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Preface

The electronic version of this report! makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library?. We assume you have
a UNIX workstation with Fortran, Fortran90, C, X-Windows system and the software
downloadable from our website (SEP makerules, SEPlib, and the SEP latex package),
or other free software such as SU. Before the publication of the electronic document,
someone other than the author tests the author’s claim by destroying and rebuilding
all ER figures. Some ER figures may not be reproducible by outsiders because they
depend on data sets that are too large to distribute, or data that we do not have
permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons for
the CR designation is that the processing requires 20 minutes or more, or commercial
packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel Fortran90 compiler), but the
code should be portable to other architectures. Reader’s suggestions are welcome. More
information on reproducing SEP’s electronic documents is available online?.

"http:/ /sepwww.stanford.edu/private/docs/sep145
2http:/ /sepwww.stanford.edu/public/docs/sepdatalib/toc_html
3http://sepwww.stanford.edu/research/redoc/
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Two-parameters residual-moveout analysis for wave-equation
migration velocity analysis

Biondo Biondi

ABSTRACT

The use of two-parameter RMO functions has the potential of improving the flatness
of RMO-corrected gathers. The two RMO functions I propose add a second term to
the conventional angle-domain RMO function. The proposed RMO functions achieve
improved flatness when applied to two test CIGs that are representative of situations
when either strong lateral velocity variations or anisotropy occur.

The use of two-parameter RMO functions could also improve the velocity gradients
when applied within automatic MVA methods. My numerical experiments indicate
that the RMO function that I defined by adding a term proportional to the fourth
power of the tangent of the aperture angle should yield more accurate gradients than
the one-parameter RMO function. This choice is also more robust with respect to
the setting of processing parameters than the other two-parameter RMO function I
introduce in the paper, which adds a term proportional to the absolute value of the
sine of of the aperture angle

INTRODUCTION

The measurement of the residual moveout (RMO) in migrated common image gathers (CIG)
is an important component of any migration velocity analysis (MVA) method. The choice
of a robust method for measuring RMO is particularly important if the MVA process is
automatized to avoid explicit picking of RMO parameters from coherency spectra (Biondi,
2008, 2010; Zhang and Biondi, 2011). In Biondi (2011), I illustrate with a simple example
some of the challenges that these methods may encounter when a one-parameter RMO
analysis is employed in presence of strong lateral velocity variations. To address these
concerns, in this report I introduce two possible choices of RMO functions defined by two
parameters instead of one. Both choices add a term to the RMO function, in addition to
the usual term that is proportional to the square of the tangent of the aperture angle.

The first choice of RMO function adds a term proportional to the fourth power of the
tangent of the aperture angle, and thus I will dub it the “Taylor” RMO function. The
second choice adds a term proportional to the absolute value of the sine of the normalized
aperture angle. The angle is normalized to enable the sine to complete a full cycle between
zero and the maximum aperture angle used for the analysis. This choice is motivated by the
fact that it is theoretically desirable to have the terms of the RMO function to be mutually
orthogonal (Siligi, 2009). The sine function is only approximately orthogonal to the square
of the tangent, but it has the advantage of being extremely simple. I will dub this RMO
function “Orthogonal”.

I test the efficacy of the proposed RMO functions using two CIGs that were obtained
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by migrating two different synthetic data sets. The first CIG represents the challenges
presented by strong lateral velocity variations. The data were modeled assuming a strong
negative velocity anomaly above a flat reflector (Biondi, 2011). The second CIG represents
the effects of anisotropy on RMO analysis. The data were modeled assuming a strongly
anisotropic VTT medium (e = 0.0975 and 6 = —0.11) above a flat reflector, and migrated
assuming an isotropic velocity (Biondi, 2005).

In the following section I introduce the new RMO functions and apply them to compute
two-dimensional spectra measuring the stack power as a function of the moveout parameters.
In the subsequent section I analyze the accuracy of the potential search direction that
would be computed by evaluating the gradient of the stack power as a function of the
RMO parameters, and compare the results with the results of a similar analysis when the
conventional one-parameter RMO analysis is applied.

TWO-PARAMETER RMO FUNCTIONS

Biondi and Symes (2004) introduced the following one-parameter RMO function for angle-
domain CIG:
Az = (1- p)tan?s, (1)

where « is the aperture angle and Az is the difference between the imaged depth at normal
incidence (v = 0) and the imaged depth at a given angle v. For constant velocity errors in
the half space above the reflector, the parameter p has a direct physical interpretation. It
is related to the ratio between the current migration slowness spjs and the true slowness s;
that is, p = Smig/s. However, in the following discussion this physical interpretation of p is
irrelevant, and it can be simply considered as a free parameter describing a family of RMO
functions.

What I call the Taylor RMO function adds the next higher-order even term to equation 1
as follows

Azp = (1 — p)tan®~ + (1 — A7) tan 5, (2)

where Ar is the additional free parameter. As in equation 1, the RMO function is equally
flat when p =1 and Ay = 1.

The second two-parameter RMO function that I introduce adds a sine function to equa-
tion 1 as follows

Azo = (1 - p)tan®y + (1 = Ao) | sin 7], (3)

where Ao is the additional free parameter, ¥ = 27y /Ymax is the normalized aperture angle,
and Ymax 18 the maximum aperture angle used for the analysis.

Figure la shows the first CIG that I use for my study. It was obtained by migrating a
synthetic data set that was modeled assuming a strong negative velocity anomaly above a
flat reflector and migrated assuming a constant velocity (Biondi, 2011). This CIG is located
under the center of the anomaly. Its moveout is not well described by the conventional RMO
function expressed in equation 1 because the image at near angles is more affected by the
anomaly than the image at far angles. Figure 1b shows the result of correcting this CIG
using equation 1 with p = 1.075 that is the p value corresponding to the maximum of the
stack power picked from a stack-power spectrum. This corrected CIG is far from being flat.
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Figure 1: CIGs after constant velocity migration and: a) no correction, b) correction with a
one-parameter RMO (equation 1), ¢) correction with the “Taylor” RMO (equation 2), and
d) correction with the “Orthogonal” RMO (equation 3). [CR] b10nd01 / Cig
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Figure 2: Two-parameter stack-power spectra resulting from RMO analysis of the migrated
CIG shown in Figure la obtained applying: a) the “Taylor” RMO function (equation 2),
and b) the “Orthogonal” RMO function (equation 3). [CR] ‘biondol /- Smooth‘
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Figure 2 shows stack-power spectra as a function of two parameters. The panel on the
left (Figure 2a) was computed using the “Taylor” RMO function described by equation 2,
whereas the panel on the right (Figure 2b) was computed using the “Orthogonal” RMO
function described by equation 3. In both cases the stack power was computed over the
range of —25% <y < 25°. Consequently, I set ymax = 25° to compute the normalized angle
7 in equation 3. The power spectra were averaged over a thick (200 m) depth interval and
slightly smoothed along the RMO parameters p and A.

The maxima of both of these two-parameter spectra are not along the A = 1 line, indicat-
ing that the two-parameter RMO improves the flatness with respect to the one-parameter
RMO. Indeed, when the values corresponding to the maxima of the power spectra shown
in Figure 2 are used to correct the original CIG I obtain flatter gathers than when using
a one-parameter RMO. Figure 1c shows the result of correcting the CIG shown Figure la
using equation 2 with p = 1.15 and Ap = .55. Figure 1c shows the result of correcting the
CIG shown Figure 1a using equation 3 with p = 1.075 and Ap = 1.0055. The CIG corrected
using the “Orthogonal” RMO is almost perfectly flat within the —25° < v < 25° range.

Notice that the shape of the spectra around their respective maxima is substantially
different between the two plots. The function corresponding to the “Orthogonal” RMO is
more isotropic around the maximum than the one corresponding to the “Taylor” RMO.
This behavior is expected because the two terms of the “Orthogonal” RMO function are
close to be orthogonal with respect to each other. Theoretically, this more isotropic shape
could lead to better gradients. However, we can also notice diagonal artifacts in Figure 2b.
As we discuss below, the effects of these artifacts tend to outweigh any advantage provided
by the more isotropic shape of the spectrum.

Figure 3a shows the second CIG that I use for my analysis. It was obtained by migrat-
ing a synthetic data set that was modeled assuming a strongly anisotropic VTI medium
(e = 0.0975 and § = —0.11) above a flat reflector, and migrated assuming an isotropic
velocity (Biondi, 2005). Because the anisotropy in the medium is not taken into account
by the isotropic migration, the CIG moveout is not well described by the conventional one-
parameter RMO function expressed in equation 1. Figure 1b shows the result of correcting
this CIG using equation 1 with p = .9375 that is the p value corresponding to the max-
imum of the stack power picked from a stack-power spectrum. This corrected CIG is far
from being flat.

Figure 4 shows stack-power spectra as a function of two parameters. The panel on the
left (Figure 4a) was computed using the “Taylor” RMO function described by equation 2,
whereas the panel on the right (Figure 4b) was computed using the “Orthogonal” RMO
function described by equation 3. In both cases the stack power was computed over the
range of —50° <~ < 50°. Consequently, I set ymax = 50° to compute the normalized angle
7 in equation 3. The power spectra were averaged over a thick (200 m) depth interval and
slightly smoothed along the RMO parameters p and A.

As for the spectra computed from the first CIG (Figure 2), the function corresponding to
the “Orthogonal” RMO is more isotropic around the maximum than the one corresponding
to the “Taylor” RMO. This difference in shape is less pronounced for this example than for
the previous one.

Because the maxima of both of these two-parameter spectra are not along the A = 1 line,
we have indication that the two-parameter RMO improves the flatness with respect to the
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Figure 3: CIGs after isotropic velocity migration and: a) no correction, b) correction with a
one-parameter RMO (equation 1), ¢) correction with the “Taylor” RMO (equation 2), and

d) correction with the “Orthogonal” RMO shows the second CIG that I use (equation 3).
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Figure 4: Two-parameter stack-power spectra resulting from RMO analysis of the migrated

CIG shown in Figure 3a obtained applying: a) the “Taylor” RMO function (equation 2),
and b) the “Orthogonal” RMO function (equation 3). [CR] ‘biondol /- Smooth—aniso‘
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one-parameter RMO. Indeed, when the values corresponding to the maxima of the power
spectra shown in Figure 4 are used to correct the original CIG I obtain flatter gathers than
when using a one-parameter RMO. Figure 3¢ shows the result of correcting the CIG shown
Figure 3a using equation 2 with p = 0.915 and Ar = 1.075. Figure 3c shows the result of
correcting the CIG shown Figure 3a using equation 3 with p = 0.97 and A\p = 0.988. In
particular, the CIG corrected using the “Taylor” RMO is significantly flatter, within the
—50° <~ < 50° range, than the one corrected using a one-parameter RMO.

CONVERGENCE ANALYSIS

In the previous section I showed that we can obtain flatter migrated CIGs by applying a
two-parameter RMO correction instead of a conventional one-parameter correction. These
results would be sufficient to motivate the use of a two-parameter RMO if the goal were to
improve the signal-to-noise in the stacked cube, or to perform velocity analysis by picking
the stack-power maxima. However, I am interested in using the new RMO functions in an
MVA method that avoids picking the maxima of coherency spectra; this method computes
the gradients of the objective function from the gradient of the stack-power spectra with
respective to the RMO parameters (Biondi, 2008, 2010; Zhang and Biondi, 2011). It is
therefore important to analyze the quality of the gradient information computed from two-
parameter spectra, and compare to the corresponding gradient information computed from
one-parameter spectra.

As a quality measurements of the gradient information, I compute the correlation across
the angle axis between the RMO function that would be computed by picking the maxima
of the coherency spectra ,Az and the RMO function ;Az computed using the gradient.

For the “Taylor” RMO the reference RMO function ,Az7 is computed as follows:
pA21 (7,0, A1) = (p = ) tan? 5 + (Ar = A7) tan’ 5. (4)

where (ﬁ, )G) are the coordinates of the power-spectrum maximum. The RMO function

¢Az7r computed from the gradient of the power spectrum Pr is,

oP 0P,
oAz (7, p,2r) = =L (p, Ar) tan?y — ZL (p, Ar) tan' 5, (5)
ap 8/\T
and the correlation is computed as
Cr(p.Ar) =Y pAzr (v, 0, A1) g A1 (7, p, A1), (6)
gl

I compare this correlation function over a range of (p, \p) with the correlation function
computed by

Cr1(p, Ar) =Y pAzr (v, p, Ar)gA2r1 (7, p, A1), (7)
Y

where the one-parameter RMO ;Az7 is computed as follows

0Pr

gAz71 (7, p, A1) = “op (p, Ar) tan® 7. (8)
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Figure 5 compares the correlation functions Cr (panel a) and Cr; (panel b) for the
first CIG analyzed (Figure 1a). The asterisk superimposed onto the plots of the correlation
functions is located at the maximum of the power spectrum displayed in Figure 2a. The
coordinates (ﬁ, )/\;) of this maximum are used to evaluate the moveout ,Azr according

to equation 4. Accurate gradient directions correspond to positive correlation (plotted
in white in the figure), whereas potentially misleading gradient directions correspond to
negative correlation (plotted in black in the figure).

The correlation functions are mostly positive over a wide range of parameters (p, A7),
indicating that a velocity estimation method based on these RMO functions is likely to
have good global convergence properties. In particular, the positive correlation functions
at (p =1, p = 1) indicates that the gradient computed starting from the migrated CIG
shown in Figure 2a would be accurate, even if this CIG is far from being flat.

The correlation functions shown in Figure 5 are very similar. Therefore, the global
convergence of the velocity estimation would be robust independently of whether the one-
parameter or the two-parameter RMO function is used.

Similar correlation analysis of the RMO function can be performed when applying the
“Orthogonal” RMO instead of the “Taylor” RMO. In this case the reference RMO function
pAzo is computed as follows:

p220 (7,9, 20) = (p = ) tan® 5 + (Ao = X | sin ] (9)

where (ﬁ, X(\)) are the coordinates of the corresponding power-spectrum maximum. The

RMO function jAzo computed from the gradient of the power spectrum Fp is,

0P, 0P, .
9820 (7,0, 20) = =2 (p, ho) tan? 1 = =2 (p, Xo) |sin 7], (10)
ap 8AT
and the correlation is computed as
Co (p:20) =D pAz0 (7,9, 20)gA%0 (7, p Ao). (11)
¥
This correlation is compared with the correlation
Co1 (p,20) = Y pAz0 (7:p; Ao)gAZ0n1 (7, 9, X0), (12)

Y

where the one-parameter RMO ;Azp1 is computed as follows

0P,
sB201 (7:9:0) = =75 = (. Ao tan’ 7. (13)

Figure 6 compares the correlation functions Cp (panel a) and Cp; (panel b) for the
first CIG analyzed (Figure 1a). The asterisk superimposed onto the plots of the correlation
functions is located at the maximum of the power spectrum displayed in Figure 2b. The
coordinates (ﬁ, )TB) of this maximum are used to evaluate the moveout ,Azp according
to equation 9. As for the previous figure, accurate gradient directions correspond to pos-
itive correlation (plotted in white in the figure), whereas potentially misleading gradient
directions correspond to negative correlation (plotted in black in the figure).
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Figure 5: Correlation functions corresponding to the CIG shown in Figure la for: a) the
“Taylor” two-parameter RMO function (equation 6), and b) the one-parameter RMO func-

tion (equation 7). [CR] ’biondol /- CorrShift—TP‘
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Figure 6: Correlation functions corresponding to the CIG shown in Figure la for: a) the
“Orthogonal” two-parameter RMO function (equation 11), and b) the one-parameter RMO

function (equation 12). [CR] ’biondol /- CorrShift—OP‘
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Figure 7: Panel a): Two-parameter stack-power spectra resulting from RMO analysis of the
CIG shown in Figure la obtained using a thinner averaging window (30 m) than the one
used to compute the spectrum shown in Figure 2b. Panel b): Correlation function for the
“Orthogonal” two-parameter RMO function obtained using the thinner averaging window.
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In this case the correlation functions shown in Figure 6 are not as similar as in the previ-
ous case. In particular, the black area around the value (p = 1, \o = 1) in Figure 6a indicate
that the two-parameter RMO analysis would provide unreliable gradients. This problem is
related to the diagonal artifacts visible in the power spectrum shown in in Figure 2a. These
artifacts are caused by the fact that the second term in the “Orthogonal” RMO function has
an extremum in the middle of the angular range, in contrast with the other RMO functions
that have an extremum at normal-incidence. This mid-range extremum causes spurious
local maxima of the spectrum at depths different than the normal incidence depth of the
imaged reflector. These artifacts are much weaker when I averaged the power spectrum over
a thinner depth interval (30 m) than the one used for computing the function displayed in
Figure 6a. The new averaging window is of thickness comparable to the image of the reflec-
tor. Figure 7a shows the power spectrum obtained with this thinner averaging window, and
Figure 7b corresponds to the two-parameters correlation function, which is a substantial
improvement with respect to the one shown in Figure 6a. Figure 8 and Figure 9 shows the
analysis of the correlation functions for the second CIG analyzed (Figure 3a); that is, the
CIG suffering from the effects of anisotropy. Figure 8 corresponds to the ”Taylor” RMO
function, whereas Figure 9 corresponds to the ”Orthogonal” RMO function. For this CIG,
the two-parameter RMO analysis seems to improve the global convergence of the method,
in particular when the “Orthogonal” function is applied (Figure 9).

Local convergence analysis

To gain an insight whether using a two-parameter RMO provides more accurate gradi-
ents starting from a CIG that is already close to be flat, we can zoom into the previous
correlation plots around the location of the maximum. The correlation function in these
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Figure 8: Correlation functions corresponding to the CIG shown in Figure 3a for: a) the
“Taylor” two-parameter RMO function (equation 6), and b) the one-parameter RMO func-
tion (equation 7). [CR] ’biondol /- CorrShift—TP—aniso‘
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Figure 9: Correlation functions corresponding to the CIG shown in Figure 3a for: a) the
“Orthogonal” two-parameter RMO function (equation 11), and b) the one-parameter RMO
function (equation 12). [CR] ’biondol /- CorrShift—OP—aniso‘




SEP-145 Two-parameters RMO 11

smaller windows is related to “local convergence” of velocity estimation methods based on
the selected RMO functions.

