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ABSTRACT

Non-linear optimization problems suffer from local minima. When we use
gradient-based iterative solvers on these problems, we often find the final solution
to be highly dependent on the initial guess. Here we introduce preconditioning
and show how it helps resolve these issues in our current problem—bidirectional
deconvolution. Using three data examples, we show that results with precondi-
tioning are more spiky than results without preconditioning. Additionally, field
data results with preconditioning have fewer precursors, cleaner salt bodies, more
symmetric wavelets, and faster convergence than those without preconditioning.
In addition to the field data, we illustrate the theory and application of two meth-
ods of preconditioning: prediction-error filter (PEF) preconditioning and gapped
anti-causal leaky integration followed by PEF (GALI-PEF) preconditioning. Un-
like PEF preconditioning, GALI-PEF preconditioning helps constrain the spike
to the central wavelet, or allows us to shift it to another position in the wavelet
by manipulating the length of the gap.

INTRODUCTION

Least-squares data fitting leads to multivariate linear equations and consequently
more theories and techniques than any one person can master in a lifetime. In that
field, we are always on well-traveled paths. Problems with non-linear physics are
another story: “My program worked great until I increased the model size a little
bit.”

Nonlinear optimization problems have many unexpected traps—local minima, as
shown in Figure 1. Problems with nonlinear physics require a deeper understanding
of the setting than do linear ones. Luckily, there exist helpful techniques that are
universally applicable. The first key is to realize that linear equations can be solved
with any starting guess, whereas with nonlinear relationships, a sensible starting
solution is essential.

Preconditioning is a well established technique used in linear regressions with prior
information to hasten convergence. Preconditioning usually begins with regulariza-
tion and then steers the iterative descent along the path set out by a prior model.
However, it does not determine the final result.
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The word “gradient” sounds like something fixed in the geometry of the applica-
tion. Nothing could be further from the truth. Every application offers us a choice
of coordinate systems and ways to parameterize the model, and changing the model
representation changes the gradient. For example, we could be seeking the earth den-
sity as a function of location. We could establish the problem as just that, density as
a function of location. On the other hand, we could establish the problem as finding
the spatial derivative of the density. The two formulations really seek the same thing,
but operators, unknowns, and gradients differ.

Each component of a gradient is independent of the other components and may
be scaled arbitrarily as long as its polarity is unchanged. That means that any
gradient can be multiplied by any diagonal matrix containing all positive numbers.
Additionally, we show in the theory section below that a gradient may be multiplied
by any positive definite matrix. That matrix happens to be the model covariance
BTB, which in local terminology is the inverse of the model styling goal times its
adjoint. We may choose any positive definite matrix to modify the gradient. We
may even change that matrix from one iteration to the next. What is important is
that the matrix is positive definite. At early stages of descent, it is helpful to make
the gradient large where confidence is high, and small where it is not. With linear
regressions this has no effect on the solution. With nonlinear physics, it steers the
solution away from unwelcome local minima.

In image estimation there generally are locations in physical space and in Fourier
space in which we have little interest, where we have little expectation that our
data contains useful information or that the model will be findable. We need (in
nonlinear cases) to be certain such regions do not disturb our descent, especially in
early iterations. Therefore, we should view our gradient both in the model space and
in the data space, then choose an appropriate diagonal weighting and filter. Given a
filter F and weight W, we apply either FW or WF to the gradient. We then apply
the matrix transpose, yielding either (FW)T (FW) or (WF)T (WF). This procedure
destroys no information in the data, but merely selects what aspects of the data are
used first. As the final solution is approached, the gradient diminishes; and the down-
weighted regions eventually emerge in the gradient, because they are the only things
left. Closer to the ultimate solution, it is far less dangerous to have down-weighted
regions affecting the solution.

