Tomographic full waveform inversion: Practical
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ABSTRACT

We provide an alternative formulation to tomographic full-waveform inversion
which computes the backscattering and the forward scattering components of
the model separately. To maintain high resolution results of tomographic full-
waveform inversion, the two components of the gradient are mixed based on a
Fourier domain scale separation. This formulation is based on the Born approxi-
mation where the medium parameters are broken into a long wavelength and short
wavelength components. This approximation has an underlying assumption that
the data contain primaries only without multiples. The results of the Marmousi
model show that convergence is possible even with large errors in the initial model
that would have prevented convergence to conventional full-waveform inversion.

INTRODUCTION

Seismic velocity-analysis methods can be divided into two major groups. First, there
are techniques that aim at minimizing the misfit in the data domain, such as full-
waveform inversion (Tarantola, 1984; Pratt, 1999; Luo and Schuster, 1991). Second,
there are other techniques that aim at improving the quality in the image domain, such
as migration velocity analysis (MVA) (Symes and Carazzone, 1991; Biondi and Sava,
1999; Shen, 2004; Zhang et al., 2012). These techniques try to measure the quality
of the image in several ways and then invert the estimated image perturbation using
a linearized wave-equation operator.

There are several advantages to minimizing the residual in the image-space, such as
global convergence, increasing the signal-to-noise ratio, and decreasing the complexity
of the data (Tang et al., 2008). However, a common drawback in doing velocity
analysis in the image domain is that only the transmission effect of the velocity are
used. This results in a loss of vertical resolution in the estimated model updates.
On the other hand, Full-Waveform Inversion (FWI) does not have that problem,
since it utilizes the information from both the forward-scattered and back-scattered
wavefields. This results in higher resolution in the model estimates. Moreover, the
data misfit is computed in the data spaces directly without the need to go to another
domain or to separate the data into several components. This direct computation of
the errors results in a relatively simple relationship between the data residuals and
the model updates. However, FWI has the disadvantage that its objective function
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is far from being smooth and convex; it requires the starting model to be very close
to the true model to avoid converging to local minima.

The conventional solution is to invert first for the velocity model using MVA
techniques and then use the output as the initial model for FWI. However, this
practice might not work if the results of MVA are not accurate enough for FWI to
start. This could be a result of the larger null space that forward-scattered wavefields
do not constrain. Moreover, the convergence rate of the MVA techniques is going to
be sub-optimal, since they do not use all of the information in the data.

In a companion paper (Biondi and Almomin, 2012), we present a generalize frame-
work called Tomographic Full Waveform Inversion (TFWI) that combines both FWI
and WEMVA techniques. This generalized approach utilizes all the components of
seismic data to invert for the medium parameters without the cycle-skipping problem.
This is achieved in two steps: first by extending the wave equation and adding an
offset axis to the velocity model, and second by adding a regularization term that
drives the solution towards the zero subsurface offset (Symes, 2008). However, this
velocity extension makes the propagation considerably more expensive because each
multiplication by velocity becomes a convolution over the subsurface offset axis.

In this paper, we present an approximation that significantly reduces the compu-
tational cost of TFWI while maintaining its desirable characteristic of enabling the
simultaneous inversion of all wavelengths of the model. First, we use the Born approx-
imation to break the extended velocity model into two components: a background
component affecting transmission and a perturbation component affecting reflections.
Second, we reduce the background component to zero subsurface offset while keeping
the perturbation component at all offsets. This simplification of the background com-
ponent is the key in reducing the computation cost since the convolution with velocity
in propagation becomes a multiplication instead of convolution. However, breaking
the model into two components hinders the simultaneous inversion of different wave-
lengths of the model. Moreover, the scale separation by Born approximation is not
perfect since the reflection component of a certain frequency or angle can affect the
transmission component of another frequency or angle. Therefore, we add a final step
where we mix the gradients of each component and then separate them in Fourier
domain.