Figure 10 shows the zooms into the plots shown in Figure 5; that is, comparing the
correlation function for the first CIG (velocity anomaly) obtained using the “Taylor” RMO
function (Figure 10a) and the conventional one-parameter RMO function (Figure 10b). I
set the width of the close up windows to be equal to the distance of the maximum from the
starting CIG; that is, the difference between the minimum and the maximum value of the
p parameter is Ap = (p — 1) and the difference between the minimum and the maximum

—

value of the Ay parameter is A\ = ()\T — 1). The two plots shown in Figure 10 are almost

identical, indicating that in this case there would be a negligible advantage to be gained by
employing a two-parameter RMO function.

Figure 11 analyze the application of the “Orthogonal” RMO function to the same CIG
as the previous figure. It shows the zooms into the plots shown in Figure 7b and Figure 6b,
respectively. I set the window width following the same criterion described above for the
“Taylor” RMO function. In this case, the one-parameter RMO function seems to provide
better local convergence than the two-parameter RMO function.

The last two figures, Figure 12 and Figure 13, show similar analysis as the previous
two, but applied to the CIG that suffers from the effects of anisotropy. For these CIG the
two-parameters RMO function provides a better local convergence than the one-parameter
function. The improvements look more substantial for the “Orthogonal” RMO function
than for the “Taylor” RMO function.

DISCUSSION AND CONCLUSIONS

The introduction of a second term to the conventional RMO function for angle-domain
CIGs improves the flatness of the corrected gathers for both CIGs I used in my testing and
for both choices of two-parameter RMO function I proposed.

The answer to the question of whether using a two-parameter RMO function yields
more reliable gradients when applied in automatic MVA methods is more ambiguous. The
correlation analysis I presented indicates that the “Taylor” RMO function yields more
robust gradients than the simple one-parameter RMO function for both CIGs I used as
representative of situations when either strong lateral velocity variations or anisotropy occur.
The impact of these improvements in real situation is difficult to predict. More testing and
analysis are needed to determine whether the additional computation and code complexity
introduced by the addition of a second term to the RMO function are worthy.

The “Orthogonal” RMO function may yields better gradients, but it is also more sensi-
tive with respect to the thickness of the depth-averaging window for the power spectra. This
fragility is caused by the location of the extremum of the second term of the “Orthogonal”
RMO function in the middle of the angular range. Although the “Orthogonal” function has
some theoretical advantages, its lack of robustness make it a less desirable choice.
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Velocity model evaluation through Born modeling and
migration: a feasibility study

Adam Halpert and Yazxun Tang

ABSTRACT

A way to quickly test many possible migration velocity models would be a valuable
interpretation tool. Here, a modified Born modeling scheme is used to simulate a
new, smaller dataset from an initial image, allowing for target-oriented migrations in
a fraction of the time needed for a full migration of the original dataset. Furthermore,
the simulated dataset is migrated with a generalized source function derived from the
original prestack image, preserving important velocity information that would be lost
if a standard wavelet were used as the source function. While the method is currently
limited to analysis of a single reflector, initial tests on a simple 2D synthetic model
indicate that this method can accurately and efficiently produce images comparable to
full standard migrations.

INTRODUCTION

Building an accurate seismic velocity model is essential for obtaining an acceptable image of
the subsurface. When the subsurface is especially complex, for example in geological settings
dominated by irregularly-shaped salt bodies, this task becomes particularly challenging.
The large contrast between salt and sediment velocities magnifies the effects of inaccurate
salt interpretation, resulting in a poor image. Unfortunately, velocity model-building is a
time-consuming process that often requires several iterations. A typical salt-interpretation
and model-building workflow involves iterative sediment- and salt-flood migrations to iden-
tify the top and base of the salt bodies (Mosher et al., 2007). In situations where the top or
(especially) base salt interpretation is uncertain or ambiguous, several different salt scenar-
ios may be geologically feasible. Therefore, a means of quickly testing the effects of several
different possible velocity models would be extremely useful for judging and refining salt
interpretations. Here, we investigate a Born modeling and migration scheme that allows
for fast remigrations of data simulated from an initial image, that incorporates prestack
velocity information from the initial image’s subsurface offset gathers.

An interactive interpretation and imaging environment would be a valuable model-
building tool, and several different approaches have been proposed. Wang et al. (2008)
introduced a fast migration scheme built on Gaussian beam imaging (Hill, 1990), that
can quickly test different salt scenarios. This method relies on seismic demigration and
redatuming of wavefields to reduce the computational expense of migrating with several
different velocity models. However, this method operates in the poststack image domain,
neglecting velocity information that can be obtained from prestack images, and is limited
by the approximations inherent to beam imaging. A similar approach has been proposed
using reverse time migration (RTM) in a “layer-stripping” manner (Wang et al., 2011),
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but this remains too computationally intensive to test more than a very small number of
possible models. Chauris and Benjemaa (2010) have proposed another method using RTM,
which aims to reduce computational expense by summing over time-delays in the subsurface
rather than sources. However, at present this method has only been demonstrated in two
dimensions, and it remains unclear if an extension to 3D is feasible. Finally, fast migrations
may also be achieved through the use of simulated datasets derived from an initial image.
Guerra (2010) synthesized wavefields using prestack exploding reflector modeling as a means
for performing wave-equation tomography in the image space. However, the significant
amount of preprocessing required, especially in 3D, makes this approach less appealing for
interactive testing of several velocity models.

Born modeling (Stolt and Benson, 1986) is based on a single-scattering approximation
of the wave equation. By taking advantage of this approximation, we can simulate a new
dataset (Tang and Biondi, 2010; Tang, 2011) from an initial image, whose size and acqui-
sition geometry can be selected independently from those of the original dataset. Further-
more, the simulated data can be migrated using generalized sources, drastically reducing the
number of shots required. In the examples we show, only a single shot is required, allowing
for migrations well within an interactive time frame. In order to improve the accuracy of
this method, we use a generalized source function derived from subsurface offset gathers of
the initial image. This allows for a more accurate and data-driven result than if a simple
wavelet were used as the source function; in addition, including non-zero subsurface offset
information into this source function incorporates important velocity information available
from the initial image.

In the following sections, we review the Born modeling methodology and outline the
procedure for obtaining the generalized source function described above. We then demon-
strate the method using simple 2D synthetic models. Crosstalk artifacts arising from the
modeling procedure limit these examples to isolated image points along a single reflector
in the subsurface; however, these tests indicate that this method can effectively provide
information about the accuracy of different velocity models on an image. Further enhance-
ments and the inclusion of phase-encoding (Romero et al., 2000) strategies should widen
the applicability of the method. Ultimately, we hope to combine this method with elements
of an automated image segmentation scheme (Halpert et al., 2011) to create a powerful tool
for interactive interpretation and imaging.

METHOD

The goal of the procedure we will describe is to use Born modeling to synthesize a new
dataset that is much smaller than the original dataset used to generate an initial migrated
image. Since the synthesized data can be “recorded” at any location in z, y, and even z,
this procedure is effectively target-oriented. There are three basic steps needed to reach our
goal of efficient velocity model evaluation:

1. Generate an areal source function using one or more subsurface offset gathers from
the initial prestack image.

2. Using the new source function and a reflectivity model based on the initial image,
employ Born modeling to generate a new dataset with acquisition geometry best
suited to image the target area.
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3. Migrate the simulated data obtained in Step 2, using the source function from Step 1.
This step is extremely computationally efficient compared to a full migration of the
original data, allowing for testing of several possible velocity models in a fraction of
the time it would take to evaluate them using standard migration techniques.

In the following sections we detail the theoretical basis for each of these steps.

Generalized source function

In conventional modeling and migration, a simple wavelet or plane wave is often used as
the source function. However, here we can take advantage of the fact that the proce-
dure described above begins with a migrated image. This allows us to perform post-stack
“exploding reflector” (Claerbout, 2005) modeling of a reflector or point diffractor in the
subsurface; the upward-continued wavefield can be recorded at any location, and then in-
jected as an areal source function during Born modeling. Mathematically, this areal source
is described as

S(Xs) = Z Z G*(X/ - h,Xva,f(X/, h))v (1)

x’" h

where x5 = (zs,ys,2s) are the arbitrarily defined locations where the wavefield will be
recorded; h is the vector of subsurface half-offsets; w is angular frequency; £ is the location
of the exploding image point in the subsurface; and G is the Green’s function connecting the
source to the image point (here, * denotes the adjoint). The Green’s function is computed
using the same velocity model that was used to image the originally-recorded data, meaning
that the recorded wavefield should be independent of the original velocity model choice.
However, since this velocity model is unlikely to be correct, the initial image should contain
valuable information about the accuracy of this model in the form of subsurface offset
gathers. Thus, the inclusion of the subsurface offset term h in equation 1 is designed to
incorporate this information into the modeling. Since post-stack modeling is used to upward
continue the wavefields, the non-zero subsurface offset data are mapped to equivalent zero
subsurface offset locations:

a(x —h) = a(x —h) + (x,h), (2)

where « is the zero-offset data that are upward continued, and [ is the original subsurface
offset gather. To illustrate the advantage gained by incorporating this information, Figures
1(a) and 1(b) show two recorded source wavefields from an image point that is actually
located at z = 1000 in the subsurface, but was initially imaged with a velocity that was
15% too slow. Both recorded wavefields have been reverse-propagated back to zero time to
facilitate comparison. The source function in panel (a) was modeled using only the zero
subsurface offset h = 0 data from the initial image, while the result in panel (b) uses the
non-zero offset information as written in equation 1. When only zero subsurface offset data
are used, the source appears to focus at the incorrect depth; when the nonzero offset data
are used, the effects of using the wrong velocity are apparent. Using the source function in
Figure 1(b) should therefore prove superior for use with the Born modeling and migration
scheme described in the next section.
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Figure 1: Recorded source wavefields that have been reverse-propagated to zero-time; the
result in (a) does not include information from the nonzero subsurface offsets of the initial
image, while (b) does include this information. Both the initial migration and the modeling

used a velocity model that was 15% too slow. |adarn1 /. pt-0,pt-n0

Born modeling and migration

We now use the modeled areal source to generate a new data set via Born modeling. To do
this, we define the simulated dataset d’ recorded at arbitrary receiver locations x/:

d(x,w) => Y T(xe,h,w)G(X +h,x),w)m(x', h). (3)
x’ h

Here, m is the reflectivity model (in our case, the initial image), and the I" term is defined
as

(x5, h,w) =Y 5(x:)G(xs,x" — h,w), (4)

where S is as defined in equation 1.

Because the placement of the receiver locations in equation 3 can be arbitrarily deter-
mined, they do not necessarily need to be on the surface, like the original recorded data.
Placing the receivers at depth can improve the efficiency of this method by providing the
capability for target-oriented imaging; if a velocity model is well-determined down to a
given depth, the synthesized data can be recorded below that depth, avoiding unnecessary
computation. This has a similar effect to re-datuming the wavefields, an approach taken by
Wang et al. (2008) in their fast image updating strategy.

Now that we have new source and receiver wavefields, we can produce an image using
standard wave-equation migration techniques:

m/(x',h) = Z G*(x' — h,w) Z G*'(x' +h,x,w)d (x,w). (5)

It is important to note that the Green’s functions in equation 5 can be computed using
any velocity model, and not necessarily the same one used to generate the source and
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receiver wavefields in previous steps. This can allow for testing of multiple possible velocity
models. Furthermore, since subsurface offset gathers are generated during the imaging,
we now have a more quantitative means of judging the accuracy of these various models.
This represents an advantage over methods such as beam migration that cannot provide
this information. Unfortunately, the imaging procedure as written in equation 5 can also
generate crosstalk artifacts, since areal source data is used. While various methods are
available to help attenuate these artifacts (Romero et al., 2000; Tang, 2008), we restrict our
examples in the next section to isolated points in the subsurface, spaced far enough apart
to limit the effects of crosstalk.

EXAMPLES AND DISCUSSION

To test the feasibility of the method outlined above, we designed two simple synthetic test
cases: a single flat reflector in the subsurface (Figure 2(a)), and a single reflector dipping
at 20° (Figure 2(b)). We restricted these initial test cases to a single reflector in order to
avoid problems related to crosstalk between multiple events or reflectors; while there are
methods to attenuate this crosstalk, we hoped to gauge the feasibility of the method using
only a single shot to migrate the Born-modeled data, without sophisticated phase-encoding
schemes.

Both examples in Figure 2 were generated by migrating with an incorrect velocity model
(15% slower than the constant-velocity model used to generate the original dataset). The
effects of using an incorrect velocity can be seen clearly on the subsurface offset gather (non-
focused event). A key goal of our Born modeling procedure is to replicate this behavior when
the same velocity model is used to migrate the Born-modeled data. To test this, we sample
isolated points from the reflectors in Figure 2, and use these points to generate the areal
source function described in the previous section. In order to avoid unwelcome crosstalk
between these points during the modeling process, they are separated by a distance that is
twice the maximum subsurface offset, as seen in Figure 3.

Once the source function is “recorded,” Born modeling is performed using the sub-
sampled images in Figure 3 as reflectivity models. The results of migrating this Born-
modeled data, using the same velocity model used to produce the images in Figure 2, are
seen in Figure 4. Because these images were migrated using an areal source function, only a
single shot was necessary; this means that the images in Figure 4 were produced in seconds,
nearly three orders of magnitude less time than was necessary to compute the images in
Figure 2. Comparing the subsurface offset gathers for both of these figures, we see that
while amplitudes differ, the kinematics have been accurately preserved in the Born-modeled
result. If our goal is to evaluate the velocity model used, the quickly-obtained results in
Figure 4 should be sufficient.

The importance of correctly spacing the image points we use for the modeling is illus-
trated in Figure 5. Here, points from the flat reflector image in Figure 2(a) have been
sampled twice as frequently, at a spacing equal the maximum subsurface offset. Figure 5
shows the result of using these points to create the areal source function, and then per-
forming Born modeling and migration as before. Now, crosstalk between the closely-spaced
image points results in severe artifacts, including spurious events on the zero-subsurface
offset image.
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Figure 2: Prestack depth migration images of (a) a flat reflector and (b) a reflector dipping
at a 20° angle. The images were migrated with a constant velocity 15% too slow compared
to the true velocity, causing the noticeable artifacts and lack of focusing in the subsurface
offset dimension. |adam1 /- ﬂat—orig,dip—orig|




SEP-145 Fast velocity model testing 21

(x) aas%o ‘qng

00S

Yidag

0052 0002 00SL 000k

-1500 -1000 -500 0 500 1000 1500 -200 0 200
Position (x) Sub. offset (x)

(a)

(x) las}éo ‘ans

yideq
000L 005

00S6¢ 0002 00SL

-1500 -1000 -500 0 500 1000 1500 -200 0 200
Position (x) Sub. offset (x)

(b)

Figure 3: Isolated image points from Figures 2(a) and 2(b) used for the modeling procedure.
The points are separated by twice the maximum subsurface offset value in order to avoid
crosstalk artifacts in the modeling. |adam1 /. ﬂat—sp,dip—sp|
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Figure 4: Migrated images after Born modeling using the images in Figure 3 as the reflec-
tivity model. Although the amplitudes differ, the kinematics of the events in both figures
match. | adam1/. flat-sp-born,dip-sp-born |
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Figure 5: Migration result if the image points sampled from Figure 2(a) are spaced at less
than twice the maximum subsurface offset. Crosstalk artifacts dominate the image, making
interpretation extremely difficult. |adam1 /. flat-xtalk
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As mentioned in the previous section, an advantage of this Born modeling strategy is that
the synthesized data may be recorded at any depth, effectively re-datuming wavefields prior
to migration. This can lead to significant computational savings, especially if velocities are
well known until a certain depth. To verify that this capability does not effect the accuracy
of migration results, we recorded both the areal source wavefield and the Born-modeled
data at depth z = 750, instead of at the surface. Figure 6 shows the result of migrating
this data in the dipping reflector case. Comparison with Figure 4(b) confirms that the two
results are virtually identical for the area of interest.
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Figure 6: Migration result using Born-modeled data from the model in Figure 3(b). In
this case, the synthesized data was recorded in the subsurface instead of on the surface,
effectively re-datuming the wavefields. |adam1 /. dip-short

Finally, we wish to test the ultimate purpose of this method: quickly evaluating multiple
velocity models. Once the Born-modeled dataset has been synthesized, we can use any
velocity model to image the data. Again, we are able to perform these migrations very
quickly, on the order of seconds for the examples here. Figure 7 compares the results of
using three different velocity models to image the Born-modeled data: one that is 5% slower
than the true velocity (Panel a); one that is exactly the true velocity (Panel b); and one that
is 5% faster than the true velocity (Panel ¢). From these results, it is clear that the velocity
model used to produce Panel b’s result is the most accurate — the subsurface offset gather is
flat and relatively focused, and, unlike Panels a and ¢, there are no signs of over- or under-
migration on the zero-subsurface offset image. Because the velocity differences between
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these three models are relatively small, this is an encouraging sign that this method can
ultimately allow us to quickly test more complex models for both synthetic and field data.

CONCLUSIONS

We investigated Born modeling techniques as a means to quickly evaluate multiple possible
migration velocity models. By “exploding” subsurface offset gathers from an initial migrated
image, we can generate an areal source function with information about the initial velocity
model. This source function is used to both generate Born-modeled data from isolated
points in the subsurface, and to migrate that data to form an image. While crosstalk issues
limit the present implementation of this method to single reflectors, we showed that it can
quickly and accurately reproduce the same velocity information (in the form of subsurface
offset gathers) obtained from a full migration of the original data. Furthermore, the method
allows for re-datuming of wavefields prior to imaging, and can clearly distinguish between
velocity models that differ only slightly. With further improvement, this method could form
the basis for an efficient and interactive model-building tool.
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Figure 7: Result of migrating the Born-modeled data with (a) 5% too slow veloc-
ity; (b) correct velocity; and (c) 5% too fast velocity. Each migration was nearly
instantaneous, and the effects of the different velocity models are readily apparent.
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Fast automatic wave-equation migration velocity analysis
using encoded simultaneous sources

Yaxun Tang

ABSTRACT

I present a method based on source encoding for fast wave-equation migration velocity
analysis (WEMVA). Instead of migrating each impulsive-source gather separately, I
assemble all gathers together and migrate only one super shot gather. This procedure
results in the computational cost of WEMVA to be independent from the number of
impulsive-source gathers, which is typically huge for large surveys. The proposed en-
coding method can be applied to data acquired from any acquisition geometry, such as
land or marine acquisition geometries. The velocity inversion is done automatically by
solving a nonlinear optimization problem that maximizes the image stack power, which
is shown to be equivalent to the data-domain inversion using only primary reflections.
Preliminary results show that WEMVA with encoded sources can produce inversion
results similar to those produced by conventional separate-source WEMVA, but with
drastically reduced computational cost.