THEORY

Preconditioning offers smart directions

We start from fitting goals
0 ≈ Fm− d

0 ≈ Am
(1)

and change variables from m to p using m = A−1p:
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Figure 1: Multiple local minima
in the penalty function. [ER]

0 ≈ rd = Fm− d = FA−1p− d

0 ≈ rm = Am = Ip .
(2)

Without preconditioning, we have the search direction

∆mbad = [ FT AT ]

[
rd

rm

]
, (3)

and with preconditioning, we have the search direction

∆pgood = [ (FA−1)T I ]

[
rd

rm

]
. (4)

The essential feature of preconditioning is not that we perform the iterative op-
timization in terms of the variable p, but that we use a search direction that is a
gradient with respect to pT, not mT. Using Am = p we have A∆m = ∆p. This
enables us to define a good search direction in model space:

∆mgood = A−1∆pgood = A−1(A−1)TFTrd + A−1rm. (5)

We define the gradient by g = FTrd and notice that rm = p.

∆mgood = A−1(A−1)Tg + m. (6)

The search direction (6) shows a positive-definite operator scaling the gradient. All
components of any gradient vector are independent of each other and independently
point to a direction for descent. Obviously, each can be scaled by any positive number.
Now we have shown that we can also scale a gradient vector by a positive definite
matrix and still expect the conjugate-direction algorithm to descend, as always, to
the “exact” answer in a finite number of steps. This is because modifying the search
direction with A−1(A−1)T is equivalent to solving a conjugate-gradient problem in p.
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Application to Bidirectional Deconvolution

Bidirectional deconvolution (Zhang and Claerbout, 2010; Shen et al., 2011; Claerbout
et al., 2011) is a non-linear problem, which has a low convergence rate and unstable
result when the starting solution is not close to the true answer. In this section, we
apply preconditioning to this problem to obtain a fast and stable result by utilizing
prior knowledge. The deconvolution problem is defined as follows:

d ∗ a ∗ br = r̃, (7)

where d is the data, a and b are the unknown causal filters, and the superscript
r denotes the time reverse of filter b. The hybrid norm is applied to r̃, and the
reflectivity model is simply r̃ plus a time shift.

We notice that there is only model regularization in this deconvolution problem.
Now we change our model from a and b to ã and b̃ using a = pa ∗ ã and b = pb ∗ b̃:

d ∗ pa ∗ pr
b ∗ ã ∗ b̃r ≈ 0. (8)

Thus, we focus on estimating ã and b̃ instead of a and b. By applying the prior
knowledge in the preconditioners pa and pb, we can avoid unwelcome local minima.

GALI-PEF versus PEF preconditioning

In the previous subsections, we showed theoretically that prior knowledge from pre-
conditioners pa and pb leads bidirectional deconvolution to the global minimum in the
nonlinear problem. We have various choices of preconditioners to indicate different
prior knowledge. Here we present two kinds of preconditioning, prediction-error fil-
ter(PEF) preconditioning and gapped anti-causal leaky integration followed by PEF
(GALI-PEF) preconditioning.

The PEF, whose output is white, is widely used for deconvolution in standard
industry practice. The expectation of whiteness in deconvolution encourages us to
use PEF as our preconditioner. Thus we choose PEF as the preconditioner pa and
a spike as the preconditioner pb in PEF preconditioning. Recall that a PEF is a
causal filter with a causal inverse. Theoretically, this property adds confidence that
deconvolution with a PEF might retrieve the correct phase spectrum as well as the
correct amplitude spectrum. However, the wavelet we aim to estimate is not always
causal — can be mixed-phase. In most field data —such as band-limited marine
seismic data or land response of an accelerometer —the wavelet is similar to a Ricker
wavelet. It is dangerous to deal only with the causal part of the data by using PEF,
because it may mislead the bidirectional deconvolution to an incorrect phase spectrum
and into an unwelcome local minimum.

