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ABSTRACT

I present a method based on source encoding for fast wave-equation migration
velocity analysis (WEMVA). Instead of migrating each impulsive-source gather
separately, I assemble all gathers together and migrate only one super shot gather.
This procedure results in the computational cost of WEMVA to be independent
from the number of impulsive-source gathers, which is typically huge for large
surveys. The proposed encoding method can be applied to data acquired from any
acquisition geometry, such as land or marine acquisition geometries. The velocity
inversion is done automatically by solving a nonlinear optimization problem that
maximizes the image stack power, which is shown to be equivalent to the data-
domain inversion using only primary reflections. Preliminary results show that
WEMVA with encoded sources can produce inversion results similar to those
produced by conventional separate-source WEMVA | but with drastically reduced
computational cost.

INTRODUCTION

Accurate reflectivity imaging requires an accurate background velocity model. As
seismic exploration moves towards structurally complex areas, wave-equation migra-
tion velocity analysis (WEMVA) that better models band-limited wave phenomena
becomes necessary for high-quality velocity model building. WEMVA, however, is
still expensive for industrial-scale applications (Biondi and Sava, 1999; Shen et al.,
2005; Albertin et al., 2006; Fei et al., 2009), both because the method uses expensive
wavefield modeling engines, and because the computation needs to be carried out for
each shot, resulting in a cost proportional to the number of sources, which is huge for
large surveys.

Source encoding has been used in both seismic acquisition (Beasley et al., 1998;
Beasley, 2008; Hampson et al., 2008; Berkhout, 2008; Tang and Biondi, 2009) and
processing (Romero et al., 2000; Whitmore, 1995; Zhang et al., 2005; Liu et al.,
2006; Krebs et al., 2009) to reduce the cost. The idea is that instead of firing one
impulsive source at a time, we fire all encoded impulsive sources simultaneously for
acquisition or/and processing. By doing so, the acquisition or/and processing effort is
reduced to just one super areal shot gather instead of many impulsive source gathers,
significantly reducing the acquisition or/and processing cost. In this paper, I mainly
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focus on applying the source-encoding method to seismic processing, hence I assume
that the data are acquired using conventional impulsive separate sources without any
overlaps.

Source encoding has been widely used in migration processing, where random-
phase encoding and plane-wave-phase encoding are the most popular encoding schemes.
The random-phase-encoding migration, however, has had limited success. This is be-
cause the more shots randomly encoded together, the more crosstalk present in the
migration image. Consequently, images obtained with many realizations need to
be computed and stacked in order to attenuate the crosstalk (Romero et al., 2000).
Plane-wave phase-encoding migration, on the other hand, has wider applications than
random phase-encoding migration. This is because plane-wave phase-encoding func-
tion has good properties in terms of converging to a Dirac delta function (Liu et al.,
2006). However, multiple plane waves need to be synthesized and migrated to remove
the crosstalk artifacts. As a result, source encoding in migration can usually achieve
a cost reduction by a factor of about 10 or less.

As opposed to seismic migration processing, source encoding (especially random
phase encoding) seems to be more effective in seismic inversion processing, such as
least-squares migration (Tang and Biondi, 2009; Dai and Schuster, 2009; Dai et al.,
2010) and full waveform inversion (Krebs et al., 2009; Tang and Lee, 2010; Ben-Hadj-
Ali et al., 2011). The key element in encoded simultanecous-source inversion is the
regeneration of random codes at each iteration (Krebs et al., 2009; Tang and Lee,
2010; Dai et al., 2010; Ben-Hadj-Ali et al., 2011). Different sets of random codes
at each iteration enable destructive summation of the crosstalk over iterations, and
consequently the residual crosstalk in the inverted model is gradually removed as
inversion proceeds. Encoded simultaneous-source inversion operates on one super
shot gather instead of many impulsive-source gathers at each iteration, therefore the
computational cost is independent of the number of sources. Although more or less
counter-intuitive, Krebs et al. (2009) have reported that encoded simultaneous-source
inversion has a similar convergence rate compared to separate-source inversion. As
a result, source encoding in inversion can achieve a cost reduction by a factor of the
number of sources, which can be significant for large surveys.