INTRODUCTION

Accurate reflectivity imaging requires an accurate background velocity model. As seismic
exploration moves towards structurally complex areas, wave-equation migration velocity
analysis (WEMVA) that better models band-limited wave phenomena becomes necessary
for high-quality velocity model building. WEMVA however, is still expensive for industrial-
scale applications (Biondi and Sava, 1999; Shen et al., 2005; Albertin et al., 2006; Fei et al.,
2009), both because the method uses expensive wavefield modeling engines, and because
the computation needs to be carried out for each shot, resulting in a cost proportional to
the number of sources, which is huge for large surveys.

Source encoding has been used in both seismic acquisition (Beasley et al., 1998; Beasley,
2008; Hampson et al., 2008; Berkhout, 2008; Tang and Biondi, 2009) and processing (Romero
et al., 2000; Whitmore, 1995; Zhang et al., 2005; Liu et al., 2006; Krebs et al., 2009) to
reduce the cost. The idea is that instead of firing one impulsive source at a time, we fire
all encoded impulsive sources simultaneously for acquisition or/and processing. By doing
so, the acquisition or/and processing effort is reduced to just one super areal shot gather
instead of many impulsive source gathers, significantly reducing the acquisition or/and
processing cost. In this paper, I mainly focus on applying the source-encoding method to
seismic processing, hence I assume that the data are acquired using conventional impulsive
separate sources without any overlaps.

Source encoding has been widely used in migration processing, where random-phase
encoding and plane-wave-phase encoding are the most popular encoding schemes. The
random-phase-encoding migration, however, has had limited success. This is because the
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more shots randomly encoded together, the more crosstalk present in the migration image.
Consequently, images obtained with many realizations need to be computed and stacked
in order to attenuate the crosstalk (Romero et al., 2000). Plane-wave phase-encoding mi-
gration, on the other hand, has wider applications than random phase-encoding migration.
This is because plane-wave phase-encoding function has good properties in terms of con-
verging to a Dirac delta function (Liu et al., 2006). However, multiple plane waves need to
be synthesized and migrated to remove the crosstalk artifacts. As a result, source encoding
in migration can usually achieve a cost reduction by a factor of about 10 or less.

As opposed to seismic migration processing, source encoding (especially random phase
encoding) seems to be more effective in seismic inversion processing, such as least-squares
migration (Tang and Biondi, 2009; Dai and Schuster, 2009; Dai et al., 2010) and full wave-
form inversion (Krebs et al., 2009; Tang and Lee, 2010; Ben-Hadj-Ali et al., 2011). The key
element in encoded simultaneous-source inversion is the regeneration of random codes at
each iteration (Krebs et al., 2009; Tang and Lee, 2010; Dai et al., 2010; Ben-Hadj-Ali et al.,
2011). Different sets of random codes at each iteration enable destructive summation of the
crosstalk over iterations, and consequently the residual crosstalk in the inverted model is
gradually removed as inversion proceeds. Encoded simultaneous-source inversion operates
on one super shot gather instead of many impulsive-source gathers at each iteration, there-
fore the computational cost is independent of the number of sources. Although more or
less counter-intuitive, Krebs et al. (2009) have reported that encoded simultaneous-source
inversion has a similar convergence rate compared to separate-source inversion. As a re-
sult, source encoding in inversion can achieve a cost reduction by a factor of the number of
sources, which can be significant for large surveys.

One commonality of the above mentioned inversion processing (least-squares migration
and full waveform inversion) is the minimization of a data-domain objective function, which
compares the differences between the modeled and the observed data. The difference-
based objective function, however, restricts the application of encoded simultaneous-source
inversion to only data acquired with a fixed receiver spread, such as in land or ocean bottom
cable (OBC) acquisition geometries (Krebs et al., 2009). This is because modeling using
encoded simultaneous sources implicitly assumes that each receiver listens to all shots. This
is obviously not the case for marine acquisition geometries, where the towed receiver spread
moves along with the sources. The mismatch in acquisition is irreconcilable and will cause
wrong model updates.

In this paper, I apply the source-encoding method to WEMVA, which optimizes an ob-
jective function formulated in the image domain instead of the data domain. In particular,
I optimize the velocity by maximizing the image stack power (or minimizing its negative).
I will show that the objective function to maximize (or minimize) is based on the cross-
correlation between the source and receiver wavefields, and that source encoding can be
applied to arbitrary acquisition geometries, regardless of whether or not the receiver spread
is fixed. Similar to the data-domain multi-source inversion, encoded simultaneous-source
WEMVA also generates gradients contaminated by crosstalk. Therefore, regeneration of
random codes at each iteration becomes necessary to mitigate the impact of crosstalk on
velocity updates.

In the subsequent sections, I first review the theory of WEMVA based on image-stack-
power maximization (or equivalently negative image-stack-power minimization). I prove
that minimizing the negative image stack power is equivalent to the data domain Born
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wavefield inversion, which minimizes the difference between the modeled and observed pri-
mary reflections. I then show how source encoding can be applied to WEMVA. Finally, 1
apply both separate-source WEMVA and encoded simultaneous-source WEMVA to invert
a truncated Marmousi model.

THEORY

I pose the velocity estimation problem as an optimization problem that tries to maximize
the image stack power across the reflection angle, taking advantage of the fact that seismic
events should be aligned and hence most constructively stacked in the angle domain, if
migrated using an accurate velocity model (Soubaras and Gratacos, 2007). Instead of
solving it as a maximization problem, I actually solve it as a minimization problem that
minimizes the negative image stack power. Because the reflection-angle stacked section is
equivalent to the zero-subsurface offset image, the objective function that I use to minimize
is therefore defined as follows:

1
T = =5 (). M)

where mupig(x) is the zero-subsurface-offset image at image point x = (z,y, z), obtained
by crosscorrelating the forward propagated source wavefield with the backward propagated
receiver wavefield as follows:

Mmig(X) = > Y S(x, X, w) R(X, X5, w), (2)

where S(x,xs,w) and R(X,Xs,w) are the source and receiver wavefield at image point x,
respectively, for a source located at x; = (x5, ys, 0) and at angular frequency w. If a one-way
extrapolator is used, S and R satisfy the following one-way wave equations:

. w2
(% +iy/ B3+ Vz) S(x,xs,w) =0 ’ (3)
S(xayaz = 07X87w) - 5('7; —Ts Y — ys)f:(w>

and
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where * denotes taking the adjoint; v(x) is the velocity at image point x; fs(w) is the source
signature; §(+) is the Dirac delta function; V? = 88—;2 + 88—; is the Laplacian operator. @ is

the observed data mapped onto the computation grid, which is defined as follows:

Q(x7y7X$7w) = Z W(X'f’vxs)é(x - $T7y - y’f')dObS(X’HXS:w)’ (5)

where dops is the observed data recorded at x, = (., y,,0) due to a source at x5; W(x,,Xs)
is the acquisition mask operator, which contains ones where we record data and zeros where
we do not.

Since flat angle gathers generate the most coherent stack, the negative image-stack-
power minimization objective function defined by equation 1 is intuitive to understand.
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Objective function 1, however, has an alternative interesting interpretation as shown in Ap-
pendix A, which proves that under the least-squares assumption, minimization of objective
function 1 is equivalent to the data-domain Born wavefield inversion, which minimizes the
differences between the modeled and observed primary reflections.

Objective function 1 is usually minimized using local optimization techniques, which
require explicit calculation of the gradient. The gradient is obtained by taking the derivative
of J with respect to velocity v(y) (y is the velocity coordinates) as follows:

o ammig(x)m (x
g(y) - av(y) - 81)(}’) mlg( )7 (6)

X

where the sensitivity kernel, or tomographic operator, ma;“i(igy()x), can be easily obtained as

follows:

Note the summations over x; in equations 2 and 7. This means that the computation for
the image myj; and the gradient g needs to be carried out for each source independently,
resulting in a cost proportional to the number of sources. The gradient g is usually calculated
using the adjoint-state technique without explicitly constructing the sensitivity kernel (Shen,
2004; Sava and Vlad, 2008; Tang et al., 2008).

For encoded simultaneous-source WEMVA | the objective function to be minimized is
defined as follows:

~ 1 _
T == 3 (), ®)

where the zero-subsurface-offset image mmpiz is obtained by crosscorrelating the encoded
source wavefield, S and the encoded receiver wavefield, R as follows:

Mmig (X ZS X, W) ,w). (9)

The encoded source and receiver wavefields satisfy the following one-way wave equations:

{(az“ ()+v2)5( w)=0 , (10)
S(x,y,2=0,w) =3, 8z — 25,y — ys) f5 (W)™ (x5, w)

and

{ (j@ iy g + W) R(x,w) =0 , (11)

R(a:,y, z=0,w)= sz Q(xyyaxww)a(xs,u))

where a(xs,w) is the phase encoding function. In this paper, I mainly focus on random
phase encoding, therefore « is defined as follows:

a(xs,w) = e (s ) (12)
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where i = y/—1, and 7y(xs,w) is a uniformly distributed random sequence from 0 to 2.
Tang (2011) shows that with this choice of random phase function, « has a zero expecta-
tion. Note that the source encoding can be applied to data recorded from arbitrary types
of acquisition geometries. The simultaneous-source migrated image (7mmig) will always con-
verge to the separate-source migrated image (mmig) as long as the encoding function satisfies
o (x5, w)a(xl,w) = 0(xs — X,).

The gradient of objective function 8 is

gly) = ==Y R g (%), (13)

OMmig (x)

Boly) in the encoded-source domain is defined as fol-

where the tomographic operator,
lows:

OMmig(x) dS(x,w) ~ )+ Flx. 0 OR(x,w)
u(y) ‘Z< dufy) O SEODT) ) -

Note that equations 9 and 14 do not have a summation over the sources. Therefore, the
cost of computing the image mmui; and the gradient g is independent of the number of
sources, as opposed to the separate-source case. The gradient J is also calculated using the
adjoint-state technique using encoded simultaneous sources (Tang et al., 2008).

Although the computational cost of WEMVA is significantly reduced, encoded simulta-
neous sources add crosstalk artifacts into the gradient. This becomes clear if we express the
encoded source and receiver wavefield as follows using the fact that wavefield propagation
is linear with respect to sources:

S(x,w) =Y S(x, x5, w)a" (x5,w), (15)
and
R(x,w) = Z R(x, x5, w)a(Xs,w). (16)

Substituting equations 15 and 16 into 14 and using the fact that o (x5, w)a(x},w) =1
if x;, = x|, yield

9(y) = g(y) + g.(y), (17)

where g, is the crosstalk:
05 (x, x5, w) , 8R(X,x’,w)>
(y) = — " R(x,x,,w) + S(X, X, W) —
=L L Y (g s + stem S

x ok (xs,w)a(x),w). (18)

A way to mitigate the influence of crosstalk is to change the random encoding function
at each iteration (Krebs et al., 2009), so that the crosstalk will be destructively stacked over
WEMVA iterations and consequently converge to zero because it has a zero expectation. It
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is important to point out that regeneration of the random code will result in the objective
function (equation 8) changing at each iteration. Therefore, the objective function may
not be monotonically decreasing over iterations, as opposed to the case in conventional
separate-source WEMVA. The optimization algorithm using encoded simultaneous sources
is summarized in Algorithm 1.

Algorithm 1 Encoded simultaneous-source WEMVA algorithm
generate random code and assemble all shot gathers together
compute the migrated image: ﬁl?mg
compute the gradient: g
initialize the search direction: pg = —gp
for k=1---N; do

perform line search: optimize A, argmin j(vk_l + Apk_1)

A
update the velocity model: v = vi_1 + Apr_1
generate random code and assemble all shot gathers together
compute the migrated image: mF

mig
compute the gradient: gy
s =
find the search direction: pr = —g + %%

end for

NUMERICAL EXAMPLES

I apply the encoded simultaneous-source WEMVA on a truncated Marmousi model. The
data used for inversion are generated using prestack Born wavefield modeling (Stolt and
Benson, 1986; Tang, 2011). Hence the data only contain primary reflections and fit the the-
ory perfectly. I use one-way wavefield extrapolation to carry out the numerical experiments.
Since one-way wavefield extrapolation does not generate back scatterings, the velocity model
used for Born modeling does not need to be smooth. Figures 1(a) and 1(b) show the ve-
locity model and reflectivity model used for Born modeling. I use a Ricker wavelet with a
dominant frequency of 15 Hz as the source function for modeling. The source function is
assumed to be known in the subsequent inversion tests.

The initial velocity model used for inversion is shown in Figure 2. It is a smoothed version
of the true velocity model (Figure 1(a)). The initial velocity model is accurate enough so
that no cycle skipping occurs during inversion. The goal of the experiments shown here
is to demonstrate that with an initial velocity model that guarantees the convergence of
inversion, encoded simultaneous-source WEMVA produces similar inversion result as does
conventional separate-source WEMVA | but with a significantly reduced computational cost.
However, the convergence property using an initial velocity model far from the correct one
still needs to be studied, and it remains an area for further investigation.

I test the inversion on data sets acquired using both land and marine acquisition ge-
ometries. The data acquired from a land acquisition geometry contains 101 shots ranging
from 5 km to 13 km with a 80 m sampling interval. The receiver spread ranges from 5 km
to 13 km and is fixed for all shots. The receiver sampling interval is 20 m. For the data
acquired using a marine acquisition geometry, the 101 sources also range from 5 km to 13
km and sampled at 80 m. The minimum and maximum offsets for each shot is 0 and 6 km.
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Figure 1: The velocity model (a) and reflectivity model (b) used for Born wavefield model-
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Figure 2: The initial velocity model. [ER] |yaxun1 /. marm-bvel
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The receiver sampling interval is also 20 m.

I run inversion using both separate sources and encoded simultaneous sources after the
same number of iterations. Figures 3 and 4 compare the WEMVA gradients at the first
iteration for different methods and different acquisition geometries. Note the randomized
crosstalk present in the simultaneous-source WEMVA gradients. Because I regenerate the
random code at the beginning of each iteration, the crosstalk is expected to be incoherently
stacked over iterations. Therefore, the impact of crosstalk will be mitigated.
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Figure 3: Gradient of separate-source WEMVA at the first iteration for
(a) land acquisition geometry and (b) marine acquisition geometry. [ER]

’ yaxunl/. marm-grad-separate,marm-grad-separate-marine

Figures 5 and 6 show the separate-source inversion results at different iterations for land
and marine acquisition geometries, respectively. The velocity model has been successfully
recovered in both cases. But inversion using land acquisition geometry produces a slightly
better final inversion result (Figure 5(d)) than the one obtained using marine acquisition
geometry (Figure 6(d)). This is because, for this particular example, the land acquisition
geometry has wider offsets and hence gives better coverage to the model.

For comparison, Figures 7 and 8 present the encoded simultaneous-source inversion
results for land and marine acquisition geometries, respectively. As expected, the inverted
velocity model at early iterations (Figures 7(a) and 7(b) for land acquisition geometry and
Figures 8(a) and 8(b) for marine acquisition geometry) have been strongly affected by the
crosstalk artifacts in the gradients (Figure 4). As inversion proceeds, the crosstalk artifacts
are destructively stacked, and hence the influence of crosstalk is decreasing over iterations.
The final inversion results (Figures 7(d) and 8(d)) also successfully recover the velocity
model. However, the encoded simultaneous-source WEMVA seems to be more sensitive to
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Figure 4: Gradient of encoded simultaneous-source WEMVA at the first itera-
tion for (a) land acquisition geometry and (b) marine acquisition geometry. [ER]
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the model coverage, and the convergence of inversion using the data acquired with a marine
geometry (Figure 8(d)) is considerably slower than that obtained using the data acquired
from a land acquisition geometry (Figure 7(d)).

As a further comparison of the convergence, Figure 9 shows the data misfit (the objective
function) obtained using different methods and for different acquisition geometries. The
data misfit curve for each case has been normalized with its value at the first iteration. Note
that the data misfit functions decrease monotonically for separate-source inversions. This
is because the objective function J is consistent over iterations, and therefore the nonlinear
conjugate gradient algorithm tries to minimize the same objective function over iterations.
In contrast, the data misfit functions for encoded simultaneous-source inversions fluctuate
significantly, and they do not show monotonically decreasing behavior as do separate-source
inversions. This is because the random phase encoding function keeps changing at each
iteration, and consequently the objective function J varies over iterations. The nonlinear
conjugate gradient algorithm cannot guarantee the monotonic decrease of the objective
function. But the misfit functions do show an overall decreasing trend.

