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ABSTRACT

By extending the velocity-model domain to subsurface offsets we solve the local-
minima problem of data-fitting waveform inversion. We then regularize the
extended-model data-fitting inversion with the addition of an image-focusing
term to the objective function, therefore achieving robust global convergence
of the waveform inversion problem. The method shares with full waveform in-
version the advantage of simultaneously solving for all the wavelengths of the
model, but it also has the global convergence characteristics of wave-equation
migration velocity analysis. Numerical implementation of the proposed inversion
method requires the solution of an extended wave-equation where velocity is a
convolutional, instead of scalar, operator. The resulting method is therefore com-
putationally intensive, but it can be easily tested in 2D. A simple example with
a Gaussian velocity anomaly illustrates how the reflections from the anomaly
recorded in the low-frequency components of the data increase the spatial reso-
lution of the final inversion results. Numerical tests performed on synthetic data
from a modified Marmousi model demonstrate the global convergence as well the
high-resolution potential of the method.

INTRODUCTION

Conventional seismic imaging relies on a separation of scales between migration ve-
locity model (long-wavelength components) and reflectivity (short-wavelength com-
ponents). The migration velocity model is estimated first, and then it is used as
input to migration for imaging reflectivity. Even when wave-equation operators are
employed to estimate the velocity, such as in wave-equation migration velocity anal-
ysis (WEMVA) methods, reflectivity is used only indirectly to measure the focusing
power of the velocity model (Biondi and Sava, 1999; Shen and Symes, 2008). The
only important exceptions in current practice occur when migrated volumes are used:
1) to interpret boundaries of geobodies (e.g. salt bodies), whose interior are assigned
predefined velocities, and 2) to estimate predominant dips in the geologic layering that
are then used to constraint a tomographic velocity updating (Clapp et al., 2004).

As the industry strives to widen the data frequency band at both the low and
high end, the advantages of overcoming the limitations of conventional imaging, and of
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exploiting reflectivity information for velocity estimation, are becoming more relevant
to important imaging problems. One of the main attractions of full waveform inversion
(FWI) (Tarantola, 1987; Pratt, 1999) is to overcome the limitations imposed by the
conventional approach that may limit the quality of the imaging results by finding
a suboptimal solution. However, FWI suffers from well-known convergence problems
when the starting model is far from the correct one and low frequencies are missing
from the data.

We discuss an inversion framework that overcomes FWI difficulties by supple-
menting an FWI-like data-fitting objective function with a WEMVA-like term that
measures the reflection-focusing power of the velocity model. The method fits the
recorded data with data modeled using a generalized version of the acoustic wave
equation; the domain of velocity model is extended to include subsurface offsets. The
extension of the reflectivity along the subsurface offset axes (or reflection angles) is a
well-established technique for migration, linearized waveform inversion, and WEMVA
(Biondi, 2006). In a data-fitting inversion, extending reflectivity to the prestack do-
main has the critical advantage that the kinematics of the modeled data will not
be too distant from the ones of the recorded data, no matter the magnitude of the
background velocity error.

Symes (2008) introduced the idea of using a wave equation with an extended
velocity. By extending velocity the convergence difficulties of conventional FWI are
overcome and all scales can be solved simultaneously. In the same paper, he also
introduced the waveform-inversion formulation used in this paper, and described its
application to the solution of 1D inversion problem in presence of multiple reflections.

The main goal of our research is not to tackle the problem of multiples, but to
perform simultaneous inversion for all scales of the velocity model. Therefore, we
apply the theory and numerically solve the extended wave equation in 2D. We also
derive an effective scheme to linearize the extended wave equation and to compute the
gradient of the objective-function by an adjoint-state method. In 3D the proposed
method would be extremely expensive. In a companion report, (Almomin and Biondi,
2012) we present an approximation to the method presented here that drastically
reduces the computational cost, but still retains the capability of simultaneously
solving for all the wavelengths of the velocity model.