Another potential advantage of the method presented in this paper compared
to the complete method presented in Biondi and Almomin (2012) is the ability to
handle variable density without having to adapt a more complicated form of the
wave-equation. In the complete method, the inversion tries to fit the data using a
velocity model only. Variations in the velocity model will cause both a transmission
and a reflection effect. This becomes an issue in the presence of density variations
that only change the reflections of the data without affecting the transmission. In the
efficient method, this issue can be avoided since the reflectivity is separated from the
background. Therefore, the reflectivity part of the model can absorb any reflection
effects that do not fit the background part of the model.
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SCALE SEPARATION

Although the next derivation is done in frequency domain, the actual implementation
is done in time domain. First, we start with the tomographic full waveform objective
function Jrpwr which can be written as:

Jrewi(v(h)) = [[d (v(h)) — dows[3 + e[[Av(h)]3, (1)

where h is the offset, v(h) is the extended velocity model, d(v(h)) is the modeled
data, dos is the observed surface data, € is a scalar weight of the regularization term
and A is a regularization operator. The modeled data d(v(h)) is computed as:

d(Xs, %X, w; v(h)) = f(xs,w)G (X5, %, w; v(h))d(x, — %), (2)

where f(w) is the source function, w is frequency, x5 and x, are the source and receiver
coordinates, and x is the model coordinate. In the acoustic, constant-density case
the Green’s function G(x;,x,w; v(h)) satisfies:

(v7%(x,h) * w® + V?) G(xs,x,w) = d(x; — X), (3)

where * denotes a convolution operator over the subsurface offset axis (Symes, 2008;
Biondi and Almomin, 2012). The first simplification of the extended velocity model
is to separate it into a background and a perturbation as follows:

v~ 3(x,h) = b(x,h) + r(x, h), (4)

where b(x) is the background component, which is a smooth version of the slowness
squared and r(x) is the perturbation component. This separation assumes that b(x)
will contain the transmission effects and r(x) will contain the reflection effects. De-
pending on the error of the initial background velocity, the perturbation component
can extend across several subsurface offsets so it is important to keep its offset axis.
On the other hand, the background component is not expected to generate reflections
that would be grossly time shifted with respect to the recorded data, and it thus safe
to restrict it to zero offset. A physical interpretation is that the wave speed is not
expected to vary much across different angles, at least in the isotropic case that we
are analyzing. Therefore, the extent of background component across subsurface off-
sets can be reduced. If the velocity is expected to vary, the same reduction can be
applied while keeping more than zero subsurface offset. In our derivation, we reduce
the background to only the zero subsurface offset as follows

v™%(x,h) = b(x) + r(x, h). (5)

After the separation and reduction, the Born approximation can be used to linearize
wave equation where the data is assumed to contain primaries only. The linearized
wave equation defines the data as follows:

d(x,,%,,w;b,r(h)) = —w*f(w) Y~ G(x,,x — h,w;b)r(x,h)G(x + h,x,,w;b), (6)
x,h
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where the Green’s functions now satisfy the conventional acoustic wave equation as
follows:

(w?b(x) + V?) G(xs,x,w) = 6(x5 — X), (7)
(w?b(x) + V?) G(x,%,,w) = 6(x — X;).. (8)

The forward modeling can be written in a compact notation as follows:
d = L(b)r(h), (9)

where L is the Born modeling operator. We now define a new objective function for
the efficient TEFWI inversion as:

Jerrwi(b, r(h)) = [|L(b)r(h) — dows|l; + €l Ar(h)]3. (10)

Notice that there are similarity with the regularized linearized inversion proposed
by Clapp (2005), with the important difference that here we are including both the
background and the perturbation components as variables in this objective function.
The Born modeling operator is linear with respect to perturbation but nonlinear with
respect to the background component. Therefore, another linearization around the
“background” background is required to compute the gradient. First, we rewrite the
background as the sum of two components as follows:

b(x) = bo(x) + Ab(x), (11)

where bg(x) is the current background model and Ab(x) is the perturbation of the
background. The Born approximation is used again to linearize the L operator with
respect to the background resulting in a data-space tomographic operator. The data
perturbation with respect to the background perturbation is now defined as:

Ad(xs, %X, w; bg,r(h)) = Z
x,y;h
W f(w)G(x,,y — h,w; bo)r(y, h)G(y + h, x, w; by) Ab(x)G(X, X,., w; bg)+
W f(w)G(x4, X, w; by) Ab(X)G(x,y — h,w; by)r(y, h)G(y + h,x,,w; by), (12)

where y is the perturbation coordinates. As we can see in the previous equation, the
tomographic operator correlates a background and a scattered wavefield from both
source and receiver sides. The scattered wavefields are computed by correlating a
background wavefield with the reflectivity model r and then propagating again to
all model locations. The forward tomographic operator can be written in a compact

notation as follows: oL
Ad = 8_br(h>Ab = TAD, (13)

Where T is the tomographic operator that relates changes in the background model

to changes in the data. We can now compute the reflectivity gradient as follows:

aJ
Or(h)

ge(x,h) = = L*Ad, (14)
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which is simply migration of the residuals. Then, we compute the background gradient
as follows:
oJ

db
It is important to notice that reflectivity has two roles in computing the background
model gradient. First, it is used to computed the data residuals. Second, it is used
to scatter the background wavefields and compute the scattered wavefields of the
tomographic operator.

9b(x) = T*Ad. (15)

SCALE MIXING

A direct use of the gradients is to update their corresponding models directly. How-
ever, this would hinders the simultaneous inversion of different wavelengths of the
model. Hence, we first mix the two gradients and then separate them in Fourier
domain to get the update of each model as follows:

sb(x) = Cp(gn(x) + gx(x,h = 0)), (16)

where sp(x) is the search direction of the background model and Cy, is a low-pass
filter. Similarly, we can compute the update of the perturbation model as:

sp(x,h) = Cr(gn(x) + gr(x,h)), (17)

where s,(x, h) is the search direction of the perturbation model and C, is a high-pass
filter. In order to sum the two gradients properly, both of them need to have the
same units as well as the same scale. This requires careful implementation of each
operator at each linearization.

For the examples shown in this paper, we used a radial cut-off in the Fourier
domain with a cosine squared taper. The wavelength cut-off is based on the dominant
frequency in the data as well as the average velocity of the initial model. Also, the two
filters were designed such that they always sum to one at all wavelength to maintain
the energy of the gradients.

SYNTHETIC EXAMPLES
Gaussian Model

For the first of synthetic example, we use a two-layer model with a Gaussian anomaly.
The velocities for the top layer, bottom layer and peak of the Guassian anomaly are
3000 m/s, 3500 m/s and 3500 m/s, respectively. Figure 1 shows the true velocity
model. A Ricker wavelet with a fundamental frequency of 15 Hz and temporal sam-
pling of 1.5 ms is used as a source function to model the data. There are 151 fixed
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Figure 1: The true velocity of Gaussian model. [ER]

receivers with a spacing of 20 m and 31 sources with a spacing of 100 m. The maxi-
mum offset used is 1500 m in both sides and the initial model is a constant model of
3000 m/s velocity.

We first modeled the observed data with the conventional acoustic wave-equation
nonlinear modeling operator. Then, we computed the initial data using the same
nonlinear operator on the initial model. The two datasets are subtracted from each
other to remove the direct arrivals. We then use the subtracted data as the “observed
data” in equation 10.
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We show the results of running 400 iterations of minimizing equation 10 with
and without the scale mixing described in equations 16 and 17. Figure 2 shows the
normalized residual of the data fitting part, described by the first term of equation 10,
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as a function of iterations. The residuals of both inversions decrease monotonically
without getting stuck in a local minima. However, scale mixing shows a much faster
convergence rate.
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Figure 3: The inverted background of the Gaussian model example. [CR]

Figures 3 and 4 shows the final background and reflectivity models without scale
mixing. The background has a low vertical resolution with relatively strong side-lobes
around the anomaly location. The reflectivity model has a low horizontal resolution
where the sides of the anomaly are not well illuminated. This lack of resolution in
both models is expected due to the limited acquisition.