Since this is a synthetic-data example, the true velocity model is known. I calculate the
model misfit in 5 norm and the results are plotted in Figure 10. It is interesting to note
that although encoded simultaneous-source inversion does not show monotonic decrease of
the data misfit, it does show monotonic decrease of the model misfit, which suggests that
the inversion is going in the correct direction. Also note that the model convergence of
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Figure 5: Separate-source WEMVA inversion result for land acquisition geom-
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Figure 7: Encoded simultaneous-source WEMVA inversion result for land acquisi-
tion geometry at (a) 5, (b) 20, (c) 50 and (d) 120 iterations, respectively. [ER|]
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Figure 8: Encoded simultaneous-source WEMVA inversion result for marine acquisi-
tion geometry at (a) 5, (b) 20, (c) 50 and (d) 120 iterations, respectively. [ER|]
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encoded simultaneous-source inversion is slower than that of separate-source inversion. The
difference seems to be insignificant for land acquisition geometries, where the receivers are
fixed and the offsets are longer. The difference for marine acquisition geometries, however,
is much bigger. This is probably because the marine acquisition geometry used in this
example has shorter offsets and the data coverage is much less than the land acquisition
geometry. The lack of data coverage may require more iterations to remove the crosstalk
artifacts. This speculation, however, still needs more investigation to verify.
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A final comparison is made among the images obtained using the inverted velocity model
produced by different methods and for different acquisition geometries. The initial images
(Figure 11) show poor focusing due to the velocity errors. The updated images using veloc-
ities obtained with separate sources (Figure 13) and encoded simultaneous sources (Figure
13) show significantly improvements on image focusing and coherence. The updated images
using both separate-source inversion and encoded simultaneous-source inversion show very
similar overall qualities, although separate-source inversion does produces slightly better
images. But if we take the cost into account, the encoded simultaneous-source inversion is
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about 101 times faster than the separate-source inversion, which is a significant advantage.
For comparison, Figure 14 presents images obtained using the true velocity model (Figure

1(a)).
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Figure 11: Image obtained using the initial velocity model (Figure 2) for (a) land acquisition
geometry and (b) marine acquisition geometry. [ER] |yaxun1 /- bimg,bimg—marine|

CONCLUSIONS

I have presented an efficient method for velocity optimization using wavefields. The method
is automatic because it maximizes the image stack power (or minimizes its negative) and
no picking is necessary. The method is extremely fast because it assembles all shot gathers
together and migrates them at once, instead of migrating them separately. The shot gath-
ers need to be reassembled with regeneration of random phase-encoding functions at each
iteration to mitigate the impact of crosstalk present in the gradient. The encoding strategy
can be applied to both land and marine acquisition geometries, regardless of whether or
not a fixed receiver spread has been used. Numerical examples demonstrate that encoded
simultaneous-source inversion gives reasonably good recovery of the velocity model, with
the advantage that the computational cost is independent from the number of sources.
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APPENDIX A

EQUIVALENCE OF IMAGE-STACK-POWER MAXIMIZATION AND
DATA-DOMAIN BORN WAVEFIELD INVERSION

This appendix shows that maximizing the image stack power (or minimizing its negative) is
equivalent to Born wavefield inversion, which minimizes the difference between the modeled
and observed primaries. The difference-based objective function for data-domain Born
wavefield inversion can be defined as follows:

1
J = i(Lm - dobs)*(Lm - dobs); (A—l)

where dgps is the observed data vector, m is the reflectivity vector; L is the Born modeling
operator that only modeled the angle stacked reflectivity (zero-subsurface-offset reflectiv-
ity), which is a function of the velocity vector v. Objective function A-1 is minimized by
optimizing both v and m. Expanding equation A-1 yields

1

J = 3 (m*L*Lm — m*L*dops — df Lm + d . dobs) - (A-2)

obs

In the least-squares sense, the reflectivity model m can be formally obtained as follows,
assuming the Hessian H is invertible:

m = (L*L) " 'L*dgps = H 'L dps. (A-3)
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Substituting equations A-3 into A-2 and simplifying yield

J = (_ :bsLH_lL*dobs + desdobs) (A—4)

N =

Since d}} dops is a constant, it can be ignored in the above equation, therefore

1

J =~ -5 o LH 'L dgps. (A-5)

Note that the migration image my,;; is defined as follows:
Mg = L*dgbs. (A_ﬁ)

Substituting equations A-6 into A-5 yields
1

~ _ _ *
J =~ 5 Mg

H 'mypg. (A-7)
To simplify the problem, I ignore the Hessian H in equation A-7 and assume it to be
an identity matrix. Therefore, equation A-7 becomes
1,

J = _immigmmi& (A_S)
which is the same as equation 1 defined in the body of the paper. However, the Hessian H in
equation A-7 might be important, especially in complex geologies, where the illumination is
distorted by complex overburdens. The importance of the Hessian in equation A-7 remains
an area for further investigation.
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Preconditioned least-squares reverse-time migration using
random phase encoding

Ali Almomin

ABSTRACT

Least-squares reverse-time migration (LSRTM) provides very accurate images of the
subsurface. However, the computational cost of this technique is extremely high. One
way to reduce that cost is to encode the sources using a random phase function and
create a ”"super source”. This encoding method introduces crosstalk artifacts that re-
quire averaging several realizations of the random encodings to suppress. I compare the
convergence rates of the conventional and phase-encoded LSRTM for a fixed-spread ge-
ometry and show that the performance gain for the phase-encoded LSRTM far exceeds
the loss due to the additional realizations. I also reduce the inversion cost by using
the diagonal of the Hessian matrix as a preconditioner to the gradient. I also compare
the convergence rates of different encoding methods used to estimate the true Hessian
matrix. Then, I introduce a new source-based Hessian approximation and compare it
to the other methods of approximating the Hessian matrix. Finally, I show the effect
of each preconditioner on the LSRTM inversion. Results from the Marmousi synthetic
model show that, for the same cost, preconditioning with the source-based Hessian
gives the most accurate results.

INTRODUCTION

Reverse-time migration (RTM) uses the full wave equation to image the subsurface with high
accuracy. However, RTM images suffer from several operator artifacts such as low-frequency
noise, decreased resolution due to squaring the wavelet, and imbalanced amplitudes. These
artifacts appear because, by migrating the data, we apply only the adjoint of the linear
modeling operator, as opposed to its inverse. The imaging operator can be inverted in
several ways, including iterative least-squares inversion. Although inversion can remove
these artifacts, it is not widely used because the computational cost of applying the forward
and adjoint operators in each iteration is extremely high.

Several methods have been proposed to reduce the computational cost of LSRTM. One
of these methods is to reduce the data size by encoding the sources to create a super source
(Morton and Ober, 1998; Jing et al., 2000; Romero et al., 2000; Sun et al., 2002). This
technique has also been applied to full waveform inversion (Krebs et al., 2009; Gao et al.,
2010; Boonyasiriwat and Schuster, 2010; Ben-hadj ali et al., 2011). The cost of applying
the forward or adjoint of the modeling operator becomes independent of the number of
sources, which greatly reduces the computational cost of the inversion. On the other hand,
combining the sources causes crosstalk artifacts in the estimated image. These artifacts
can be suppressed by changing the encoding function over iterations. Romero et al. (2000)
and Krebs et al. (2009) showed that one-sample random phase encoding gives the best
convergence rate.

47



48 Almomin SEP-145

In this paper, I compare the convergence rate of conventional LSRTM to phase-encoded
LSRTM to test whether the computational reduction justifies the additional realizations
of the encoding function. I first measure the norm of the model error of the two models.
Then, I measure the norm of the model error after processing the estimated model at each
iteration. The processing steps, which are a low-cut filter and an automatic gain control
(AGC), are used to reduce the low-frequency noise and amplitude imbalance in order to
measure the error in the image resolution.

The convergence rate of LSRTM inversion can be accelerated by preconditioning the
gradient with the diagonal of the Hessian matrix. The Hessian matrix can be estimated by
applying the encoding function either to the receiver side only or to both the receiver and
source sides (Tang, 2009). A cheaper approximation to the Hessian matrix is the source
intensity function, which ignores the receiver side of the Hessian matrix (Tang and Lee,
2010). The source intensity function can also be encoded along the source axis. I compare
the convergence rates of these methods and also introduce a new approximation to the
Hessian matrix that is based on the blended source-wavefield only. Finally, I test each of
these preconditioners in the LSRTM and compare the results as a function of their cost.

METHOD

Least-squares RTM

The two-way wave equation is linearized over the slowness squared as follows:
s%(x) = b(x) + m(x), (1)

where s is the slowness, b is the background model, which is a smooth version of the slowness
squared, m is the model, and x is the model coordinate. Then, the Green’s functions that
satisfy the acoustic wave equation using the background model are defined as follows:

(V2 + w?b(x)) Go(x, X5, w) = —6(x — X,), (2)
(V2 + w2b(x)) Go(x,%xp,w) = —=0(x — X,), (3)

where Gy is the Green’s function, xs and x, are the source and receiver coordinates, and
w is frequency. The forward modeling operator is defined using the Green’s functions as
follows:

(%, %5,w) = —w f(w) > Go(%, %4, w)Go(X, Xy, w)m(x), (4)

where d is the surface data and f is the source function. The forward modeling operator F
can be written in matrix form as follows:

d = Fm. ()
We now define the objective function J as:
J(m) = [Fm — dops|[3, (6)

where dps is the observed surface data. The quadratic objective function J can be mini-
mized iteratively using the following scheme (Claerbout and Fomel, 2011):
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r«— Fm — dg
iterate {
Am «— F*r
Ar «— FAm
(m) «— stepper(m,r, Am, Ar)

}

The * indicates the adjoint operator. The cost of each iteration equals the cost of the
forward and adjoint operators. The stepper function is either steepest-descent or conjugate
gradient.

There are several encoding functions that can be used in LSRTM (Perrone and Sava,
2009; Godwin and Sava, 2011). However, a single-sample random phase function gives
the best convergence results (Romero et al., 2000; Krebs et al., 2009). This encoding
function results in crosstalk artifacts in the estimated models. These artifacts are reduced
by averaging several realizations of the encoding function. The source-side encoding function
« is defined as follows (Tang, 2009):

1
a\Xg, = Xs, y
( s ps) \/m'y( s ps)

where p, is the realization index, Nyealize is the number of realizations, and  is a random
sequence of signs (i.e. +1 and -1). The encoding function is used to blend the observed
data as follows:

(7)

dobs(xraps>w) = Za(xsaps)dobs(xmxsaw)' (8)

Xs

Similarly, the same encoding function is used to blend the modeled data:

S(X,ps,w) = Za(xs,ps)f(w)Go(x,xs,w), (9)

Xs

where S is the blended source wavefield. Due to the linearity of the wave equation, this
wavefield can be simply computed by simultaneously injecting the source functions at dif-
ferent locations after multiplying by the proper weight. Once S is computed, the blended
forward modeling operator can defined as follows:

d(XT, Ps, w) = —uw’ Z S(X,ps, W)GO(Xa Xr, w)m(x), (10)

where ™ is used to indicate blending. The blended forward modeling operator F can also be
expressed in matrix form:

d=Fm. (11)
Finally, the objective function of the blended operator can be written as follows:

J(m) = ||Fm — dop[3- (12)

Notice that the objective functions changes between realizations, since the encoding function
changes. This change of the objective function requires a modification in the minimization
scheme as follows:
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iterate {
e Fm — Hobs
Am «— F*F
AT «— FAm
m «— stepper(m, Am, Ar)

}

There are two changes in the minimization scheme of the blended objective function com-
pared to the conventional one. First, the computation of the residual is moved inside the
loop, because the encoding function changes in each iteration. This change adds the cost
of a forward modeling operator to each iteration. Second, the stepper algorithm can only
be steepest-descent if the step size is determined with linear optimization. Otherwise, a
non-linear conjugate gradient can be performed, requiring a line search in each iteration. In
this paper I present only the result of using steepest-descent stepper, because the iteration
cost is consistent.

Hessian Estimation

For any linear operator F, the Hessian matrix is computed as follows:
H(x,y) = F(y)F(x), (13)

where x and y are model coordinates. There are several ways to utilize the Hessian matrix
in the inversion process, but I will focus on using its diagonal as a preconditioner to the

gradient:
8k

- diag{H} + €I’

where gj, is gradient at the k'P' iteration, sj is the preconditioned search direction, I is
an identity operator, and € is a constant used to stabilize the division. For the modeling
operator, the diagonal of the Hessian matrix can be written as follows:

diag{H} = D Zwﬂf )P ZrGo X, X, w)|* ZrGo X, %, w)|%. (15)

(14)

Unlike with forward and adjoint modeling operators, the computations must be done on
each source-receiver pair separately. As with LSRTM, the expense of this operation can be
reduced by encoding the source or receiver side, or both sides. I first define a receiver-side
encoding function 3 as follows:

1
ryPr) — ryr)y 16
B(%r, r) Nreahzev(x Pr) (16)

where p, is the realization index, and the other variables are the same as in the encoding
function «. I now define an encoded receiver wavefield:

R(x,pr,w) = Y B(xr, pr)Go(x, %y, w). (17)

This encoding results in the receiver-side blended function ]5, which can be written as
follows:

D(x, pr) Zw‘*rf ) Z|Go (%, %5, ) R(X, pr, w) . (18)
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The cost of one realization of the function D is equivalent to an unblended migration of all
the shots. Additionally, the source side can also be blended:

D(x, ps, pr) Zw4\5><ps, w)R(x, pr,w)|*. (19)

The cost of one realization of the function D is equivalent to migrating one shot only.

However, the additional blending results in more crosstalk. Hence, the function D requires
more realizations to reduce the crosstalk artifacts than does the function D.

Although the cost of computing the function D can be reduced with blending, additional
propagation(s) are still required to compute the receiver side. Therefore, preconditioning
with the source intensity function Dg can be done by ignoring the receiver side of the
Hessian matrix. The source intensity function can be written as follows:

Zw4rf ) DGoxxs, ). (20)

The previous formulation computes the exact source function in one iteration of LSRTM.
However, if the inversion is done with the blended operator, the source intensity function
can be computed using the blended source wavefield as follows:

(%, ps) Zw4\5 X, ps, w)|*. (21)

By comparing equation (21) to equation (19), we can see that ignoring the receiver side
in the Hessian matrix can be physically interpreted as having receivers everywhere in the
subsurface. As a result, the source intensity function overestimates the Hessian matrix.
Therefore, I propose a better approximation to the Hessian matrix by using the blended
source wavefiled to approximate the receiver-side. This source-based Hessian can be written
as follows:

DSS X, Ps) Zw4|5 X, Ps, W )| . (22)

The function ]555 approximates the receiver wavefield by the source wavefield. Physically,
this assumes that the receivers exist at the same location as the sources. This is a better
approximation than the original source intensity function, especially for the fixed-spread
geometry. This formulation requires no additional propagation if the source side is blended.
However, there are two sources of error in equation (22). First, the receiver spacing could
be different than the source spacing, even if their spreads cover the same area. Second, the
receiver side should have a different encoding function than the source side. These errors
will prevent the source-based Hessian from approaching the true Hessian matrix, regardless
of the number of realizations.

SYNTHETIC EXAMPLES

A decimated Marmousi model is used for the synthetic examples. The sampling for both
spatial axes is 20 m. A Ricker wavelet with a fundamental frequency of 15 Hz and temporal
sampling of 1.5 ms is used to model the data. The receiver spacing is 20 m, and the source
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Figure 1: (a) Marmousi slowness squared and (b) the background model. [ER|]

‘ alil/. marmousi,marmousi-smooth

spacing is 100 m. Born modeling with a time-domain finite-difference propagator was used
in both the observed and the calculated data.

Figures 1(a) and 1(b) show the Marmousi slowness squared and the background model,
respectively. The reflectivity model, obtained by subtracting the Marmousi slowness squared
from the background model, is shown in Figure 2.
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Figure 2: The Marmousi reflectivity model. [ER] ‘alil /. marmousi-refl

First, I ran a conventional LSRTM without any preconditioning for 50 iterations. The
result of the fifth iteration is shown in Figure 3(a). This result is dominated by low-
frequency noise as well as strong imbalance in amplitudes of the model. Next, I repeated
the experiment, this time blending the sources. Figure 3(b) shows the result after 310
iterations, which is equivalent in cost to five iterations of unblended LSRTM. By comparing
Figures 3(a) and 3(b), we see the blended LSRTM gives much better results.
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Figure 3: (a) Conventional LSRTM after 5 iterations and (b) blended LSRTM after 310
iterations. [ER|] ‘alil /- marmousi—lsrtmcd,marmousi—lsrtmb‘

In order to determine whether the difference between the two results is only caused
by the low frequency noise, 1 applied a low-cut filter to both results, as shown in Figures
4(a) and 4(b). Next, I further processed the results to remove the amplitude imbalance by
applying an AGC, as shown in Figures 5(a) and 5(b). For comparison, Figures 6(a) and
6(b) show the true reflectivity model after applying the same processing steps. We can see
that the blended LSRTM gives sharper and more accurate images even after processing.
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Figure 4: The result of applying a low-cut filter to Figures 3(a) and 3(b). [ER|]
‘ alil/. marmousi-lsrtmed-bp,marmousi-lsrtmb-bp

For a more accurate measure of error, I computed the RMS error between the true
reflectivity model and the result of each iteration before processing. Figure 7(a) shows
three curves: the unblended LSRTM using steepest-descent stepper (LSRTM-SD), the un-
blended LSRTM using conjugate-direction stepper (LSRTM-CD), and blended LSRTM us-
ing steepest-descent stepper (B-LSRTM). It is interesting to see that the blended LSRTM
is converging at a similar rate to the unblended LSRTM with the steepest-descent stepper,
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Figure 5: The result of applying an AGC to Figures 4(a) and 4(b). [ER]
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although their costs are very different. This seems to indicate that while suppressing the
crosstalk, the blended LSRTM is also inverting the operator without much loss of efficiency.
The only advantage for unblended LSRTM seems to result from having a better stepper.
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Figure 7: The model RMS error versus (a) iteration and (b) migration cost. LSRTM-SD is
blue, SLRTM-CD is red, and B-LSRTM is purple. [CR] ’alil /. lsrtm-obj,lsrtm-obj-cost

Figure 7(b) shows the RMS error curves as a function of cost. The cost unit is equivalent
to a conventional RTM of all the shots. This Figure clearly shows that for the same cost,
the B-LSRTM gives much better results than the conventional LSRTM regardless of the
stepper algorithm.
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Figure 8: The same as Figures 7(a) and 7(b) but after processing the inversion results with
a low-cut filter and AGC. LSRTM-SD is blue, SLRTM-CD is red, and B-LSRTM is purple.
[CR] ’ alil/. lsrtm-obj-age,lsrtm-obj-agc-cost ‘

Figure 8(a) is the same as Figure 7(a), but after processing the inversion results. The
B-LSRTM seems to have a much larger initial error because the crosstalk artifacts, which
are high frequency, are amplified by applying a low-cut filter. However, by comparing the
results at the same cost, as shown in Figure 8(b), the B-LSRTM is still superior to the other
unblended LSRTM inversions.
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Next, I computed the exact diagonal of the Hessian matrix. Figures 9(a), 9(b), and
9(c) shows the contribution from three different shots, and Figure 9(d) shows the total
diagonal of the Hessian matrix. I then tested the convergence rates of four preconditioners:
the Hessian matrix with receiver-side blending (HRB), the Hessian matrix with source-
and receiver-side blending (HSRB), the source intensity function with source-side blending
(SISB), and the source-based Hessian with source-side blending (SHSB).
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Figure 11: The results after 50 migrations equivalent cost of (a) HRB, (b) HSRB, (c) SISB,
and (d) SHSB. [CR] ’alil /- hess—hrb,hess—hsrb,hess—sisb,hess—shsb‘

Figures 10(a) and 10(b) show the RMS error of each preconditioner compared to the
exact Hessian diagonal versus iteration and versus cost, respectively. Both HRB and HSRB
approach the true Hessian diagonal, but encoding both sides gives a faster convergence rate
per cost. The SISB converges the fastest, but it converges to a solution with a large error.
On the other hand, SHSB converges to a much better solution and at a similar rate to SISB.
The preconditioners after 50 migrations equivalent cost are shown in Figures 11(a), 11(b),
11(c), and 11(d).