Another potential problem with strict coupling of velocity with reflectivity arises
when the assumption of constant density cannot be made, as is the case in most of
field data problems. In this case density variations may create reflections that do not
correspond to velocity contrasts. However, we still would like to avoid the addition of
density to the problem parameters for computational and convergence reasons. The
approximate method proposed in Almomin and Biondi (2012) has the potential of
being more flexible in accommodating these discrepancies.
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TOMOGRAPHIC FULL WAVEFORM INVERSION
(TFWI)

The conventional FWI objective function Jgw; can be written as:
Jewi(v) = [[d(v) — dops[l3, (1)

where v is the velocity model, d(v) is the modeled data, and dops is the observed
data.

The modeled data is computed as:
d(Xs, Xp,w; V) = f(Xs, w)G(Xs, X, w; V)O(X, — X), (2)

where f(x,,w) is the source function, w is frequency, x; and x, are the source and
receiver coordinates, and x is the model coordinate. In the acoustic, constant-density
case the Green’s function G(x;,x,w;Vv) satisfies:

&%%+W)ﬂ%&%ﬂ=&m—@- (3)

For the sake of compact notation, in the rest of the paper we present the expres-
sions for computing the data and the gradient of objective functions in the frequency
domain. However, we perform the computation in the time domain.

We can extend the velocity in the subsurface-offset dimension h which changes
the wave equation into the following form

(v?(x,h) 7' w? + V?) G(x,, x,w; v) = §(x5 — X), (4)

where with *~! we indicate deconvolution. Notice that the division by velocity in

equation 4 becomes a deconvolution over the offset axis. Once we define the Green’s
function, the data could be computed similarly to equation 2. We now write the new
objective function as follows:

Jeewr (v(1)) = [[d (v(h)) — dows[5 (5)

The long-wavelength components of the solution of the optimization problem de-
fined by equation 5 are not likely to be substantially different from the long-wavelength
components of the initial model. The extension of the model, and in particular of
its reflectivity component, to non-zero subsurface offset causes the kinematics of the
modeled data to match the kinematics of the recorded data independently from the
accuracy of the long-wavelength components.

Another term must be added to the objective function to drive the solution towards
a model that focuses the image. Symes (2008) suggests the addition of a differential
semblance penalty function (DSO); that is,

Joso(v(h)) = [|[h|v(h)]3. (6)
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We use this focusing term in the numerical experiments described in this paper.
Another valid choice would be the maximization of the normalized power of the stack
over reflection angles as a function of a residual moveout parameter p, as suggested
by Zhang and Biondi (2012).

The important characteristic of the second term is that its gradient “imposes” on
the current model only a phase shift, and not a bulk vertical shift. This assures that
the corresponding perturbations on the modeled data are mere phase shifts, and not
bulk time shifts. The absence of bulk time shifts in the modeled data avoids large
discrepancies between the kinematics of modeled data and recorded data. These large
discrepancies are at the root of the convergence problems in conventional FWI.

Another practically important consideration is that in the proposed formulation
the computation of the gradient of a term like the one presented in Zhang and Biondi
(2012) is straightforward because it does not require back-projection of image per-
turbations. This is in contrast with WEMVA-like methods, where the computation
of the gradient must take into account the constraint that the image is the result
of migrating the recorded data. Therefore, at least in principle, it would be equally
easy to add to the objective function other terms that reward focusing of the model
along the midpoint spatial axis, in addition to the subsurface offset or reflection angle
(Biondi, 2010).

GRADIENT COMPUTATION

To compute the gradient of the objective function expressed in equation 5, we need to
linearize the extended wave equation 4. Usually equation 3 is linearized over slowness
or velocity. However, the extended wave equation 4 includes a deconvolution over the
offset axis that is not easy to implement. Hence, we will first rearrange equation 4
to a form that facilitates the computation of the gradient, and that is actually solved
numerically in the propagation. This can be achieved by convolving both sides of the
equation by the square of velocity then rearranging the terms as follows:

w?G (x5, x,w,v) = v*(x,h) * (§(xs — x) — V2G(x4,%X,w,V)) .