Figures 5 and 6 shows the final background and reflectivity models with scale mix-
ing. The background has a much better vertical resolution that locates the anomaly
at the correct depth. Moreover, the peak amplitude of the anomaly is more than
three times stronger compared to Figure 3 while the side-lobes remained at the same
strength. The reflectivity model shows substantial improvements in resolution as well.
The sides of the anomaly seem to be better illuminated after scale mixing. Although
reflectivity is linear with respect to the data, the inverted model seems to benefit
from the scale mixing. Therefore, the contribution of the background gradient seem
to add to the null space components of the reflectivity model, and vice-versa.

Marmousi Model

A modified Marmousi model is used for the next synthetic example where 500m of
water layer is added to the top. Figure 7 shows the true velocity model. A Ricker
wavelet with a fundamental frequency of 15 Hz and temporal sampling of 1.5 ms is
used as a source function to model the data. There are 461 fixed receivers with a
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Figure 4: The inverted reflectivity of the Gaussian model example. [CR]
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Figure 5: The inverted background of the Gaussian model example with mixing of
scales. [CR]
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Figure 6: The inverted reflectivity of the Gaussian model example with mixing of
scales. [CR]
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spacing of 20 m and 93 sources with a spacing of 100 m. The initial model is shown
in Figure 8 which is obtained by strongly smoothing the true model laterally. The
conventional FWT fails when starting from this initial model (Biondi and Almomin,
2012).

Similar to the Gaussian model, we modeled the observed data with the conven-
tional acoustic wave-equation nonlinear modeling operator. Then, we computed the
initial data using the same nonlinear operator on the initial model shown in Figure
8. The two datasets are subtracted from each other to remove the direct arrivals. We
then use the subtracted data as the “observed data” in equation 10.

We show the results of running 600 iterations of minimizing equation 10 where
the gradients are mixed as described in equations 16 and 17. Figure 9 shows the
normalized residual of the data fitting part, described by the first term of equation
10, as a function of iterations. The residuals decrease monotonically without getting
stuck in a local minima. Figure 10 shows three constant-location sections of the
final reflectivity model that are a function of depth and subsurface offset. The three
images are focused around the middle, i.e. the zero subsurface offset, which indicates
convergence towards the correct background model.

Figure 11 shows the final background model. It shows great resolution in both the
vertical and horizontal directions that captures the main features of the true model.
Figure 12 shows zero subsurface offset of the final reflectivity model. Finally, Figure
13 shows the total inverted model which is the sum of the background and reflectivity.
It shows remarkable convergence towards the true model.
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Figure 7: The true velocity of marmousi model. [ER]
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Figure 8: The initial velocity of marmousi model. [ER]
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Figure 10: Three offset-domain common-image gathers of the inverted reflectivity
model at x=2.5, 5, 7.5 km of marmousi model. [CR]
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Figure 11: The inverted background of marmousi model. [CR]
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Figure 12: The inverted reflectivity at h=0 of marmousi model. [CR]
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Figure 13: The total inversion results of marmousi model. [CR]

CONCLUSIONS

We presented a practical approach to tomographic full-waveform inversion where the
computational cost is significantly reduced. This was achieved by first breaking the
model into a background component and a perturbation component, and then by
restricting the offset axis of the background component to zero subsurface offset only.
Breaking the model into two components assumes the data contain primary only.
However, we managed to maintain the simultaneous inversion of different wavelengths
of the model by mixing the gradients of the two components in Fourier domain using
a high-pass and a low-pass filters. The synthetic examples show remarkable results
even when the initial model had large errors. More sophisticated mixing schemes
need to be further investigated.
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