Finally, I ran three LSRTM inversions using HRSB, SISB, and SHSB as preconditioners
and compared them to the unpreconditioned B-LSRTM. Figure 12(a) shows the model RMS
error of the four curves as a function of iteration. The three preconditioned curves seems
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Figure 12: The model RMS error versus (a) iteration and (b) migration cost. No
preconditioning is blue, HRSB is green, SISB is red, SHSB and is purple. [CR]
’ alil/. lsrtm-objp,lsrtm-objp-cost

to converge at a simiar rate per iteration. However, the convergence rates per cost are
different, as shown in Figure 12(b). Although SHSB had larger error in estimating the
Hessian matrix, it resulted in the best convergence rate for LSRTM due to its cheaper cost.
The second-best method was HRSB.

As with the previous LSRTM, I processed the results of preconditioned LSRTM and
compared it to the processed, true reflectivity. Figures 13(a) and 13(b) show the model
RMS error versus iteration and cost, respectively. Processing the models did not change
the order of the curves, but, as expected, it reduced the difference between them in the
early iterations.
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Figure 13: The same as Figures 12(a) and 12(b) but after processing the inversion results
with a low-cut filter and AGC. No preconditioning is blue, HRSB is green, SISB is red,
SHSB and is purple. [CR] ’alil /- lsrtm—objp-agc,lsrtm—objp—agc-cost‘
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DISCUSSION AND CONCLUSIONS

By examining the results using the Marmousi model, we see that encoding the sources in
LSRTM is more efficient than the conventional method. This is true despite the fact that
each iteration requires an additional forward operator and the stepper is not as efficient.

When estimating the Hessian matrix, encoding both the source and receiver sides is
more efficient than encoding the receiver side only. Moreover, the source-based Hessian is
more accurate than the conventional source intensity function. As a preconditioner, the
source-based Hessian is the most efficient due to its cheaper computational cost compared
to estimating both sides of the Hessian matrix. However, using this source-based Hessian
in different acquisition geometries needs to be further tested.
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Least-squares wave-equation inversion of time-lapse seismic
data sets — A Valhall case study

Gboyega Ayeni and Biondo Biondi

ABSTRACT

We demonstrate an application of least-squares wave-equation inversion using time-
lapse data sets from the Valhall field. We pose time-lapse imaging as a joint least-
squares problem that utilizes target-oriented approximations to the Hessian of the ob-
jective function. Because this method accounts for illumination mismatches—caused by
differences in acquisition geometries—and for band-limited wave-propagation effects, it
provides better estimates of production-related changes in reservoir acoustic properties
than conventional time-lapse processing methods. We show that our method improves
image resolution (compared to migration) and that it attenuates obstruction artifacts
in time-lapse images.

INTRODUCTION

Reservoir rock and fluid property changes can be obtained from seismic amplitude and/or
travel-time changes. There is a wide range of published work on the most important con-
siderations for time-lapse seismic imaging. For example, Batzle and Wang (1992) and
Mavko et al. (2003) outline important rock and fluid relationships; Lumley (1995), Rickett
and Lumley (2001), Calvert (2005), and Johnston (2005) discuss important processing and
practical applications; and Lefeuvre et al. (2003), Whitcombe et al. (2004), Zou et al. (2006)
and Ebaid et al. (2009) present successful case studies. Because of the recorded successes,
time-lapse seismic imaging is now an integral part of many reservoir management projects.

In practice, production-related changes in time-lapse seismic images can be masked by
non-repeatability artifacts (e.g., changes in geometry, ambient noise) or by effects of complex
overburden (e.g., salt canopy). To correctly interpret time-lapse seismic differences, such
artifacts must be attenuated—a prerequisite conventionally achieved through image cross-
equalization methods (Rickett and Lumley, 2001). Although cross-equalization methods
are well developed and provide reliable results in many practical applications, they are
inadequate where large inconsistencies exist between the geometries used to acquire the
data sets or where the reservoir overburden is complex. Where these conventional methods
fail, wave-equation inversion provides a way to attenuate unwanted artifacts in time-lapse
images, thereby enhancing production-related changes.

The proposed method is based on linear least-squares migration/inversion of seismic
data sets (Nemeth et al., 1999; Kiihl and Sacchi, 2003; Clapp, 2005). Because each itera-
tion of a data-space implementation of least-squares migration/inversion is approximately
twice the migration cost, this approach is expensive. However, by posing this problem
in the image space, it can be efficiently solved in a target-oriented manner (Valenciano
et al., 2006; Tang, 2009). For the time-lapse imaging problem, we can either invert for the
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complete baseline and monitor images or invert for a static baseline and time-lapse images
between surveys. Inputs in the resulting formulations are migrated images (or combinations
thereof) and the outputs are the inverted images (or time-lapse images). The operators are
a concatenation of target-oriented approximations to the Hessian of the least-squares objec-
tive function (Ayeni and Biondi, 2010). We regularize the inversion using spatial (dip) and
temporal (difference) constraints. Because we assume that the data contain only primaries,
robust multiple/noise attenuation and data preprocessing is required prior to inversion.
Furthermore, we assume compaction and velocity changes between surveys are small rela-
tive to the baseline; therefore the effects of these—which inherently neglected by migrating
all data sets with the baseline velocity—can be removed by multidimensional warping of
the monitor images to the baseline.

First, we summarize wave-equation inversion of time-lapse data sets. Then, we apply
this method to a subset of the Valhall Life of Field Seismic (LoFS) data with a synthesized
obstruction in the monitor. We show that the proposed method improves the image res-
olution (compared to migration) and that it attenuates obstruction artifacts in time-lapse
images.

METHODOLOGY

Given a linearized modeling operator L, the seismic data d for survey ¢ due to a reflectivity
model m is

Assuming we have two data sets (baseline dy and monitor d;) acquired at different times
over an evolving reservoir, joint least-squares migration/inversion involves solving the fol-
lowing regression:

Ly 0 dy
0 Ly d;

€0R0 0 [ 2(1) :| ~ T N (2)
0 aRy 0

—Goho M 0

where R; and A; are the spatial and temporal regularization operators respectively, and
€; and (; are the corresponding regularization parameters. Although we can directly solve
equation 2 by minimizing the quadratic-norm of the regression (Ajo-Franklin et al., 2005),
we choose to transform it to an image space problem of the form (Ayeni and Biondi, 2011)

[ Hp 0 [ mg
0 H; m;
Roo 0 mg - 0
0 Ru { 1m; ] 1 o |’ (3)
Aopw  —Aot 0
| Ao A . 0

where H; = LZ-TLZ- is the wave-equation Hessian, and R;; = e?RiTRi and A;; = CZ-AiTCjAj
are the spatial and temporal constraints. The inverted time-lapse image Am is then the
difference between the inverted baseline and monitor images (mgp and m;). Equation 3 can
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be extended to multiple seismic data sets (Ayeni and Biondi, 2010). Alternatively, we can
re-write equation 3 to invert directly for the time-lapse image and a static baseline image
(Ayeni and Biondi, 2011). Due to physical movements of reflectors and velocity changes
(e.g., due to reservoir depletion and compaction) between surveys, the baseline and monitor
images will not be aligned. Such misalignments must be accounted for before or during
inversion. As is the case in many practical time-lapse monitoring problems, we assume that
the monitor data are migrated with the baseline velocity, which has been estimated to a
high accuracy. However this method can be applied where an accurate monitor velocity has
been available. The updated inversion problem is then given by (Ayeni and Biondi, 2011)

[ H 0 [ myg ]
0 HY m!
Roo 0 [ g ] 0
R ~ 4
0 RY, m} 0 )
Aog —Ab, 0
L _All) All)l L 0 B

where ﬁll{ and ™} are respectively the migrated and inverted monitor images repositioned
(warped) to the baseline image. The superscript ® on the operators denotes that they are
referenced to the baseline image. For example, HY is the Hessian computed with the monitor
geometry but with the baseline velocity. Note that the conventional time-lapse image Arn?®
estimated at the baseline position is given by

Am® = m} — my, (5)
while the inverted time-lapse image A is given by

Am® = mf — . (6)

For any practical application, it is infeasible (and unnecessary) to compute the full
Hessian matrix. Because the problem is posed in the image space, we only need to compute
the Hessian for a target region of interest around the reservoir. In addition, we only compute
off-diagonal elements sufficient to capture the dominant structure of the Hessian. This
target-oriented approximation of the Hessian is given by (Valenciano et al., 2006)

H (XT’XT+ax) = Zw4 Z ‘f (5)|2G(XsaXTaw)G(XSaXT-l-awi)

Xs

Z G(XT7Xr7w)G(XT+ax7XI‘7w)> (7)

where x7 is an image point within the target area, and xt.,, represents points within a
small region around xr. For any image point, elements of H (X1, X114, ) represent a row
of a sparse Hessian matrix H whose non-zero components are defined by ax. Therefore,
ay defines the number of off-diagonal elements of the Hessian that are computed — which
represents the size of the point spread function (PSF) at each image point (Lecomte and
Gelius, 1998; Chavent and Plessix, 1999; Valenciano et al., 2006). G is the complex conjugate
of Green’s function G at frequency w; f; is the source function; and xs and x, are the source
and receiver positions, respectively. Note that because of symmetry, only one half of the
approximate Hessian is required. In this paper, we follow the phase-encoding approach of
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Tang (2009) to efficiently compute the target-oriented Hessian. The spatial regularization
operators in equation 4 are non-stationary directional Laplacians (Hale, 2007), whereas the
temporal constraint is the difference between the aligned images. Further review of the
methodology is given by Ayeni and Biondi (2010, 2011)

CASE STUDY

We consider a subset of the Life of Field Seismic (LoFS) data sets acquired at Valhall, a
giant oil field located in the Norwegian North Sea. There is a wide range of published work
on the exploration and development effort in the Valhall field and on different aspects of
the LoF'S project at Valhall. For example, Munns (1985) discusses Valhall geology in detail;
Barkved et al. (2003) discuss the production history and development plans for the field;
Barkved (2004) discusses the permanent acquisition array; van Gestel et al. (2008) discuss
aspects of the data acquisition, processing, and analysis; and Hatchell et al. (2005) and van
Gestel et al. (2011) discuss aspects of the data interpretation and integration with other
reservoir data.

In this paper, we consider data from the first (LoF'S 1) and the ninth (LoFS 9) surveys
acquired in November 2003 and December 2007, respectively. For this study, to avoid
imaging challenges caused by a gas cloud located above the crest of the Valhall structure,
we choose a subset of the original data covering the Southern flank of the structure. Whereas
the original (full) data consists of approximately 50,000 shots and 2400 receivers, the data
subset consists of approximately 33,000 shots and 470 receivers. Shots are spaced at 50 m
in both the inline and crossline directions, while the receivers, located along 10 permanent
cables at approximately 70 m depth, are spaced at 50 m in the inline and 300 m in the
crossline directions (Figure 1). The maximum absolute source-receiver offset is 5 km. The
data have been preprocessed, preserving only the up-going primary compressional wave
data. To simulate an obstruction, we create a 1.44 sq. km gap in the monitor data at the
center of the 9 sq. km study area (Figure 1(b)). Figure 2 shows the resulting common-
midpoint (CMP) fold for the complete (baseline) and incomplete (monitor) geometries.
Using reciprocity, shot and receiver locations are swapped, such that receiver gathers are
treated as shot records. The data are migrated using 320 frequencies (up to 35 Hz) with
a split-step one-way wave-equation shot-profile migration algorithm. All data are migrated
with the baseline velocity model (Figure 3) obtained—to a satisfactory degree of accuracy—
by full waveform inversion (Sirgue et al., 2010). The target area is a small (700 x 3000 x 3000
m) window around the reservoir, located outside the area most affected by the gas cloud.
For both the baseline and monitor geometries, we compute the target-oriented Hessian using
64 frequencies spaced equally within the migration frequency band.

The diagonals of the Hessian matrices (subsurface illumination/fold) for the study area
obtained using the complete (baseline) and incomplete (monitor) geometries are shown
in Figure 4. Note that in both cases, illumination distribution is highly non-stationary
throughout the study area. The ratio between the Hessian diagonals for the two geometries
are shown in Figure 5. Note that although the illumination discrepancy is simple at the
ocean bottom (Figure 5(a)), this discrepancy becomes highly complex at the reservoir depth
(Figure 5(b)).

The migrated baseline and monitor images of the study area are shown in Figure 6. Note
that the differences between the images at the reservoir depth are due to a combination
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Figure 1: Acquisition geometry showing locations of all shots and receivers (a) and a zoom
showing only the study area (b). Apart from the introduction of a gap, the source-receiver
geometry is closely repeated for both data sets. Note that the gap is located at the center
of the study area. The coordinate axes in these figures (and in all figures) are distances in

meters. [CR] ’gayenil/. gappedl,gappedZ‘

Figure 2: Surface (CMP) fold for the baseline (a) and monitor (b). Red indicates high fold,
whereas blue indicates low fold. Note that whereas the baseline fold is mostly uniform within
the study area, the gapped monitor geometry causes significant non-uniformity of fold. The
box indicates the same study area shown in Figure 1(b). [CR] ’ gayenil /. cfoldl,cfold2
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Figure 3: Baseline migration velocity obtained by full waveform inversion (Sirgue et al.,
2010). Red indicates high velocity, whereas blue indicates low velocity. This velocity model
was used to image all data sets in this study. Note that the target area—indicated by the
box—is restricted to a small area of interest around the reservoir. The gas cloud, located
outside the study area does not cause significant imaging challenge in the target area. [NR|]
‘gayenil/. vel—ll‘
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of production-related changes and the gap in the monitor data. In addition, the panels in
Figure 6 show the target area for inversion. Because of fluid changes caused by production
and injection, and compaction caused by pressure depletion, imaging the monitor data
with the baseline velocity causes apparent displacements between the baseline and monitor
images. Components of the apparent displacements between the baseline and monitor
images (Figure 7) are obtained using a cyclic 1D correlation approach (Ayeni, 2011). Before
estimating time-lapse images, and prior to inversion, the baseline and monitor are aligned
using these apparent displacements. Time-lapse amplitudes extracted within a 60 m window
around the reservoir after migration and inversion are shown in Figure 9.

DISCUSSION

A common problem in many time-lapse seismic monitoring studies is the presence of ob-
structions that create gaps in the monitor data. Such obstructions, usually caused by
production and drilling facilities, generate artifacts that contaminate production-related
seismic amplitudes changes, thereby limiting our ability to accurately interpret observed
time-lapse amplitudes. The Valhall LoFS project provides data with high repeatability of
both source and receiver locations (Figure 1). Therefore, in this case study, the major
source of time-lapse amplitude contamination is the synthesized gap in the monitor data.
Because CMP fold provides only limited information about the geometry difference (Fig-
ure 2), it is insufficient to compensate for subsurface illumination differences. As shown
in Figure 4, the Hessian diagonal provides a robust measure of the subsurface illumina-
tion for any given geometry. A measure of the subsurface illumination differences can be
obtained from the ratio of the Hessian diagonal for the different survey geometries (Fig-
ure 5). Although the Hessian diagonal provides information about subsurface illumination
and differences, the band-limited wave-propagation effects are provided by the Hessian off-
diagonals (not shown). Because the least-squares problem is in the image space, we are able
to solve it for a small target around the reservoir (Figure 6). This enables us to try different
combinations of inversion parameters efficiently and to focus on improving the results in the
region around the reservoir, where the most important production/injection-related changes
are expected. Because the Hessian serves as a geometry- and propagation-dependent de-
convolution operator, it provides images with improved resolution compared to migration
(Figure 8). Because of the gap in the monitor data, there is a large disparity in the distri-
bution of time-lapse amplitudes in the migrated images (Figures 9(a) and 9(b)). Inversion
corrects for this disparity, thereby leading to comparable time-lapse amplitude distributions
in both the complete and incomplete data examples (Figures 9(c) and 9(d)).

CONCLUSIONS

Because least-squares wave-equation migration/inversion accounts for illumination mismatches—
caused by differences in acquisition geometries—and for band-limited wave-propagation ef-
fects, it provides images with improved resolution and better definition of seismic amplitude
changes. Using subsets of the Valhall LoF'S data, we showed that this method can be used

to attenuate artifacts caused by obstructions in the acquisition geometries.
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Figure 4: Hessian diagonal for the complete baseline (left) and incomplete monitor (right).
In these (and similar) displays throughout this paper, the top panel is a depth slice
and the side panels are the inline and crossline slices. The crosshairs show the posi-
tion of the slices in the image cube. The depth slices show the illumination at the
ocean bottom (a) and (b); above the reservoir (¢) and (d); and within the reservoir
(e) and (f). Note the locations of the complete receiver lines in (a) and the gap in
(b). Red indicates high illumination, whereas cyan indicates low illumination. = [CR]
‘ gayenil /. ilum-1,ilumg-1,ilum-3,ilumg-3,ilum-4,ilumg-4 ‘
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Figure 5: Ilumination ratio between the baseline and monitor at the ocean bottom
(a) and at the reservoir depth (b). Note that the simple rectangular illumination dis-
parity at the ocean bottom becomes more complex at the reservoir depth. [CR]

‘ gayenil /. ilumr-1,ilumr-4 ‘
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Figure 6: Migrated images showing depth slices at the ocean bottom (left) and at the
reservoir depth (right). The box indicates the target area in the baseline image (a) & (b),
and in the monitor image (c¢) & (d). Note the location of the gap in the monitor. [CR]
‘ gayenil/. mig-1-box,mig-4-box,migg-1-box,migg-4-box
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Figure 7: Vertical (a) and inline (b) components of apparent displacement vectors between
the baseline and monitor images within the target area. In both Figures, red indicates
positive (downward or rightward) apparent displacements, whereas blue indicates negative
(upward/leftward) apparent displacements. Similar results were obtained for the crossline
displacement components (not shown). Prior to inversion, the baseline and monitor images

are aligned using these apparent displacements. [CR] ’ gayenil/. ts-1,ts-2
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Figure 9: Absolute time-lapse amplitudes in the reservoir obtained from migration (a) &
(b), and inversion (c) & (d). Note the discrepancy in the time-lapse amplitude distri-
bution obtained via migration of the complete (a), and incomplete (b) data. Note that
this discrepancy has been removed via inversion of the same data sets (c) & (d). [CR]
’ gayenil /. hor-4-d3,hor-4-d2,hor-4-d1,hor-4-d ‘
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Elastic Born modeling in an ocean-bottom node acquisition
scenario

Ohad Barak

ABSTRACT

PZ summation is a common method for separating the upgoing wavefield from the
downgoing wavefield in data acquired by four-component ocean-bottom node surveys.
It assumes that the vertical geophone component records mostly pressure waves. If
this assumption is not satisfied, non-pressure wave energy (such as shear waves) will be
introduced as pressure waves into the receiver wavefield, which may generate artifacts
in the migration image. I formulate an elastic Born modeling and migration method
for ocean-bottom node acquired data. I then use a synthetic example to demonstrate
the effect of the introduction of non-pressure wave energy into the receiver data on the
resulting image.

