events in the angle
domain.
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Figure 4: A, B,C and show two subsurface offset gathers from a 4-D volume. D, E,
and F show the same to CRP gathers in the angle domain. [ER]

Figure 5: The wavelet domain
representation of the subsurface
offset domain 4-D volume par-
tially shown in A and B of Fig-
ure 4. [ER]
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Figure 6: A, B, and C show the recovered subsurface offset gathers using compressive
sensing as shown in plot A, B, and C of Figure 4. D, E, and F show the corresponding
angle gathers. Note how even though A, B, and C are significantly different than A,
B, and C of Figure 4, D, E, and F contain virtually the same information. [ER]

Figure 7: The wavelet domain sig-
nal after 10 iterations of StOMP.
Note the dissimilarity with the
correct wavelet domain show in

Figure 5. [ER]
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PHASE ENCODING

Phase encoding is another powerful technique to reduce data size. The basic idea
of phase encoding is to sum several independent experiments together each scaled
by a different multiplier. This multiplier could be something as sophisticated as a
Gold code (Gold, 1967) or as simple as scaling the different experiments by -1, 0,
or 1. The idea is that the combining of the different experiments will not, or will
minimally, affect the final model. This “magic” is achieved because the encoded
experiments only interact slightly when applying the operator to produce the model
or through inversion techniques that attempt to undo the encoding. Examples of the
first approach in geophysics can be seen in phase encoded migrations, such as plane
wave migration (Whitmore, 1995), or more general phase encoded migrations(Shan,
2008). Examples of using phase encoding in inversion can be seen velocity estimation
(Guerra, 2010) did inverse imaging (Tang, 2011; Leader and Almomin, 2012).

For the correlation gather construction problem, I attempted to encode multiple
different correlations into each data sample. In terms of operators, we can think of
the subsampling of correlations as applying a subsampling operator S to all possible
correlations d. In the phase encoded case, we are going to add another operator P
that first sums a number of different correlations together and then subsamples them
leaving a new dataset SRd. This in turn changes the operator L in algorithm 1
to PW. For this test, I combined 20 different correlations in a random pattern to
form each data point. Figure 8 shows the same three offset and angle gathers seen
in Figures 4 and 6. Note the noticeably better job recovering the deeper portion of
subsurface offsets. Figure 9 shows the angle gathers from the fully sampled correlation
gathers and the subsampled, phase encoded gathers muted to the believable angle
range. The gathers with the notable exception of more lower frequency noise in the
recovered gathers.

DISCUSSION AND CONCLUSIONS

Creating full 3-D angle gathers through cross-correlation gathers is currently compu-
tationally impractical given the volume size that needs to be read/written for every
shot. Compressive sensing offers a potential solution to this problem by collecting a
subset of the correlation gathers and then forming the entire volume after all shot
contributions have been stacked. The StOMP algorithm appears to be an effective
method to obtain a sparse basis function necessary for a successful compressive sensing
effort. Phase encoding to encode multiple correlations into every data point appears
to offer an improved result. Further work on full 3-D shift gathers is needed to prove
the feasibility of the method.
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Figure 8: A, B, and C show the recovered subsurface offset gathers using compressive
sensing as shown in plot A, B and C of Figure 4 and 6. D, E, and F show the corre-
sponding angle gathers. Note the noticeable improvement in A, B, and C compared
to the data shown in Figure 6. [ER]
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Figure 9: A comparison of the angle gathers after muting of the fully sampled corre-
lation gathers (A, B, and C) and the phase encoded, subsampled correlation gathers
(D, E, and F). [ER]
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/8./ ?he first cells were probably...?

2. A 3-kg object is released from rest at a height of 5m on a curved
frictionless ramp. At the foot of the ramp is a spring of force
constant k = 100 N/m. The object slides down the ramp and into
the spring, compressing it a distance x before coming to rest.
10  (a) Find x.
5 (b) Does the object continue to move after it comes to rest? If yes
, how high will it go up the slope before it comes to rest?

U, = %(09)x =504 et ‘
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