Therefore, utilizing the prior knowledge of the anti-causal part of the data becomes
necessary. A finite representation of the Ricker wavelet is the negative of the second
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finite difference of some binomial coefficients. In Z-transform representation, this is

[(1− 1/z)(1− z)][(1 + 1/z)N(1 + z)N ], (9)

where N is the order of the binomial coefficient. In real cases, such as the marine
data example, there is a time gap between the first ghost and first arrival; thus the
numerical representation of the wavelet becomes

[(1− (ρ/z)g)(1− (ρz)g)][(1 + 1/z)N(1 + z)N ], (10)

where g is an integer which indicates the length of the gap, and ρ is a real number
which reduces the energy in a trace and deals with the situation where the gap is not
an integer. With this numerical representation of the wavelet, we can divide the data
by [(1− (ρ/z)g)] to estimate the anti-causal part of the wavelet. The inverse of [(1−
(ρ/z)g)] is gapped anti-causal leaky integration, which is used as preconditioner pb.
After convolving the data with pb, we apply a PEF to the convolution result and use
this estimated PEF as preconditioner pa. We hope this GALI-PEF preconditioning
leads the bi-directional deconvolution to the correct phase spectrum and makes the
result fall into the global minimum.

NUMERICAL EXAMPLE

Bidirectional deconvolution with and without preconditioning

We considered three bidirectional deconvolution methods (Zhang and Claerbout (2010),
Shen et al. (2011) and Claerbout et al. (2011)). Of these three methods, the method
proposed by Shen et al. (2011) most needs preconditioning. We therefore test our
preconditioning on this method to illustrate the effectiveness and limitation of pre-
conditioning.

To illustrate the capabilities of preconditioning, we analyze the results obtained by
inverting a zero-phase wavelet. This wavelet is created by convolving the minimum-
phase with its own time-reversed wavelet. Figures 2, 3 and 4 show the zero-phase
wavelet and its bidirectional deconvolution proposed by Shen et al. (2011), without
and with PEF preconditioning. The results show that the wavelet is not completely
compressed into a spike without preconditioning, but preconditioning does yield a
spike. These results indicate that preconditioning steers the non-linear problem away
from unwelcome local minima. However, we can still see slight ringing around the
spike in the preconditioned result, indicating that PEF preconditioning does not fully
guide the result to the global minimum. This suggests we should introduce more
prior knowledge into the preconditioning.

After deconvolving the simple 1D case, we test preconditioning on more compli-
cated 2D synthetic data. Figure 5(a) shows the starting reflectivity model. Figure
5(b) shows the data generated by convolving the reflectivity model with the zero-
phase wavelet in the previous section. All traces in the data share the same wavelet
during modeling and deconvolution.
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Figure 2: Zero-phase wavelet as
the input to the bidirectional de-
convolution in Figure 3 and 4.
[ER]

Figure 3: Deconvolution result
without preconditioning. The
wavelet is not completely com-
pressed into a spike. [ER]

Figures 6(a) and 6(b) show the bidirectional deconvolution proposed by Shen et al.
(2011) without and with PEF preconditioning. The deconvolution model with PEF
preconditioning is more spiky than the one without preconditioning, but it still retains
some slight ringing around the events. Recall that results in the 1D example show
similar properties,, because the same wavelet is used to generate the data in the two
examples.

The last example is a common-offest section of marine field data. Figure 7 shows
the input data. Figures 8(a) and 8(b) show the bidirectional deconvolution proposed
by Shen et al. (2011) without and with PEF preconditioning. Both methods perform
well to retrieve the sparse reflectivity in this field data. However, the preconditioned
result has fewer precursors and cleaner events than the one without preconditioning.
Another important difference is that around 2.4 seconds, there is an unknown event
appearing in Figure 8(a), but it disappears in Figure 8(b). Thus we get a cleaner
salt body when we apply preconditioning to this set of field data. The cause of the
unknown event is still unidentified, but we have one possible explanation for this
event. In this dataset, every trace looks identical, but with a time shift. There are
two parallel events between 1.7 sec and 1.8 sec which have almost the same distance
for all common midpoints. This phenomenon is unusual and may cause the unknown
event, because the distance between the salt top and the unknown event is the same
as that between the two parallel events. We hope the unknown event will disappear
if we use another data set with more variable traces.