INTRODUCTION

In four-component ocean-bottom node (OBN) acquisition, the pressure wave is recorded by
a hydrophone suspended in the water layer just above the sea floor. Additionally, three-
component geophones are attached to the sea floor and record the vertical and two per-
pendicular horizontal particle velocities. The source is an airgun fired at the water surface.
The upgoing wave can be distinguished from the downgoing wave by comparing the ver-
tical geophone data to the hydrophone data. Whereas in the hydrophone data both the
downgoing and the upgoing wave will have a positive polarity (assuming positive reflection
coefficients in the subsurface), the value of the geophone data depends on the wave’s vertical
propagation direction. The downgoing wave will register on the vertical geophone with a
negative polarity, while the upgoing wave will have a positive polarity.

This characteristic has led to the PZ summation methodology (Barr and Sanders, 1989).
With a proper scaling factor, the sum of the hydrophone and the vertical geophone should
result in the upgoing waves only, while their difference should yield the downgoing wave
only. This differentiation between the energy propagation direction at the sea floor has
several applications. One of these applications is the ability to create separate images of
the upgoing waves and of the downgoing waves that are reflected off the water surface, also
known as the “mirror-image” (Ronen et al., 2005; Wong et al., 2009).

The PZ summation methodology, however, assumes that the energy recorded in the hy-
drophone and in the vertical geophone is mostly pressure wave energy. For the hydrophone,
since it is within the water column, this assumption holds. However, if significant amounts
of other wave modes are recorded by the geophone, then the PZ summation will not handle
them properly, and will in effect introduce them into either the upgoing or the downgoing
field. The sketch in Figure 1 displays this issue for the case where PZ summation is used
to extract the upgoing data. Later processing steps (such as mirror-imaging), which rely
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on the assumption that the separated upgoing or downgoing data contains only acoustic
arrivals, may have their results affected in turn.
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In this paper I show the effect of imperfect PZ summation, as a result of significant shear
wave energy existing in the vertical geophone, on the imaging of the upgoing wavefield.

In order to create single-scattered OBN synthetic data and run RTM with such data
as input, I formulated and coded an elastic Born modeler. The special case of OBN ac-
quisition necessitated a special manipulation of the smooth and the perturbed velocity
models required to carry out Born modeling. The geophone receiver data was synthesized
by recording the particle velocities of the single-scattered wavefield at the sea bed, and the
hydrophone data was synthesized by recording the average of the normal stresses just above
the sea bed, in the water-column.

The elastic propagation code is two dimensional, and all following examples are 2D as
well. The gridding method I used for the elastic propagation was the Virieux staggered
grid (Virieux, 1986), in which some wavefield values are located at grid points, and some
are located at half-grid points, both spatially and temporally. The actual values which
are propagated are the normal and transverse stresses (04, 0,2, 0z2), and the vertical and
horizontal particle velocities (vg, v,). The P and S wavefields are extracted from the particle
velocity fields by applying either the divergence or the curl operator to them, respectively.

For imaging of the P and S-wave modes in the elastic source and receiver wavefields, 1
follow the vector potential imaging condition discussed in Yan and Sava (2008). As they
mention, the imaging results for full elastic propagation suffer from spurious modes being
created when particle velocity data are injected as a boundary condition into the receiver
wavefield during elastic RT'M. In other words, injection of recorded P-wave particle velocities
in an elastic medium will invariably create a P-wave and an S-wave mode. These injected
spurious modes will, at the imaging stage, give rise to artifacts. This problem is similar to
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the problem of multiple generation in the receiver wavefield when a non-smooth model is
used.

There are more advanced methods for achieving both up/down separation in conjunc-
tion with P/S separation, in the data domain. Dankbaar (1985), Wapenaar et al. (1990),
Amundsen (1993) and Schalkwijk et al. (2003) have all shown methods which can separate
pressure and shear waves in the data, as well as separating upgoing from downgoing. How-
ever these methods require good knowledge of medium parameters at the sea bed where the
geophones are located. Furthermore, it is not correct to assume that the data are composed
of pressure and shear body waves only. In OBN acquisition (as in land acquisition) surface
waves can contaminate the data.

PZ SUMMATION

PZ summation involves summing the pressure data recorded by the hydrophone data with
the vertical particle velocity data recorded by the geophone, with some scaling factor:

Us) = [P(z) = BVa(a)],

D(z) = [P(zr) + BV.(2r)] (1)

N | — D

where P is the pressure data, V, is the vertical particle velocity, U is the upgoing data,
D is the downgoing data and z, is the receiver depth. [ is a scaling factor, which can be
defined in several ways. Amundsen (1993) does the separation in the f — k domain, and

uses § = §*, where k, = %22 — k2 — k2, and p is the density. Alternately in the t — z
space, the scaling can be determined by the ratio of the direct arrival’s amplitude on the
hydrophone and vertical geophone components at various offsets.

As mentioned above, this method assumes that all energy is pressure wave energy, and
therefore everything recorded by the hydrophone has its counterpart in the geophone data,
with either positive polarity (upgoing) or negative polarity (downgoing). Shear waves, on
the other hand, can only propagate upwards, since they are generated by mode conversions
in the subsurface. They can have a very different polarity upon reaching the sea bed,
which can change differently with offset in comparison to the P-wave polarity. Running
PZ summation on data that contains significant shear wave energy (or indeed - significant
amounts of anything that is not pure P body waves) introduces events into the separated
data fields, which will be construed by later processing steps as either upgoing or downgoing
P-wave energy.

ELASTIC BORN MODELING

The elastic isotropic wave equation in index notation reads:

0i04i + 0joij + fi(x,t) = pOyv;, (2)

where o;; are the normal stresses, o;; are the transverse stresses, f; is the source function
in direction ¢, x is the spatial source location operating at time ¢, p is density and v; is the
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particle velocity in direction ¢. The stresses are propagated using the stress-displacement
relation:

Oii = ()\ + 2#)8ﬂ)¢ + A(?jvj,
oij = p(95vi+ divj), (3)

where A and p are the Lame elastic constants.

In the staggered time grid methodology for elastic propagation (Virieux, 1986) the stresses
and particle velocities are always half a time step apart. Therefore equation 2 and equation
3 are solved in alternation during the propagation.

For elastic Born modeling, these equations must be linearized. Beylkin and Burridge (1990)
show a full derivation of linearized scattering for an elastic solid. Using r = % to denote the
specific volume, we have three models for the elastic isotropic case:

r=r"+Ar, A=A+ AN pu=p"+ Ap, ()

where A, 10 and 7 are the smooth models, and A\, Ay and Ar are the perturbed models.

We also have the incident and scattered stress and particle velocity fields:

0 0
Ui 3 A’Ui, Uij7

Adij (5)
The incident stress and particle velocity fields need to propagated with the smooth models
so that they do not generate reflections. At each time step, the perturbed models must
be multiplied by these incident fields, and then injected as an additive source function into
the scattered fields. As a result of the staggered time grid, the injection must be done
alternately into the stress and particle velocity fields. The scattered fields themselves must
also be propagated with the smooth models, so that they do not generate any additional
scattering.

Low shear velocities at the water-solid boundary

The special case of OBN acquisition presents a unique problem for elastic Born modeling.
Shear velocity in the water column is zero. In the shallow sediment, while not being very
high, the shear velocity is necessarily not zero. The smoothing of the shear velocity model
near the water-solid interface means that very small shear velocity values exist in the model.
These in turn give rise to extremely short wavelengths, which require very fine gridding in
order to spatially sample them properly and avoid dispersion effects. This issue is doubly
important for OBN, since the water-solid interface is where the receivers are located, mean-
ing that any dispersion in the modeling will have a direct effect on the synthesized data,
and on the reverse propagated wavefields. I’ve found one possible temporary solution to
this problem: use two separate smooth models, one for the incident wavefield and one for
the scattered wavefield. Using © to denote the group of medium paramers, we have:

Incident smooth models: @? = [r?, 0, u?].
Scattered smooth models: 0% = [r%, PV ,LLOS].
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Perturbed models: ABg =[Arg, Alg, Aug].

Figures 2(a)-2(c) show these three model versions for the ;i parameter.
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Figure 2: Top left: Smooth model for incident wavefield. Note the sharp water-solid bound-
ary. Top right: Smooth model for scattered wavefield, where the water has been replaced by
the topmost layer. Bottom: The perturbed model, which is the difference between the true
model without the water layer and the smooth model without the water layer. Note the lack
of a perturbation at the sea bed. [ER|] ’0had1 /. mu2d-smooth,mu2d-smooth-lith,mu2d-del

For the incident wavefield, the model is smoothed everywhere except for the water-solid
interface (Figure 2(a)). For the scattered wavefield, the topmost sediment’s model replaces
the water column (Figure 2(b)). The perturbed models are the difference between the “true”
scattered model (water replaced by solid) and the smooth scattered model. Therefore, the
perturbed models do not include the water-solid boundary (Figure 2(c)), and as a result
no reflection is generated in the scattered wavefield at the sea bed. There is, however,
a reflection generated in the incident wavefield at the water bottom, which admittedly is
exactly the way Born modeling is not supposed to work. The water-solid substitution also
causes wrong kinematics of the scattered wavefield in the water column. Neither of these
issues affect the results since all energy is absorbed at the model boundaries, eliminating
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any free-surface multiples. A different solution will have to be found at a later stage if 1
wish to incorporate free-surface multiples into the processing.

WAVE MODE SEPARATION AND IMAGING

The Helmholtz amplitude separation is based on the assumption that any isotropic vector
field can be described as a combination of a scalar and vector potential fields:

u=V®o+VxW, (6)

Where ® is the scalar potential field and W is the vector potential. u is the elastic dis-
placement vector wavefield. The scalar potential generates pressure waves, and the vector
potential generates shear waves. Therefore, the Helmholtz method of separating the P-wave
amplitude from the S-wave amplitude is to apply a divergence operator and a curl operator
to the displacement field:

P=V-u= V4, (7)

S=Vxu= -V, (8)

Equations 7 and 8 work only for an isotropic medium. Dellinger and Etgen (1990)
extend these operators for an anisotropic medium. Yan and Sava (2008) use these separated
P and S-wave modes to formulate an imaging condition for vector potentials in an isotropic
medium:

Lij(x) = /tasi (%, 1) o (x,1) dt, 9)

where the indices 7, j denote the wave mode (P or S) of the wavefield a, and s, r denote the
source and receiver fields. Therefore Ipp(x) represents the cross-correlation of the source
P field with the receiver P field, while Ipg(x) represents the cross-correlation of the source
P field with the receiver S field. In addition to the conventional PP image, the PS image
can supply more information regarding medium parameters. This does, however, depend
on the quality of the shear wave data, and on the accuracy of the acoustic velocity, shear
velocity and density models.

MODELING AND MIGRATION RESULTS

Elastic Born forward modeling

In the following examples, I used a 3 layer 1D model of acoustic velocity, shear velocity
and density. The top layer was water, and there was a full spread of receivers located at
the water bottom. Figure 3 represents the models used for the incident wavefield (sharp
water bottom interface). In the models used to propagate the scattered wavefield, the layer
marked “sediment 1”7 is extended all the way to the surface. The model parameters were:

p1 = 102554 Vp1 = 15007 Vi =02
pa = 170024 Vpo = 17002 Viz = 5007
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Figures 4(a)-4(1) show the incident and scattered P and S wavefields, which are a result
of the application of equations 7 and 8 to the Born-modeled incident and scattered particle
velocity fields. The rows are arranged by time snapshots, so at each row we see each field
at the same time. The column order from left to right is incident P, scattered P, incident
S, scattered S. In Figure 4(a) we can see the P reflection at the water bottom, resulting
from the sharp boundary there. This reflection is absorbed by the attenuating boundaries.
In Figure 4(b) and 4(f), the P reflection from the bottom reflector is visible. Figure 4(c)
is the incident S-wave generated by mode conversion at the water-solid interface. Figures
4(d) and 4(h) show the scattered S-wave generated by a mode conversion at the bottom
reflector. Figures 4(e) and 4(i) are the propagating incident P wavefield. In Figure 4(g),
though it is the incident S field, we can still see a transmitted mode conversion from the
incident P wavefield at the bottom reflector. In Figure 4(k), the S-wave has hit the bottom
reflector, which is the reason that we see both a P and an S reflection in the scattered field
in Figures 4(j) and 4(1).

The simulation of OBN hydrophone recording is done by saving the scattered P wavefield
one model cell above the sea bottom. The horizontal and vertical geophone recording is
done by saving the vertical and horizontal particle velocity fields, within the solid layer at
the sea bottom. The receivers are fully spread on the sea bottom. The source is an explosive
source at the sea surface.

Figure 5 shows the recorded data components, generated by the elastic Born modeling.
There is no direct arrival, since the water-solid interface is not used to generate scattering.
Note that the shear wave recording is virtual. There is no recevier that records only shear
waves. However, using equation 8 the shear wave value can be extracted from the particle-
velocity fields at the sea bed. This information is useful for analyzing which of the reflections
are P and which are S. The reflection types are pointed out in the figure. The label “PP”
signifies a P-wave generated at the source position, which was transmitted at the water
bottom as a P-wave, and was reflected as a P-wave at the bottom reflector within the
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Figure 4: P and S incident and scattered wavefield snapshots at propagation
times: t1=0.46s (top row), t2=0.9s (center row), t3=1.55s (bottom row). [ER|
’ ohadl/. 0Psnapl,0dPsnap1,0Ssnapl,0dSsnapl,0Psnap2,0dPsnap2,0Ssnap2,0dSsnap2,0Psnap3,0dPsnap3,0Ssn




SEP-145 Elastic Born modeling 83

sediment (Figure 3). The label “PS” signifies a similar path, except that at the bottom
reflector a mode conversion occures, resulting in an upgoing S-wave. The label “SP” signifies
a P-wave generated at the source position, which was converted at the sea bottom to a
transmitted S-wave, and was converted again upon reflection at the bottom reflector to an
upgoing P-wave.

Observing the hydrophone data and the virtual shear wave recording, we can see that the
vertical and radial geophone components record both P and S-waves. Furthermore, we can
see that the arrival at ¢t = 1.8s contains two converted modes: PS and SP. They arrive
at the same time, since the model is 1D. As a result of the single-scattering of the Born
modeler, all data in Figure 5 are upgoing data, and therefore represent the result we expect
to have from a perfect separation of the upgoing from the downgoing wavefields.

Figure 6 is the recording of data generated by acoustic Born modeling. In effect, I used the
same code as for the elastic modeling, setting V; = 0. This is the reason for the empty data
in the virtual shear wave recording. As expected, there is only one PP arrival. Again - no
direct wave is visible since the water-solid interface is not used to generate scattering. Like
the previous elastic data example, this upgoing acoustic recording is what we expect from
a perfect up/down separation.

PZ summation and imaging of pure and converted wave modes

PZ summation operates on the hydrophone and the vertical geophone component. Looking
at figure 5, we can see that were we to use PZ summation, the PS and the SS arrivals would
be introduced into the summation result. This effect is shown in the left panel of Figure 7.
I scaled the geophone data to match the first reflection event of the hydrophone data (which
is a PP reflection), and then took the average of the vertical geophone and hydrophone,
which is equivalent to applying equation 1. In a standard processing flow, this result of PZ
summation would be treated as acoustic data, and migrated with an acoustic velocity. The
left panel of Figure 8 is the result of acoustic reverse time propagation of the PZ-summed
hydrophone data, followed by a cross-correlation with an acoustically propagated source
wavefield, and then a stacking over sources to improve the signal-to-noise ratio. The source
and receiver wavefields are propagated with a smooth velocity model so that no receiver-side
multiples are generated. Two artifacts are visible below the true reflector position. These
artifacts come from the cross-correlation of the SS and the PS reflection events, which were
brought into the acoustic data by PZ summation, with the acoustic source wavefield.

In a perfectly acoustic medium, the result of PZ summation would be just the PP reflection
event, as can be seen on the right panel of Figure 7. Executing acoustic RTM with a smooth
acoustic velocity model and the right panel of Figure 7 as input, we get the artifact-free
image on the right panel of Figure 8.

Full elastic migration results

Conceivably, since the data in Figure 5 is strictly upgoing data, and is a result of elastic
Born modeling, we would expect that running elastic RT'M with this data as the receiver
wavefield input should produce an accurate image of the subsurface. The actual imaging
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Figure 5: Synthetic OBN data generated by elastic Born modeling. Top left: Hydrophone
containing only P-wave data. Top right: Vertical geophone containing P and S-wave data.
Bottom left: Shear wave virtual recording. Bottom right: Horizontal geophone containing
P and S-wave data. Note the lack of a direct arrival, as a result of the water-solid interface
not being used to generate scattering. [ER|] |0had1 /. O-recfigs-mute
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results of applying the vector potential imaging condition of equation 9 to the elastic source
and receiver wavefields are shown in Figure 9. Notice that each of the images has its own
set of artifacts. These artifacts are the result of mode conversions occuring at the injection
point of particle velocities. Whenever any particle velocity value is injected into an elas-
tic medium, both a P and an S mode will be created, regardless of whether the recorded
particle velocity was the result of a pressure or a shear wave. These modes then propagate
with their respective velocities in the receiver wavefield and cross-correlate with the source
wavefield at locations which are not reflector positions. They can also stack coherently over
shots, as is the case here. The panels in figure 9 are not plotted at the same scale. The
PS stack is an order of magnitude greater than the PP and SS stacks, and two orders of
magnitude greater than the SP stack.

An interesting observation is that although each of the images in Figure 9 has different
artifacts, the one thing they have in common is the true reflector position. This feature
could be used to attenuate some of the converted-mode artifacts. The one problem is that
to use this criterion effectively, both the V}, and the Vi models have to be quite accurate.

DISCUSSION AND CONCLUSIONS

The primary assumption of PZ summation for OBN data is that the vertical geophone
contains only pressure wave energy. I have shown that doing a PZ summation on OBN-
acquired hydrophone and vertical geophone data, where the vertical geophone component
contains significant amounts of non-pressure wave data, will result in an introduction of the
non-pressure wave energy into the summation result and subsequently degrade the image.
In the simple case I used, the only non-P energy was shear waves. Running acoustic RTM
with shear wave data as input will invariably image the shear wave energy away from
the true reflector position, since shear waves do not propagate with an acoustic velocity.
However, since the shear waves have a different moveout from the pressure waves, the
stacking procedure may be sufficient to remove any artifacts they may create in the image.
With elastic RTM, the shear and the pressure waves may both be imaged at correct reflector
positions, but additional artifacts appear as a result of mode-conversion at the data injection
point.