One commonality of the above mentioned inversion processing (least-squares mi-
gration and full waveform inversion) is the minimization of a data-domain objective
function, which compares the differences between the modeled and the observed data.
The difference-based objective function, however, restricts the application of encoded
simultaneous-source inversion to only data acquired with a fixed receiver spread, such
as in land or ocean bottom cable (OBC) acquisition geometries (Krebs et al., 2009).
This is because modeling using encoded simultaneous sources implicitly assumes that
each receiver listens to all shots. This is obviously not the case for marine acquisi-
tion geometries, where the towed receiver spread moves along with the sources. The
mismatch in acquisition is irreconcilable and will cause wrong model updates.

In this paper, I apply the source-encoding method to WEMVA, which optimizes
an objective function formulated in the image domain instead of the data domain.
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In particular, I optimize the velocity by maximizing the image stack power (or min-
imizing its negative). I will show that the objective function to maximize (or mini-
mize) is based on the crosscorrelation between the source and receiver wavefields, and
that source encoding can be applied to arbitrary acquisition geometries, regardless
of whether or not the receiver spread is fixed. Similar to the data-domain multi-
source inversion, encoded simultaneous-source WEMVA also generates gradients con-
taminated by crosstalk. Therefore, regeneration of random codes at each iteration
becomes necessary to mitigate the impact of crosstalk on velocity updates.

In the subsequent sections, I first review the theory of WEMVA based on image-
stack-power maximization (or equivalently negative image-stack-power minimization).
I prove that minimizing the negative image stack power is equivalent to the data do-
main Born wavefield inversion, which minimizes the difference between the modeled
and observed primary reflections. I then show how source encoding can be applied to
WEMVA. Finally, I apply both separate-source WEMVA and encoded simultaneous-
source WEMVA to invert a truncated Marmousi model.

THEORY

I pose the velocity estimation problem as an optimization problem that tries to max-
imize the image stack power across the reflection angle, taking advantage of the fact
that seismic events should be aligned and hence most constructively stacked in the
angle domain, if migrated using an accurate velocity model (Soubaras and Grata-
cos, 2007). Instead of solving it as a maximization problem, I actually solve it as a
minimization problem that minimizes the negative image stack power. Because the
reflection-angle stacked section is equivalent to the zero-subsurface offset image, the
objective function that I use to minimize is therefore defined as follows:

J— —ggmfmgm, 1)

where Mmuyig(x) is the zero-subsurface-offset image at image point x = (x,y, ), ob-
tained by crosscorrelating the forward propagated source wavefield with the backward
propagated receiver wavefield as follows:

Mmig(X) = Z Z S(x,x,,w)R(x, X, w), (2)

where S(x, x5, w) and R(x,X,,w) are the source and receiver wavefield at image point
x, respectively, for a source located at x5 = (75, ys, 0) and at angular frequency w. If a
one-way extrapolator is used, S and R satisfy the following one-way wave equations:

{ (& n ZW) S(x,%5,w) =0 , (3)

S(%Z/’Z = O7X87w) = 5(‘1" - xs,y - ys)fs*(w)
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and

{ (gﬂm) R(x,%;,0) =0 (4)

R(xa%z = vasaw) = Q(xay’xs#ﬂ)

where * denotes taking the adjoint; v(x) is the velocity at image point x; fs(w) is
the source signature; §(-) is the Dirac delta function; V? = a 5z T oy 2 is the Laplacian
operator. () is the observed data mapped onto the computation grld which is defined
as follows:

Q(Q?, Y, Xs, w) = Z W(Xr7 Xs)6<x — Ty Y — yr)dobs(xra Xs, W); (5>

where d,p,s is the observed data recorded at x, = (z,,y,,0) due to a source at xj;
W (x,,xs) is the acquisition mask operator, which contains ones where we record
data and zeros where we do not.