We now can linearize the relationship between the Green’s function and the model
by perturbing the model around a background value as follows:

v2(x,h) = 03(x, h) + Av*(x, ),

where vg(x, h) is the background component and Av(x, h) is the perturbation compo-
nent, i.e. the model update. After this separation, the first-order Born approximation
can be used to define the gradient as follows:

gd(xa h) =
> [V2f(xe,w)G (x4, % — h,w; vo(h))

X, Xr,W

G (%% + h,w; vo(h) Ad®(x., %, w; vo(h)]
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where Ad are the data residuals and * indicates the complex conjugate. Unlike the
usual linearization of the wave equation, the scattering term includes a Laplacian
operator instead of the second derivative in time. The Laplacian operator does not
add to the computational cost since it is already computed in the propagation of the
background wavefield.

SYNTHETIC DATA EXAMPLES

We tested the proposed inversion method with two different synthetic data sets. The
first one was generated assuming a simple model where the goal was to estimate a
Gaussian positive velocity anomaly. The second data set was generated assuming a
slightly modified Marmousi model.

Gaussian Anomaly

To illustrate the interplay between different scales of the velocity during the inversion
we applied the proposed method to a two-layer model with a Gaussian anomaly in
the middle of the first layer, as shown in Figure 1. The velocity of the top layer is 3
km/s and of the bottom layer is 3.5 km/s. The velocity at the center of the Gaussian
anomaly is 3.5 km/s. The interface between the layers is at 2 km depth and the
Gaussian anomaly is centered at 1 km depth.

A Ricker wavelet with a fundamental frequency of 15 Hz and temporal sampling
of 1.5 ms was used as a source function to model the data. The wavefields were
generated by 31 sources with a spacing of 100 m and recorded by 151 fixed receivers
with a spacing of 20 m. The maximum offset is 1.5 km. The initial model is a constant
model of 3 km/s velocity.

Figure 2 shows the difference between the velocity model estimated after one
iteration and the starting model. As expected, the reflector is well imaged, though
not perfectly focused under the velocity anomaly. Figure 3 shows a rescaled window
of Figure 2 around the anomaly. It shows how the reflections from the anomaly
measured from the low-frequency components of the data start outlining the contour
of the anomaly. Figure 4 shows the difference between the initial and the inverted
model after 2000 iterations. Figure 5 shows a rescaled window of Figure 4 around the
anomaly. The anomaly is now fairly well focused. However, the maximum amplitude
of the estimated anomaly is still a fraction of the amplitude of the true anomaly, but
better recovered than if it had been estimated using conventional velocity estimation
methods based only on the transmission effects (Almomin and Biondi, 2012).

Figure 6 shows three sections of the difference cube obtained by subtracting the
starting model from the model obtained after one iteration. These sections are taken
at fixed horizontal coordinates and are functions of depth and subsurface offset. These
images are analogous to migration subsurface-offset common image gathers; they
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show the lack of focusing of the model along the subsurface-offset axis. Figure 7
shows the gathers taken at the same locations as the ones shown in Figure 6, but
after 2000 iterations. The gathers are now well focused around the zero-offset axis,
indicating that the final model well explains the kinematic effects of the reflections
that propagated through the velocity anomaly. Indeed, the gathers shown in Figure 7
appear artificially focused around zero subsurface offset. This appearance is caused by
the DSO term in the objective function forcing the focusing of the image even beyond
what would have been the focusing with the true model. In the data domain this
“extra” focusing causes extrapolation of events beyond the recorded offsets (Clapp,
2005).

Figure 8 shows the normalized data residual as a function of iterations. The
residual has not completely not flatten out and converged to zero; further iterations
would improve the results.
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Marmousi model

To test the convergence and resolution characteristics of the TEFWI method, we ap-
plied it to the inversion of a synthetic data set generated assuming the modified
Marmousi model shown in Figure 9. This model is the classical Marmousi with the
addition of a 500 m water layer. The data were modeled assuming 93 shots with 100
m spacing and a Ricker wavelet with fundamental frequency of 15 Hz. The reflected
wavefields were recorded by 461 receivers with fixed spread and 20 m spacing.