The realism of the scenario I've modeled here can certainly be called into question. The
shear velocity in the sea bottom tends to be a rather smooth gradient, which can range
from a few tens of meters per second in the topmost unconsolidated sediment, to a few
hundred meters per second as depth increases and the material becomes more consolidated.
Therefore the very obvious P-to-S conversion in the incident wavefield (Figure 4(c)) is
probably very weak. This means that the SS reflection in the Born-modeled data I've
shown will be likewise very weak , and not contribute to image artifacts. The reason for
choosing a minimum shear velocity of 500m/s was purely practical - so that the modeling
grid would not have to be too fine. What could conceivably contribute to artifacts are the
P-to-S conversions within the solid layers, as these are much stronger shear waves and are
unaccounted for by the PZ summation’s “P-only” assumption.

PZ summation is a more robust method than the methods mentioned in the introduction
(Dankbaar (1985); Wapenaar et al. (1990); Amundsen (1993); Schalkwijk et al. (2003)), in
that it requires less subsurface parameters to operate. It cannot however tell pressure wave
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Figure 9: Images resulting from the cross-correlation of P/S source wavefield with the P/S
receiver wavefield. Elastic RTM is run and the both the Born-modeled hydrophone and
geophone data are injected. Top left: PP stack. Top right: PS stack. Bottom left: SS
stack. Bottom right: SP stack. NOTE : The PS stack is an order of magnitude greater
than the PP and SS stacks, and two orders of magnitude greater than the SP stack. All
images have artifacts resulting from mode conversion generated at the receiver injection
point. Note however that all images show the true reflector position in addition to their
respective artifacts. [ER|] |ohad1 /. elastic-stacks
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energy from other energy, and assumes all data recorded on the hydrophone and vertical
geophone must be P-wave energy.

I am currently working on a method which will be medium independent, and which
will extract the pure pressure energy from the geophones. This hypothetical P-wave-only
geophone data can be fed into the standard PZ summation in order to separate upgoing
from downgoing wavefields in the data.
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Krylov space solver in Fortran 2009: Beta version

Robert G. Clapp

ABSTRACT

Solving linear systems using Krylov subspace methods is an ideal candidate for object-
orient programming. Iterative solver approaches use only a few different operations on
vectors and operators. These operations form the basis of abstract vector and operator
classes. Sophisticated solvers can then be written on top of these abstract classes
separating the geophysics (operators) from the mathematics (solvers). The minimal
set of object-oriented features of Fortran95 and its predecessors limited the potential
separation. New inversion approaches, such as the hybrid norm, further hampered
this separation when using conventional vector class descriptions. By using the object-
oriented features of Fortran 2008, a separation between solvers and operators can be
achieved.

INTRODUCTION

A geophysicist understands and /or approximates how a given set of earth properties (model)
would create a given set of measurements (data). Geophysics is often an attempt to do the
inverse: from a set of recorded data, estimate a model. When the set of measurements
and/or the number of model points is large, matrix-based approaches become impractical.
Iterative approaches are often the method of choice for large-scale estimation problems.
Iterative solvers can become quite complex and are generally more the domain of the math-
ematician than the geophysicist. Ideally we would like to leverage the mathematician’s ex-
pertise without having to understand all of the details of the implementation. Nichols et al.
(1993); Gockenbach (1994) all implemented model estimation through an object-oriented
framework, allowing this separation using C++. Schwab (1998) described a java-based
approach to this problem, and Clapp (2005) described a python-based approach for large,
out-of-core solvers. SEP chose instead to use Fortran 90. Unfortunately, Fortran 90 is far
from a complete object-oriented language, and as a result complicated inversion problems
are cumbersome to describe given its limitations. The problems encountered in implement-
ing the hybrid norm (Claerbout, 2009; Zhang and Claerbout, 2010) is but one example of
the limitations of Fortran 90 for solving inverse problems. Recently, Fortran compilers have
begun to support Fortran’s latest incarnation, Fortran 2008, a more complete implementa-
tion of the needed object oriented constructs. This paper is a follow up to Clapp (2010),
which described how an implementation could be done in Fortran 2003, but was hampered
by the immaturity of the Fortran compiler.

In this paper, I show the implementation of an abstract solver class in Fortran 2008. I
begin by describing one method to implement an abstract operator-based iterative solver.
I describe an abstract vector, abstract operator, and solver class. I finish by showing how
a small geophysical inverse problems can be solved using these classes and concrete classes
inherited from them.
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OPERATOR-BASED OBJECT-ORIENTED SOLVERS

SEP (Claerbout, 1999) has traditionally taken an approach which is described as either
classical, traditional, or deterministic to iterative inversion. The classical approach attempts
to find the model m that minimizes the data misfit. Given a recorded dataset d, and a
linear operator L, we attempt to minimize the residual vector r which is defined as

O~r=d-Lm. (1)

In the simplest case where we are using steepest descent to solve the linear least squares
inversion, we estimate m by mapping the initial residual (in this simple case —d) back into
the same space as the model to form a gradient vector g by applying the adjoint of L. We
then map the gradient vector back into data-space by applying L to form Ar. Finally, we
find the scaling factor of Ar that will make r + Ar as small as possible. We then repeat
this procedure until r is suitably small. More complex inversion approaches are normally
built on this basic concept.

Vector class

The solver writer doesn’t need to know anything about L other than how to apply it and its
adjoint. In fact, the solver writer doesn’t need to know much about m or d. The steepest
descent approach described above involves only three mathematical operations. In order
to find the best scaling factor Ar, we need to calculate a dot product. In order to update
the model and the residual, we will need to scale Ar and add it to r. We can define the
interface for calling the forward of L as

call lop (logical add, vec m, vec d)

If the vector class has the ability to perform the add, scale, and dot product functions,
we can begin to write a generic solver. Two more initialization functions are needed
in the vector class. We need to be able to create the gradient vector before we can
apply the adjoint. As a result, we need to be able to create a vector with the same
number of elements as the model. Put another way, we need to clone the model. We
also need to be able to zero this vector, or set the vector to some value. It is also
useful to seperate the space a vector exists in and the storage mechanism. The vec-
tor space contains thing like whether we are dealing irregular or regular dataset, the
number of samples, and the locations of the samples (for example the origin and sam-
pling of the axes). The table below gives a list of the abstract vector class components.
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’ Function Purpose
add (vector) Add another vector to current vector

(r=1z+y).

scale(real)

Scale the vector (x = z * a).

scale_add(scalel,vector,scale)

Add another vector to current vector
(x = ax + by).

scale(vector)

Calculate the dot product with another
vector (return sum;a(i) * b(7).

set(real)

Set the value of a vector (z = v).

mult(real))

Multiply a vector with another vector
(y =yx*x).

clone(vec)

Create another vector of the same type
with the same values.

clone_space(vec)

Create another vector of the same type
with no storage mechanism.

check_same (vec)

See if two of vector of the same type and exist
in the same space.

alloc()

Create a vector from a vector space.

info(character(len=+),integer)

Provide user specified debugging information.
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From this base class I inherit a real vector class and then 1-D to 7-D real from this
class (Figurel). Further non-uniform classes would inherit form the real vector class while
out-of-core classes would come directly from the vector class.

vector
vector real
I 1 1 1
real |-D real2-D | | .......... real 7-D

Figure 1: Inheritance class for vectors. The 1-D to 7-D real vectors are inheriting from a
real vector class which is inherited from the virtual vector class. [NR] |bobl/. inher

Operators

The base operator class contains the ability to perform a mapping from the vector-space of
the operators domain, to the vector space of operator’s range (the forward of the operator),
and vice versa (applying the adjoint). It is beneficial for an operator to store a description
of these two spaces (the reason for the clone-space function described above). This performs
two functions. First, the operator can perform a sanity check to make sure that the spaces
of model and data passed into the forward or adjoint function call match the space of
initialized domain and range. The second reason is that inversion problems are often more
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complicated then the generic problem described by equation 1. For example, if L is actually
the cascade of two operator A and B,

L= AB 2)

we need the ability to check that the domain of is A is equivalent to the range of B and
we need to create a vector of that size to hold the intermediate result of applying B in the
forward case (and A in the case of the adjoint).

A Fortran 2008 type must be declared in a module. An example of an operator decla-
ration is seen below. In this case I am creating a causal integration operator.

module causal_mod
use operator_mod !Description of the generic operator class
use vec_nd_mod !The specific vector class used in this module
implicit none
type,extends (operator) ::causint_op !Causint operator declaration
contains
procedure,pass :: op=>causint_it !Pointer to the generic forward/adj
final:: causint_close !clean function (not necessary in this case)
end type

When leaving a functional unit that has declared a type or when deallocating a type the
final function is called. In this case we haven’t allocated any memory but for completeness,
and for debugging, it is often useful to include it.

subroutine causint_close(myop)
type(causint_op) :: myop
end subroutine

We need a subroutine that sets up a causal integration operator. The only information we
need is the size of the vector space in which we are going to be performing causal integration
on.

subroutine create_causint_op(myop,v)
class(vector) :: v !vector space we are operating on
class(causint_op) :: myop !operator we are setting up
logical :: bm=.false. !default to having the wrong type of vector
myop%lab=1

select type(v) check the type of vector
class is (real_1d) !'make sure it is a 1-D real vector
bm=.true. !we have the right type of vector

end select

if(.not. bm) call seperr("model and vector must be real_14")
call myop%set_domain_range(v,v) !store the domain and range
end subroutine



SEP-142 Inversion 95

The only thing left is the actual operator. I am going to break it into to parts. The first
part is the initialization and the overhead associated with Fortran 2008.

subroutine causint_it(myop,adj,add,mod,dat)

class(causint_op) :: myop !causal integration object
logical, intent(in) :: adj,add

class(vector) :: mod,dat !vector spaces
real,dimension(:), pointer :: xx,yy
real,dimension(:,:),pointer :: ar

integer :: i,j,nm,nd

real :: t

!Check to make sure the model and data vector
Ispaces match those stored in the operator declaration
if (.not. mod%check_same (myop’domain))&
call seperr("domains don’t match")
if (.not. dat%check_same(myop’range)) &
call seperr("ranges don’t match")
call adj_null(adj,add,mod,dat)

!Create a pointer to the model values
select type(mod)
class is (real_1d)
xx=>mod%vals
nm=size (mod%vals)
end select

!Create a pointer to the data values
select type(dat)
class is (real_1d)
yy=>dat%vals
nd=size(dat%vals)
end select

The second part is standard Fortran77,/90/2003/2008.

t=0
if(adj) then
do i= nd, 1, -1
t =t + yy(i)

xx(i) = xx(1) + t
end do
else
do i= 1, nd
t =t + xx(i)
yy(i) = yy(@i) + ¢t
end do

end if
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end subroutine
end module

Combining operators

The number of different ways that an operator might need to be combined to solve a given
inversion problem is infinite. Fortunately, all possible combinations can be built from four
building blocks. The first is a chain operator. When the results of applying the first operator
L, is fed into a second operator Lo,

d= L2L1m. (3)

A second applies two different operators to the same vector (a column vector),

el g

Its corollary, a row operator, which forms a single data d from to models,

Finally, a diagonal operator that applies different operators to different models

d L
1] _ 1 mj . (6)
d2 L2 my
The final three all imply the creation of a new vector class that is the combination of two or
more vectors. This super vector class is a storage object that calls the appropriate vector
class function sequentially (except for the dot product function that must add the result of

each call). As described in the next section inversion problems are often combinations of
several of these combo-operator/vectors and these functions are often called recursively.

Solvers

An iterative solver operates one a problem that can be described as simply as equation 1.
Translating a complicated problem into this simple form is a more complex problem. The
problem is broken up into three steps: obtaining an initial residual, finding the vector
that best solves the constructed inverse problem, and updating the model according to this
vector. Each one of these steps involve several different potential user inputs. For simplicity,
I am going to describe all potential inversion problems in terms of a regularized inversion
problem with two fitting goals (each goal could be actually multiple fitting goals combined
using the functions described above).

The first step involves constructing the data space vectors, rq and ry,. The user might
begin by specifying some initial values for these two vectors. These values then need to be
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updated according to the data d associated with the problem, a potential initial model my,
the operators being used L1, L2, and weights applied to the residual Wg, W.

rq . rq W1 0 d L1
I R e () R B
Once the initial residual is calculated, we iterate to find x through,
rq o W1L1
L] ®
where S is a preconditioning operator. Finally we need update our model,

m = mg + Sx. 9)

This procedure allows a single solver to be written for a myriad of different inverse problems.
It also demonstrates one of the biggest weaknesses of Fortran 90. Fortran 90 does not
support function pointers. As a result, SEP has traditionally written different solvers for
regularized and preconditioned problems. Combination operators could only be created by
writing a function that specifically named the two operators that were to be combined. As
a result, creating complex inversion problems quickly became cumbersome and prone to
errors.

EXAMPLE

Converting RMS velocities to interval velocities is one of the most basic problems in reflec-
tion seismology. The Dix equation is one of the most common approaches but often leads to
unrealistic velocities when dealing with the noise in the RMS velocity measurement. Clapp
et al. (1998) points out that there is a linear relationship between v2, . and v2, using ei-
ther a modified version of causal integration or using causal integration C directly and first
scaling v2 . by sample number. With this linear relation we can now add a model styling
goal, such as smooth Vi2nt7 given us the fitting goals

d =~ Cm (10)
0 ~ €eDm,

where D is the derivative operator, d is the scaled v2, ., and the model is vZ,. We need a
weighting term which gives higher importance to good RMS picks, and equal weights all of

the RMS velocities (undoing the effect of the sample number scaling), resulting in

Q

0 W(d — Cm) (11)
0 ~ eDm.

We can precondition the model by noting that causal integration is the inverse of the
derivative except at the first sample. We know that first interval velocity value is the same
as the first RMS velocity, resulting in the final setting of fitting equations,

0 ~ W(d- CMp) (12)
0 = ep,
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where p is the preconditioned variable and M is a masking operator that doesn’t allow
the first value to change. The advantage of selecting this problem is that its solution is a
rather thorough test of all the necessary features of the solver. It involves a starting model,
a weighting operator, and a masking operator. It requires both chaining operators and
making column operator objects. All of the hard stuff is done away from the user in the
solver, the user only needs to construct the required operators and initialize and run the
solver.

For this example the conversion is all handled in a module. The module begins by using
all of the modules that declare the operators and solvers, and the declaration of variables.

module vrms_2_int_mod !Transform from RMS to interval velocity
use causint_mod !Causal integration
use weight_mod Weighting operator
use mask_mod 'Masking operator
use cg_step_mod !Conjugate gradient
use obj_solver_mod !Solver module

contains

subroutine vrms2int( niter, eps, weight, vrms, vint)
integer, intent ( in) :: niter ! iterations
real, intent( in) 1 eps ! scaling parameter
type(real_1d) ::ovrms ! rms velocity
type(real_1d) ,target :: vint! interval velocity
real, dimension(:), pointer 11 weight ! data weighting
integer :: st,it,nt
logical, dimension( size( vint¥%vals)) :: mask
logical, dimension(:), pointer :: msk
real, dimension( size( vrms¥%vals)) i oWt
real, dimension(:), pointer 11 wght
type(prec_solver) :: p_s 'Preconditioned solver
type(causint_op) ,target :: ca_op,ca2_op !Causal integration
type (mask_op) ,target :: m_op 'Masking operator

type (weight_op) ,target :: wt_op 'Weighting operator
type(cgstep) ,target :: cg !Conjugate gradient operator
type(real_1d) ,target :: dat !Data

Next we need to scale the data, create the weighting vector, and masking vector.

vrms2int.f90 vrms2int.unrat vrms_2_int_mod.mod
nt = size( vrmsvals)

call create_vecl(dat,vrmsYvals)
do it= 1, nt
dat¥%vals( it) = vrmsyvals( it) * vrmsYvals( it) * it

wt( it) = weight( it)*(1./it) ! decrease weight with time

end do
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mask = .false.; mask( 1) = .true. | constrain first point
vintYvals = 0. ; vint)vals(1)= dat¥vals( 1)

allocate (msk(size(mask)))
msk=.not.mask

allocate(wght(size(wt)))
wght=wt

Finally we need to initialize the operators, setup the solver, and solve for the interval
velocity squared.

call create_weight_op(wt_op,vrms,wght) !Create weighting op
call create_causint_op(ca_op,vint,"al") !Causal op

call create_causint_op(ca2_op,vint,"a2") !Preconditioning
call create_mask_op(m_op,vint,msk) !Masking operator

p_shlop=>ca_op; Mapping operator

p_shst=>cg; IStep function

p_s’pop=>ca2_op Preconditioning operator
p_shdat=>dat; IData

p_s/mod=>vint Imodel

p_skjop=>m_op; IMasking operator
p_shwop=>wt_op !Weighting operator

p_seps=eps; IScaling factor

p_s’kpO=>vint IInitial preconditioned variable

call p_s/solve(niter) !Solve for interval v~2
call ca_oplkop(.false.,.false.,vint,dat) !Estimated RMS~"2

do it= 1, nt
vrms¥vals( it) = sqrt( dat¥vals( it)/it) !RMS velocity
end do
vintivals = sqrt( vintivals) !Interval velocity
deallocate(wght); deallocate(msk)
end subroutine
end module

Figure 2 shows the result of running the inversion. The left panel shows the original RMS
velocity and the mapped RMS velocity. The right panel shows the estimated interval
velocity.

CONCLUSIONS

Iterative-based inversion maps cleanly into an object-oriented framework. Vector, operator,
and solver abstract classes can be built upon to solve nearly any inversion problem. The



100 Clapp SEP-142

RMS Velocity Interval velocity
o (o}
observed
predicted - - - -
- -
s s
3 =
] o
w® 7
(] [}
N o
(S A
T T T T T T T T T T T T
1.4 1.6 1.8 2 2.2 2.4 2.6 1.6 2 2.4 2.8 3.2
velocity(km/sec) velocity(km/sec)

Figure 2: The left panel shows the original RMS velocity and the mapped RMS velocity.