Since flat angle gathers generate the most coherent stack, the negative image-
stack-power minimization objective function defined by equation 1 is intuitive to
understand. Objective function 1, however, has an alternative interesting interpreta-
tion as shown in Appendix A, which proves that under the least-squares assumption,
minimization of objective function 1 is equivalent to the data-domain Born wavefield
inversion, which minimizes the differences between the modeled and observed primary
reflections.

Objective function 1 is usually minimized using local optimization techniques,
which require explicit calculation of the gradient. The gradient is obtained by taking
the derivative of J with respect to velocity v(y) (y is the velocity coordinates) as
follows:

aJ OMiig(X)
9(y) = = =) 5 Mmig(x), (6)
0v(y) du(y)

X

where the sensitivity kernel, or tomographic operator, argl;“(ii ()x), can be easily obtained

as follows:

8mmlg 05 (x XS, w) OR(x, Xg,w)
Z Z < R(x,X,,w) + S(X,xs,w)—(%(y) ) _ (7)

Note the summations over x, in equations 2 and 7. This means that the computation
for the image mmi; and the gradient g needs to be carried out for each source inde-
pendently, resulting in a cost proportional to the number of sources. The gradient g
is usually calculated using the adjoint-state technique without explicitly constructing
the sensitivity kernel (Shen, 2004; Sava and Vlad, 2008; Tang et al., 2008).

For encoded simultaneous-source WEMVA, the objective function to be minimized
is defined as follows:

T= 5 S ) (8)
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where the zero-subsurface-offset image my,;s is obtained by crosscorrelatlng the en-
coded source wavefield, S and the encoded receiver wavefield, R as follows:

Momig (X ZS x,w)R(x,w). 9)

The encoded source and receiver wavefields satisfy the following one-way wave equa-
tions:

Y

B 4y ) w? 2) § —
{gaz“ oy +2) S) =0 (10)

and

Y

R(z,y,2 = 0,w) = 3, Q2,9 %5, w)a(xs, w)

where «(xs,w) is the phase encoding function. In this paper, I mainly focus on
random phase encoding, therefore « is defined as follows:

{<~%+i 55+ V2) Rix,w) =0 1)

a(xs,w) — ei’y(xs#d)? (12)

where i = v/—1, and ~(x,,w) is a uniformly distributed random sequence from 0 to
27. Tang (2011) shows that with this choice of random phase function, a has a zero
expectation. Note that the source encoding can be applied to data recorded from
arbitrary types of acquisition geometries. The simultaneous-source migrated image
(Mmig) Will always converge to the separate-source migrated image (M) as long as
the encoding function satisfies a*(xs, w)a (X}, w) = (x5 — X,).

The gradient of objective function 8 is

iy — 0T Og(X) o
g(Y) - av(y) - av(y> m1g( )? (13)

where the tomographic operator, 8ﬁg$€§§x), in the encoded-source domain is defined as

follows:

OMig(x) (’3§(X, W) ~ ) Bl 8§(x, w)
Au(y) _Zw:< ou(y) R(x,w) + §(x,w) du(y) ) (14)

Note that equations 9 and 14 do not have a summation over the sources. Therefore,
the cost of computing the image m,,;, and the gradient g is independent of the number

of sources, as opposed to the separate-source case. The gradient J is also calculated

using the adjoint-state technique using encoded simultaneous sources (Tang et al.,
2008).