Figure 4: Deconvolution result
with PEF preconditioning. The
wavelet is compressed into a spike.
[ER]
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(a)

(b)

Figure 5: (a) The 2D synthetic reflectivity model; (b) the synthetic data generated
using the zero-phase wavelet. [ER]
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(a)

(b)

Figure 6: Given the 2D synthetic data in Figure 5(b), (a) reflectivity model retrieved
without preconditioning; (b) reflectivity model retrieved with PEF preconditioning.
[ER]
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Figure 7: Input Common Offset data. [ER]

Figures 9(a) and 9(b) show the shot wavelet estimated without and with PEF
preconditioning. We notice that both results estimate the bubbles and the double
ghost, which can be seen in the data. However, the estimated wavelet with precon-
ditioning is more symmetric than the one without preconditioning. This symmetric
quality meets our expectation that the wavelet we invert should look like a Ricker
wavelet.

PEF versus GALI-PEF preconditioning

In this subsection, we test the PEF preconditioning and GALI-PEF preconditioning
on bidirectional deconvolution. Fu et al. (2011) shows that the method proposed by
Claerbout et al. (2011) produces the most stable result among the three bidirectional
deconvolution methods considered above. Therefore, we use Claerbout et al. (2011)
to compare these two preconditionings to make the comparison reliable.

We use the same field data shown in the previous subsection for this example.
First, we convolve the data with PEF and GALI-PEF preconditioning respectively,
as shown in Figure 10. Then we apply bidirectional deconvolution to the convolution
results, as is displayed in Figure 11. We may draw the following conclusions from the
comparison results.
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(a)

(b)

Figure 8: Given the common offset data in Figure 7, (a) reflectivity model retrieved
without preconditioning; (b) reflectivity model retrieved with PEF preconditioning.
[ER]
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(a)

(b)

Figure 9: Given the common offset data in Figure 7, (a) shot wavelet estimated
without preconditioning; (b) shot wavelet estimated with PEF preconditioning. [ER]

GALI-PEF preconditioning helps constrain the spike to the central
wavelet. As the data shows, the events in Figure 7 look like a Ricker wavelet,
with two weak side lobes and one strong middle lobe. We expect the preconditioned
spike to coincide with the strong middle lobe. Because PEF is a causal filter with
causal inverse, it shifts the output toward the first lobe of the Ricker wavelet. Thus
the polarity of the output is the same as the first lobe of the Ricker. From panel (b)
in Figure 10, the strong event(the water bottom) is black. This polarity, as well as
its output location, is the same as that of the first lobe of the mixed-phase wavelet,
around 1.8 seconds in Figure 10. Focusing on the first lobe in preconditioning leads to
same effect in the bidirectional deconvolution. Panel (b) in Figure 11 shows exactly
the same outcome: the output is in the same location and has the same polarity as
the first lobe of the Ricker wavelet.

On the other hand, GALI-PEF preconditioning helps shift the time of output.
Panel (c) in Figure 10 shows that the event is produced in the same location and
polarity as the middle of the Ricker wavelet. The same is true of the bidirectional
deconvolution results. To take the water bottom for example, the event appears white
in both GALI-PEF preconditioning and its bidirectional deconvolution result, which
is the same polarity as the middle lobe of the wavelet. This centered spike is the
usual goal of GALI-PEF preconditioning, but by manipulating the length of the gap,
we can shift the spike to any desired location. In this case, the gap between the first
ghost and first arrival is roughly 10-15 ms. If the gap in GALI-PEF preconditioning
is longer than this separation, the output will move towards the second side lobe of
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the wavelet, and vice versa.

Unfortunately, however, GALI-PEF preconditioning does not improve the result
compared to PEF preconditioning. Both the PEF and GALI-PEF preconditioning
results are almost the same except for reversed polarity and a time shift. In addition,
the precursors in Figure 10(c) are strong, because of the anti-causal integration. From
another perspective, although the GALI-PEF preconditioner produces a noisier, more
resonant section than does PEF, that section illustrates the polarity more clearly than
does PEF. Also, the interval between every two adjacent precursors illustrates the gap
between first ghost and first arrival.