We compare the results of three inversion methods starting from the model shown
in Figure 10, which was obtained by applying strong horizontal smoothing to the
true model. Figure 11 shows the model obtained with conventional FWI; that is, by
minimizing the objective function expressed in equation 1. As expected, conventional
FWI fails because of its well-known difficulties with global convergence. The result-
ing model is almost identical to the starting one, with only a few shallow velocity
discontinuities being imaged.

Figure 12 and 15 show the results of extended FWI (EFWI); that is, the min-
imization of the objective function expressed in equation 5. Figure 12 shows the
zero subsurface offset section, displayed in color to facilitate the analysis of the long-
wavelength components of the velocity. These components are similar in the final
model and in the initial model. However, in contrast with the simple FWI, reflec-
tivity is now imaged across the section, though misplaced and only partially focused
because of the persistent errors in the long-wavelength components of the velocity.
Figure 15 shows three sections of the difference cube obtained by subtracting the
starting model from the final model. These sections are taken at fixed horizontal
coordinates and are functions of depth and subsurface offset. These images are anal-
ogous to migration subsurface-offset common image gathers; they show the lack of
focusing of the model along the subsurface-offset axis.

Figure 13 and 16 show the results of the proposed tomographic full waveform in-
version (TEFWI). To compute these results we minimized an objective function defined
by the sum of equation 5 and equation 6. The zero subsurface-offset section (Fig-
ure 13) shows remarkable convergence towards the true model, in particular in the
middle of the section where the model is well illuminated by the modeled data. The
offset-domain common image gathers shown in Figure 16 confirm that the final model
correctly focuses the reflected events. Similarly to the previous example (Gaussian
anomaly), the gathers shown in Figure 16 appear artificially focused around zero sub-
surface offset. As discussed previously, this appearance is caused by the DSO term
in the objective function forcing the focusing of the image even beyond what would
have been the focusing with the true model.

Finally, Figure 14 shows normalized values of the norm of the data residuals as
a function of iterations for all three methods we discussed: FWI in blue, EFWI (i.e.
minimizing only objective function 5) in red and TFWI (i.e. minimizing sum of
objective functions 5 and 6) in magenta. Notice that in the case of TFWI, even if
the objective function had two terms, only the value of Jgpwr (i.e. the data fitting
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term) is plotted in the graph. The graphs show that FWI has not converged even
after hundreds of iterations. The data residuals decrease more quickly for EFWI than
for TF'WI because EFWI does not need substantial changes in the long-wavelength
components of the model to fit the data. However, the magnitude of the final residuals
is comparable between the two methods.

CONCLUSIONS

We presented and tested a method to invert for all wavelengths of the velocity model
simultaneously from seismic reflection data. The method does not suffer from the
global convergence limitations of conventional full waveform inversion. The method
is based on the extension of the velocity model to subsurface offsets and on the addi-
tion of a reflection focusing objective function to the conventional FWI data-fitting
objective function. The Marmousi model numerical tests indicate that the method
can robustly converge to very accurate models when FWI fails. The numerical solu-
tion of the wave equation with the extended velocity is computationally expensive.
The excellent results, and the computational expense, justify the search of an approx-
imate solution that still enables the simultaneous solution for all wavelengths in the
model. We present such approximation in a companion report (Almomin and Biondi,
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Figure 14: Graphs of data resid-
uals as function of iterations for:
FWI (blue), EFWI (red), and
TFWI (magenta). [CR]

Figure 15: Final model subtracted
from initial model taken at x=2.5,
5, and 7.5 km for EFWI. [CR]

Figure 16: Final model subtracted
from initial model taken at x=2.5,
5, and 7.5 km for TFWI. [CR]
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