Although the computational cost of WEMVA is significantly reduced, encoded
simultaneous sources add crosstalk artifacts into the gradient. This becomes clear if
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we express the encoded source and receiver wavefield as follows using the fact that
wavefield propagation is linear with respect to sources:

§(x, w) = Z S(x, X, w)a™ (X, w), (15)
and
R(x,w) = Z R(x, x5, w)a(Xs,w). (16)

Substituting equations 15 and 16 into 14 and using the fact that o (x5, w)a(x),w) =
1if x, = x/, yield

g(y) = g9(y) + g¢(y), (17)

where g, is the crosstalk:

05 (x, X, w , OR(x,x,,w
9e(y) = Z Z Z (WR(?Q X,,w) + S(&%M)W)

Xt (%, w)a(x), w). (18)

W  Xs XL#Xs

A way to mitigate the influence of crosstalk is to change the random encoding
function at each iteration (Krebs et al., 2009), so that the crosstalk will be destruc-
tively stacked over WEMVA iterations and consequently converge to zero because it
has a zero expectation. It is important to point out that regeneration of the ran-
dom code will result in the objective function (equation 8) changing at each iteration.
Therefore, the objective function may not be monotonically decreasing over iterations,
as opposed to the case in conventional separate-source WEMVA. The optimization
algorithm using encoded simultaneous sources is summarized in Algorithm 1.

Algorithm 1 Encoded simultaneous-source WEMVA algorithm
generate random code and assemble all shot gathers together
compute the migrated image: ffl?nig
compute the gradient: g,
initialize the search direction: pg = —go
for k=1---N, do B

perform line search: optimize A, argmin J(vy_1 + Apg_1)
A

update the velocity model: vy = vi_1 + Apir_1
generate random code and assemble all shot gathers together
compute the migrated image: m*

mig
compute the gradient: g,

~ o T o 7~
find the search direction: pr = —g + %

end for
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NUMERICAL EXAMPLES

I apply the encoded simultaneous-source WEMVA on a truncated Marmousi model.
The data used for inversion are generated using prestack Born wavefield modeling
(Stolt and Benson, 1986; Tang, 2011). Hence the data only contain primary reflections
and fit the theory perfectly. I use one-way wavefield extrapolation to carry out the
numerical experiments. Since one-way wavefield extrapolation does not generate back
scatterings, the velocity model used for Born modeling does not need to be smooth.
Figures 1(a) and 1(b) show the velocity model and reflectivity model used for Born
modeling. I use a Ricker wavelet with a dominant frequency of 15 Hz as the source
function for modeling. The source function is assumed to be known in the subsequent
inversion tests.

The initial velocity model used for inversion is shown in Figure 2. It is a smoothed
version of the true velocity model (Figure 1(a)). The initial velocity model is accurate
enough so that no cycle skipping occurs during inversion. The goal of the experiments
shown here is to demonstrate that with an initial velocity model that guarantees the
convergence of inversion, encoded simultaneous-source WEMVA produces similar in-
version result as does conventional separate-source WEMVA, but with a significantly
reduced computational cost. However, the convergence property using an initial ve-
locity model far from the correct one still needs to be studied, and it remains an area
for further investigation.
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Figure 1: The velocity model (a) and reflectivity model (b) used for Born wavefield
modeling. [ER]

I test the inversion on data sets acquired using both land and marine acquisition
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Figure 2: The initial velocity model. [ER]

geometries. The data acquired from a land acquisition geometry contains 101 shots
ranging from 5 km to 13 km with a 80 m sampling interval. The receiver spread
ranges from 5 km to 13 km and is fixed for all shots. The receiver sampling interval
is 20 m. For the data acquired using a marine acquisition geometry, the 101 sources
also range from 5 km to 13 km and sampled at 80 m. The minimum and maximum
offsets for each shot is 0 and 6 km. The receiver sampling interval is also 20 m.

I run inversion using both separate sources and encoded simultaneous sources after
the same number of iterations. Figures 3 and 4 compare the WEMVA gradients at
the first iteration for different methods and different acquisition geometries. Note the
randomized crosstalk present in the simultaneous-source WEMVA gradients. Because
I regenerate the random code at the beginning of each iteration, the crosstalk is
expected to be incoherently stacked over iterations. Therefore, the impact of crosstalk
will be mitigated.