Both preconditioning methods speed convergence. The convergence rates
with and without preconditioning are shown in Figure 12. The average mismatch
here is measured by using a hybrid penalty function (Claerbout, 2010):

r̄

R
= r(H̄) =

√√√√(
1

N

N∑
i=1

√
1 +

r2
i

R2
)2 − 1 (11)

where H(r) =
√

R2 + r2 − R, and R is the threshold. This expression of the misfit
is dimensionless and reflects the speed of convergence. Note that the three conver-
gence curves in Figure 12 originate from different points, because the average residual
without preconditioning is calculated directly from the raw data, whereas the ones
with the two preconditioning methods are calculated from the data transformed by
PEF and GALI-PEF preconditionings respectively. Thus, we only consider the rel-
ative trend, not the absolute value, of the curves. We notice that the convergence
rates drop somewhat with preconditioning, because both PEF and GALI-PEF al-
ready help reduce the average mismatch. However, convergence is reached soon after
30 iterations with the help of preconditioning, whereas without preconditioning con-
vergence takes more than 55 iterations. Therefore, preconditioning does reduce the
computational cost.

Both methods of preconditioning improve bidirectional deconvolution.
The logarithm bidirectional deconvolution proposed by Claerbout et al. (2011), which
estimates the filters in the Fourier domain, is more stable than the one proposed by
Shen et al. (2011). Thus the result depends less on preconditioning in the logarithm
method. However, we still notice that both methods of preconditioning improve the
results by reducing precursors. In addition, the unknown event around 2.4 seconds in
panel (a) of Figure 11 becomes weaker in the results with preconditioning, especially
in bidirectional deconvolution with PEF preconditioning.

CONCLUSION

In this paper, we illustrate the importance of preconditioning in non-linear problems,
and we apply preconditioning to bidirectional deconvolution. The results of three data
examples show that wavelets are more spiky in the results with preconditioning than
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Figure 10: Given the common offset data in Figure 7, (a) 1/3 of original data; (b)
data transformed by PEF preconditioning; (c) data transformed by GALI-PEF pre-
conditioning. These three panels are the inputs to the bidirectional deconvolution
output in Figure 11. [ER]

Figure 11: Given the common offset data in Figure 7, (a)bidirectional deconvolution
without preconditioning; (b) bidirectional deconvolution with PEF preconditioning
(c) bidirectional deconvolution with GALI-PEF preconditioning. [ER]
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Figure 12: Convergence rate of
the results in Figure 11. Both pre-
conditioning methods speed con-
vergence. [ER]

in those without preconditioning. However, the results with preconditioning in the 1D
and 2D synthetic sections show slight ringing around the spike, which may encourage
us to use more prior knowledge in the preconditioning. For field data, the results with
preconditioning have fewer precursors, a cleaner salt body, and a more symmetric
wavelet than those without preconditioning. This proves that preconditioning can
guide the gradient along sensible pathways, thus avoiding potential local minima,
making the results more reliable, and speeding convergence.

In addition, we introduce two methods of preconditioning —PEF and GALI-
PEF—and apply them to the field data. Both approaches improve the bidirectional
deconvolution result and improve the convergence speed. But unlike PEF precon-
ditioning, GALI-PEF preconditioning helps constrain the spike to the center of the
wavelet (or other positions in the wavelet if we change the length of gap). However,
we have tested these two methods on only one set of field data. More experiments on
other datasets are needed to illustrate the effectiveness and limitations of these two
methods of preconditioning in our future work.

ACKNOWLEDGMENTS

The authors thank Shuki Ronen for his idea of applying a gap in anti-causal leaky
integration, and we thank Dave Nichols, Robert Clapp, Yang Zhang, Antoine Guitton
for fruitful discussions.

REFERENCES

Claerbout, J., 2010, Image estimation by example.
Claerbout, J., Q. Fu, and Y. Shen, 2011, A log spectral approach to bidirectional

deconvolution: SEP-Report, 143, 295–298.

SEP–145



Yi Shen et al. 15 Preconditioning

Fu, Q., Y. Shen, and J. Claerbout, 2011, Data examples of logarithm fourier-domain
bidirectional deconvolution: SEP-Report, 145, 101–116.

Shen, Y., Q. Fu, and J. Claerbout, 2011, A new algorithm for bidirectional deconvo-
lution: SEP-Report, 143, 271–281.

Zhang, Y. and J. Claerbout, 2010, A new bidirectional deconvolution method that
overcomes the minimum phase assumption: SEP-Report, 142, 93–103.

SEP–145