Figures 5 and 6 show the separate-source inversion results at different iterations
for land and marine acquisition geometries, respectively. The velocity model has been
successfully recovered in both cases. But inversion using land acquisition geometry
produces a slightly better final inversion result (Figure 5(d)) than the one obtained
using marine acquisition geometry (Figure 6(d)). This is because, for this particu-
lar example, the land acquisition geometry has wider offsets and hence gives better
coverage to the model.

For comparison, Figures 7 and 8 present the encoded simultaneous-source inver-
sion results for land and marine acquisition geometries, respectively. As expected,
the inverted velocity model at early iterations (Figures 7(a) and 7(b) for land ac-
quisition geometry and Figures 8(a) and 8(b) for marine acquisition geometry) have
been strongly affected by the crosstalk artifacts in the gradients (Figure 4). As
inversion proceeds, the crosstalk artifacts are destructively stacked, and hence the in-
fluence of crosstalk is decreasing over iterations. The final inversion results (Figures
7(d) and 8(d)) also successfully recover the velocity model. However, the encoded
simultaneous-source WEMVA seems to be more sensitive to the model coverage, and
the convergence of inversion using the data acquired with a marine geometry (Figure
8(d)) is considerably slower than that obtained using the data acquired from a land
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Figure 3: Gradient of separate-source WEMVA at the first iteration for (a) land
acquisition geometry and (b) marine acquisition geometry. [ER]
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Figure 4: Gradient of encoded simultaneous-source WEMVA at the first iteration for
(a) land acquisition geometry and (b) marine acquisition geometry. [ER]
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acquisition geometry (Figure 7(d)).

As a further comparison of the convergence, Figure 9 shows the data misfit (the
objective function) obtained using different methods and for different acquisition ge-
ometries. The data misfit curve for each case has been normalized with its value at
the first iteration. Note that the data misfit functions decrease monotonically for
separate-source inversions. This is because the objective function J is consistent over
iterations, and therefore the nonlinear conjugate gradient algorithm tries to minimize
the same objective function over iterations. In contrast, the data misfit functions
for encoded simultaneous-source inversions fluctuate significantly, and they do not
show monotonically decreasing behavior as do separate-source inversions. This is
because the random phase encoding function keeps changing at each iteration, and
consequently the objective function J varies over iterations. The nonlinear conju-
gate gradient algorithm cannot guarantee the monotonic decrease of the objective
function. But the misfit functions do show an overall decreasing trend.

Since this is a synthetic-data example, the true velocity model is known. I cal-
culate the model misfit in ¢, norm and the results are plotted in Figure 10. It is
interesting to note that although encoded simultaneous-source inversion does not
show monotonic decrease of the data misfit, it does show monotonic decrease of the
model misfit, which suggests that the inversion is going in the correct direction. Also
note that the model convergence of encoded simultaneous-source inversion is slower
than that of separate-source inversion. The difference seems to be insignificant for
land acquisition geometries, where the receivers are fixed and the offsets are longer.
The difference for marine acquisition geometries, however, is much bigger. This is
probably because the marine acquisition geometry used in this example has shorter
offsets and the data coverage is much less than the land acquisition geometry. The
lack of data coverage may require more iterations to remove the crosstalk artifacts.
This speculation, however, still needs more investigation to verify.

A final comparison is made among the images obtained using the inverted velocity
model produced by different methods and for different acquisition geometries. The
initial images (Figure 11) show poor focusing due to the velocity errors. The updated
images using velocities obtained with separate sources (Figure 13) and encoded simul-
taneous sources (Figure 13) show significantly improvements on image focusing and
coherence. The updated images using both separate-source inversion and encoded
simultaneous-source inversion show very similar overall qualities, although separate-
source inversion does produces slightly better images. But if we take the cost into
account, the encoded simultaneous-source inversion is about 101 times faster than the
separate-source inversion, which is a significant advantage. For comparison, Figure
14 presents images obtained using the true velocity model (Figure 1(a)).
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Figure 5: Separate-source WEMVA inversion result for land acquisition geometry at
(a) 5, (b) 20, (c) 50 and (d) 120 iterations, respectively. [CR]
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Figure 6: Separate-source WEMVA inversion result for marine acquisition geometry
at (a) 5, (b) 20, (c) 50 and (d) 120 iterations, respectively. [CR]
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Figure 7: Encoded simultaneous-source WEMVA inversion result for land acquisition
geometry at (a) 5, (b) 20, (c¢) 50 and (d) 120 iterations, respectively. [ER]
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Figure 8: Encoded simultaneous-source WEMVA inversion result for marine acquisi-
tion geometry at (a) 5, (b) 20, (c) 50 and (d) 120 iterations, respectively. [ER]
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Figure 11: Image obtained using the initial velocity model (Figure 2) for (a) land
acquisition geometry and (b) marine acquisition geometry. [ER]
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Figure 12: Image obtained using the separate-source inverted velocity model for (a)
land acquisition geometry and (b) marine acquisition geometry. [CR]
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Figure 13: Image obtained using the encoded simultaneous-source inverted velocity
model for (a) land acquisition geometry and (b) marine acquisition geometry. [ER]
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Figure 14: Image obtained using the true velocity model (Figure 1(a)) for (a) land
acquisition geometry and (b) marine acquisition geometry. [ER]
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CONCLUSIONS

I have presented an efficient method for velocity optimization using wavefields. The
method is automatic because it maximizes the image stack power (or minimizes its
negative) and no picking is necessary. The method is extremely fast because it assem-
bles all shot gathers together and migrates them at once, instead of migrating them
separately. The shot gathers need to be reassembled with regeneration of random
phase-encoding functions at each iteration to mitigate the impact of crosstalk present
in the gradient. The encoding strategy can be applied to both land and marine ac-
quisition geometries, regardless of whether or not a fixed receiver spread has been
used. Numerical examples demonstrate that encoded simultaneous-source inversion
gives reasonably good recovery of the velocity model, with the advantage that the
computational cost is independent from the number of sources.
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APPENDIX A

EQUIVALENCE OF IMAGE-STACK-POWER
MAXIMIZATION AND DATA-DOMAIN BORN
WAVEFIELD INVERSION

This appendix shows that maximizing the image stack power (or minimizing its neg-
ative) is equivalent to Born wavefield inversion, which minimizes the difference be-
tween the modeled and observed primaries. The difference-based objective function
for data-domain Born wavefield inversion can be defined as follows:

1
J = §(Lm — dobs)*(Lm — dobs)7 (A—l)

where d,s is the observed data vector, m is the reflectivity vector; L is the Born
modeling operator that only modeled the angle stacked reflectivity (zero-subsurface-
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offset reflectivity), which is a function of the velocity vector v. Objective function
A-1 is minimized by optimizing both v and m. Expanding equation A-1 yields

1
J = 3 (M*L*Lm — m*"L*dops — d)  Lm + d . dops) - (A-2)

In the least-squares sense, the reflectivity model m can be formally obtained as
follows, assuming the Hessian H is invertible:

m = (L*L) 'L*dops = H 'L*dps. (A-3)
Substituting equations A-3 into A-2 and simplifying yield

1
J = 5 (~ 5, LH L' dops + i dore) (A-4)

obs

Since d}; dops is a constant, it can be ignored in the above equation, therefore

1
J ~ 5, LH 'L o (A-5)

obs
Note that the migration image my,,;, is defined as follows:
My = L dops. (A-6)
Substituting equations A-6 into A-5 yields
1

~ ¥
JN 2mmig

Hflmmig. (A-?)

To simplify the problem, I ignore the Hessian H in equation A-7 and assume it to
be an identity matrix. Therefore, equation A-7 becomes

J A~ ——m’ . My, (A-8)
which is the same as equation 1 defined in the body of the paper. However, the Hessian
H in equation A-7 might be important, especially in complex geologies, where the

illumination is distorted by complex overburdens. The importance of the Hessian in
equation A-7 remains an area for further investigation.
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