The right panel shows the estimated interval velocity. [ER] [bobl/. stiff

Fortran 2008 standard contains all of the object-oriented features needed to write an inver-
sion library. The resulting inverse code is more verbose than the Fortran 90 approach but
the added flexibility makes this an acceptable penalty.
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Data examples of logarithm Fourier-domain bidirectional
deconvolution

Qiang Fu, Yi Shen and Jon Claerbout

ABSTRACT

Time-domain bidirectional deconvolution methods show great promise for overcoming
the minimum-phase assumption in blind deconvolution of signals containing a mixed-
phase wavelet, such as seismic data. However, time-domain bidirectional methods
usually suffer from slow convergence (Slalom method) or the starting model (Sym-
metric method). Claerbout proposed a logarithm Fourier-domain method to perform
bidirectional deconvolution. In this paper, we test the new logarithm Fourier-domain
method on both synthetic data and field data. The results demonstrate that the new
method is more stable than previous methods and that it produces better results.

INTRODUCTION

Usually, a seismic data trace d can be defined as a convolution of a wavelet w with a re-
flectivity series r. This can be written as d = r x w, where * denotes convolution. Blind
deconvolution seeks to estimate the wavelet and reflectivity series using only information
contained in the data. Traditionally, seismic blind deconvolution has two assumptions,
namely whiteness and minimum phase. The whiteness assumption supposes that the re-
flectivity series r is a flat spectrum, while the minimum-phase assumption supposes that
the wavelet w is causal and has a stable inverse. Recently, some new methods have been
proposed to avoid or correct these two assumptions in seismic blind deconvolution.

In Zhang and Claerbout (2010a), the authors proposed to use a hyperbolic penalty func-
tion introduced in Claerbout (2009) instead of the conventional L2 norm penalty function to
solve the blind deconvolution problem. With this method, a sparseness assumption replacese
of the traditional whiteness assumption in the deconvolution problem. Furthermore, Zhang
and Claerbout (2010b) proposed a new method called “bidirectional deconvolution” in or-
der to overcome the minimum-phase assumption. Bidirectional deconvolution assumes that
any misxed-phase wavelet can be decomposed into a convolution of two parts: w = w, * wy,
where w, is a minimum-phase wavelet and w; is a maximum-phase wavelet. To solve this
problem, we estimate two deconvolution filters, a and b, which are the inverses of wavelets
w, and wy, respectively. Since Zhang and Claerbout (2010b) solve the two deconvolution
filters a and b alternately, we call this method the slalom method. Shen et al. (2011a)
proposed another method to solve the same problem. They use a linearized approximation
to solve the two deconvolution filters simultaneously. We call this method the symmetric
method. Fu et al. (2011) proposed a way to choose an initial solution to overcome the
local-minima problem caused by the high nonlinearity of blind deconvolution. Shen et al.
(2011b) discuss an important aspect of any inversion problem, preconditioning and how it
improves bidirectional deconvolution.

101
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All of the forementioned methods solve the problem in the time domain. Claerbout
et al. (2011) proposed a method to solve the problem in the Fourier domain. We will show
in a later section that this new method converges faster and is less sensitive to the starting
point or preconditioner than the above-mentioned time-domain methods.

METHODOLOGY

Claerbout et al. (2011) show the complete derivation of the method. Here, we describe only
the major steps of this method. As with any iterative method, we have two issues to solve
in one iteration: the update direction and the step length of the update. Below, we disscuss
how we can solve these two issues in the logarithm Fourier-domain method.

As we discussed in the previous section, we can decompose the arbitrary data d into
three parts: the reflectivity series r, the minimum phase wavelet w, and the maximum
phase wavelet wy:

d =1 % (wg *x wp). (1)

We wish to solve for the deconvolution filters a and b, which should be the inverses of
wavelets w, and wy:

we ¥ a = 06(n)
{ wpxb=20(n) 2)

From equation 2, we know that a is minimum phase and b is maximum phase. If we know
the deconvolution filters a and b, we can get reflectivity series r as follows:

r=dx*axb. (3)

Next we transform our problem into the Fourier domain. We use capital letters to denote
variables in the Fourier domain:

R = DAB. (4)
We use U to denote the logarithm of the product of A and B:
U =log(AB). (5)
Our problem then becomes
R = DeU, (6)

where U has become our new unknown in bidirectional deconvolution, and we want to
update it in each iteration. After some derivation (Claerbout et al., 2011), we get, in the
time domain,

Au = r®Hyp'(r) )
Ar =r*x Au ’

where ® means cross-correlation and Hyp(r;) = \/7"1-2 + R% — Ry is the hyperbolic penalty

function.



SEP-145 Log Fourier domain bidecon 103

By Newton’s method (using the only first 2 terms of the Taylor expansion), we can
calculate the step length a:

> Hyp'(ri) Ar
> Hyp (i) Ar?”

Because we use Newton’s method, this step length « calculated above is not the final value.
To obtain the final step length at each iteration, we need another iteration (nested or

(8)

second-order iteration):

oy = 0
Iterate(j)
o) = > Hyp'(ri) Ar;
> Hyp" (ri) Ar}
Qfinal = A final + O
r =1+ a;Ar

u=u+a;Au

Given the update directions (both for the unknown u and for the residual r) and the step
length « of the update, we have everything we need for each iteration. We can iterate to
convergence.

Trial and error on step length «

Because the method above can lead to over-shooting on the step length «, it may lead to a
blow-up problem. The Newton method requires a convex function, but for some field data
sets that condition may not be met. To overcome this, we use trial and error to avoid step
length « being too large. If the hyperbolic penalty function on new r = r + aAr is greater
than on original r, the step length « is too large, and we overshoot; in that case, we reduce
the step length « by half until the stability condition is met.

a; = 0
Iterate(yj)
o, — i HyP (ri)Ari
T Y Hyp (ri) Ar?
Tterate
If Hyp(r+ a;Ar) <=Hyp(r) Then Break
aj = ay/2

A final = X final + Qg
r =71+ oq;Ar

u=u+ ojAu

EXAMPLES

In this section we will test the logarithm Fourier-domain method with both synthetic and
field applications. As prior experience shows (Shen et al., 2011b), preconditioning is a
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critical part of the seismic blind deconvolution problem. Here, we use the Burg Prediction
Error Filter (PEF) as the preconditioner for all tests. Unless otherwise specified, we will
use one filter for all traces.

In the implementation of the logarithm Fourier-domain method, we use the steepest
descent method to search the solution, and for the time domain symmetric method, we use
the conjugate direction method. Because of this difference, the convergence speed or the
number of iterations required for convergence may not be compared directly.

Synthetic 1D example

First, we demonstrate the advantage of the logarithm Fourier-domain method over the time-
domain method on a very simple synthetic data example. The input is a Ricker wavelet
generated by an approximate approach that applies a second-order derivative to binomial
coefficients (Fu et al., 2011). Figure 1(a) shows a synthetic Ricker wavelet, and 1(b) shows
the Ricker wavelet after Burg PEF preconditioning. Next we use the symmetric method
(Shen et al., 2011a) to perform time-domain bidirectional deconvolution. Figures 1(c) and
1(d) compare the results of bidirectional deconvolution using the two methods.

For this simple 1D synthetic example, we use 0.1 (which is 5% of the peak ampli-
tute of the input) as the threshold of the hyperbolic penalty function for the logarithm
Fourier-domain method and use 95% quantile of the data residual as the threshold for the
time-domain method. Using the logarithm Fourier-domain method, we turn the Ricker
wavelet into a spike output after about 50 iterations. Using the time-domain symmetric
method, even after 30,000 iterations, we get a major spike followed by a minor spike, plus a
few additional jitters at the begining of the trace. At the time of this publication, we do not
fully understand why the symmetric method, which utilizes a conjugate direction solver,
is significantly slower than the logarithmic method, which utilizes a steepest descent algo-
rithm.One possible explanation, which has not been tested, is that the deconvolution filters
derived from the time domain symmetric method are not strictly minimum and maximum
phase wavelets.

Another important observation from this synthetic test case is the output location of
the bidirectional deconvolution. If we check the wiggles carefully, we can measure that the
major peaks of the two deconvolution results in figures 1(c) and 1(d) (both of which are at
time sample 104) are not the same as the location of the major peak of the input data figure
1(a) (which is at the time sample 100). Instead, they are located at the major peak location
of the preconditioning result in figure 1(b). This inspired us to realize that the output spike
location of the deconvolution is determined by the preconditioner, and that we can change
the preconditioner to move the spike of the deconvolution result to the location desired. In
another paper (Shen et al., 2011b), we discuss this interesting topic in more detail.

Field data common-offset gather example

Now we test the logarithm Fourier-domain bidirectional deconvolution with a 2D marine
common offset gather data set that is commonly used to test the time-domain bidirectional
deconvolution methods. This 2D marine common-offset gather is very popular in papers
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Figure 1: (a) The synthetic Ricker wavelet; (b) The Ricker wavelet after Burg PEF precondi-
tioning; (c¢) The bidirectional deconvolution result of the logarithm Fourier-domain method
after 50 iterations; (d) The bidirectional deconvolution result of the time-domain symmetric

method after 30,000 iterations. [ER|] ’qiang/ . ricker,ricker-decon,ricker-log,ricker-linear
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discussing blind deconvolution using the hyperbolic penalty function. In Zhang and Claer-
bout (2010a), Zhang and Claerbout (2010b), Fu et al. (2011), Shen et al. (2011a) and Shen
et al. (2011b) the authors tested their methods and theories with this data set as a field
data example. Hence this is a good choice for comparing this new method with previous
ones.

Figure 2 shows the 2D marine common offset gather. Figure 3 shows the common-offset
section after Burg PEF preconditioning. Figures 4 and 5 compare the results of two methods
of bidirectional deconvolution.

Figures 6(a) and 6(b) show the comparison of the estimated wavelets from the two
methods. Recall that the estimated wavelet is the inverse deconvolution filter. We get the
inverse filter by inverting the frequency spectrum of the filter in the Fourier domain, so the
wavelet waveform is periodic. This means the jitter we see at the end of the wavelet is the
anti-causal part of the filter.

From figures 4 and 5, both methods provide good quality results. However we think
the logarithm Fourier-domain method (figure 4) is a little better. First, there are fewer
precursors in the the logarithm Fourier domain result than in the time domain result. And
the precursor of the logarithm Fourier-domain result does not have a sharp boundary as
the precursor of the time domain result. The sharp boundary of the time domain result
is caused by the anti-causal deconvolution filter b, which is 20 sample long, and a sharp
boundary on the beginning of the anti-causal deconvolution filter b. Because the logarithm
Fourier-domain uses a periodic deconvolution filter, the anti-causal part of the deconvolution
filter has no beginning. Moreover, within the salt body (in the vicinity of 2.4 s to 2.6 s),
the Fourier-domain result looks cleaner. We find within the salt body, there are fewer low
frequency events (which can be seen as the white stripe in figure 5 within 2.4 s to 2.6 s).
We do not expect to see any features within the salt body, therefore all events we see in
this area in the raw data are the air-gun bubbles. This indicates that the Fourier-domain
deconvolution handles the air-gun bubbles better than the time-domain method. However,
excluding these differences, the results are similar. We can also find that, except for the
tail parts, the estimated wavelets (figures 6(a) and 6(b)) are similar. At the tail of the
wavelet which, because of periodicity, correspond to the anticausal part of the logarithm
Fourier domain wavelet the wavelet estimated by the time domain symmetric method has
less jitter. On the contrary, the logarithm Fourier-domain wavelet appears to have a small
anti-causal air-gun bubble.

Here, we have a paradox. From the comparison of deconvolution result (figures 4 and 5),
we conclude that in terms of quality, the the logarithm Fourier-domain method is better.
But from the wavelet comparison, we can reach an oppsite conclusion. This is because
the deconvolution filter in the logarithm Fourier-domain method is periodic and the length
of anti-causal part has not an extra constraint, whereas the anti-causal filter in the time
domain symmetric method is constrained by the anti-causal filter length parameter and
tends to have less anti-causal jitter in the final estimated wavelet.

CONCLUSIONS

We test the logarithm Fourier-domain method using both synthetic and field data sets. The
results show that this Fourier-domain method has advantages over previous time-domain
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Figure 2: A common-offset section of a marine survey. [ER] ‘qiang/ . cof-data
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Figure 6: Estimated wavelet from (a) logarithm Fourier-domain and (b) time-domain (sym-
metric) bidirectional deconvolution. The estimation wavelets are the inverse deconvolution
filters, calculated by inverting the frequency spectrum of the filter in the Fourier domain.
Therefore the wavelet waveform is periodic, and the jitter we find at the end of the wavelet
is the anti-causal part of the filter. ’qiang/ . Wavelet—cof—data—linear,Wavelet—cof—data—log‘

methods, for both the convergence speed and the quality of the result.

FUTURE WORK

As we mentioned, the 2D marine common offset gather data we used in previous example
section has been widely used in judge the result of hyperbolic penalty function based bidi-
rectional deconvolution methods. Because this is the only data set tested so far, conclusions
drawn from it are limited. Therefore, we intend to test our methods on other data sets.
Next, we discuss some of our preliminary results.

Preliminary Field data pre-stack shot gathers deconvolution result

The common-offset data set we used in previous example section is extracted from a pre-
stack survey line. Figure 7 shows the pre-stack shot gathers for the whole survey line. In
order to see clearly the deep feature, we use a gain function of ¢3 on figure 7. This gain
function is only applied here for display purposes here and figure 8 shows two shot gathers
in this survey without any gain applied. We also need gain function for deconvolution pro-
cedure to ensure the early time and late portion of data have the same weight to contribute
to the solution. But We did not figure out what is a suitable gain function of this data
set for deconvolution, so in the later test case, we use no gain function in deconvolution
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procedure.

We find that the previous common-offset gather windowed the data not only in space
but also in time. We want to get the data within the same time window as the previous
common offset gather. But now we are working on the prestack gathers, and simply cutting
a horizontal time window will lose the far-offset part of the deep event, due to the moveout.
We do not preform a Normal Move Out correction (NMO) to correct the moveout, because
we do not want the stretch caused by NMO to damage the shot waveform. Instead, we
perform a constant time shift on each trace and try to flat one target event only. We use
a major event in the desired time window, which is the reflection from the top of the salt
body, as a target event to calculate the shift time. The shift time fucntion is

7(x) =t —\/t§ — 2?03, (9)

where x is the offset, vg is a constant RMS velocity, t is the travel time at x offset of the
target event and tg is the travel time at zero offset of the target event. The only unknow
in equation 9 is vg. We can estimated vy by picking several points on the target event and
do a regression. The Figure 9(a) shows the time-shift function to flatten the shot gather.
We apply this time shift and then window the data set by time window 1.6 s to 3 s, figures
9(b) and (c¢) show two gathers after this window.

After we get the two windowed shot gathers, we apply the Burg PEF as the precondi-
tioner and then perform the logarithm Fourier-domain bidirectional deconvolution on the
two windowed shot gathers. Figure 10 shows the preconditioner results, and figure 11 shows
the deconvolution results for the two shot gathers. The two shot gathers are processed in-
dependently, which means we use different Burg PEFs and different deconvolution filters
on the two shot gathers.

The major event (in the vicinity of 2.2 s), which is the top of the salt body, has a phase
shift with increasing offset. In figure 11, the near-offset part of this event is black, and then
it turns white after an offset of about 1500 meters. The head wave starts at the same offset
of 1500 meters. This is not coincidence, but occurs because the reflection has a 90° phase
shift after the critical angle.

Figures 12(a) and 12(b) show the estimated wavelets of these two shot gathers. We
see that these are quite similar, indicating that the shot waveforms do not change much
between these two shots.

We also tried deconvolution of multi-shot gathers with one filter. Figures 13 and 14 show
deconvolution results for 39 and 451 shot gathers, respectively, and figures 15(a), 15(b) and
15(c) show a comparison among estimated wavelets of single shot gathers and multi-shot
gathers. The wavelets are similar, and from panels (a) to (c) we can see that using more
shot gathers reduces jitter. These results tell us that the shot waveforms do not change
significantly from shot to shot. This is consistent with our observations in the previous
analysis of two shot gathers.

we notice in the figure 15(c), there is low frequency component which looks like a white
stripe within the salt body. We do not have the similar thing in our common offset result
(figure 4). We expect to get better deconvolution quality for pre-stack gathers due to we
have more data, but the results show us the oppsite conclusion. That is a indicate the
wavelet is various with offset changing. We need a way to use various wavelet for different
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offset range to handle this problem. But we can not simply divided the shot gathers into
several vertical stripes because the wavelet is function of both offset and travel time (and
maybe tavelling angle). We need more work to find out the pattern to separate shot gather
into portions in which one portion has a relative constant wavelet. Furthermore, we also
need to figure out the suitable gain function as the weighting for bidirectional deconvolution
before we do more test on this pre-stack data set.
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Figure 13: Logarithm Fourier-domain bidirectional deconvolution result on 39 shot gathers.
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Preconditioning a non-linear problem and its application to
bidirectional deconvolution

Yi Shen, Qiang Fu and Jon Claerbout

ABSTRACT

Non-linear optimization problems suffer from local minima. When we use gradient-
based iterative solvers on these problems, we often find the final solution to be highly
dependent on the initial guess. Here we introduce preconditioning and show how it
helps resolve these issues in our current problem—bidirectional deconvolution. Using
three data examples, we show that results with preconditioning are more spiky than
results without preconditioning. Additionally, field data results with preconditioning
have fewer precursors, cleaner salt bodies, more symmetric wavelets, and faster conver-
gence than those without preconditioning. In addition to the field data, we illustrate
the theory and application of two methods of preconditioning: prediction-error fil-
ter (PEF) preconditioning and gapped anti-causal leaky integration followed by PEF
(GALI-PEF) preconditioning. Unlike PEF preconditioning, GALI-PEF precondition-
ing helps constrain the spike to the central wavelet, or allows us to shift it to another
position in the wavelet by manipulating the length of the gap.

INTRODUCTION

Least-squares data fitting leads to multivariate linear equations and consequently more
theories and techniques than any one person can master in a lifetime. In that field, we are
always on well-traveled paths. Problems with non-linear physics are another story: “My
program worked great until I increased the model size a little bit.”

Nonlinear optimization problems have many unexpected traps—local minima, as shown
in Figure 1. Problems with nonlinear physics require a deeper understanding of the setting
than do linear ones. Luckily, there exist helpful techniques that are universally applicable.
The first key is to realize that linear equations can be solved with any starting guess, whereas
with nonlinear relationships, a sensible starting solution is essential.

Preconditioning is a well established technique used in linear regressions with prior
information to hasten convergence. Preconditioning usually begins with regularization and
then steers the iterative descent along the path set out by a prior model. However, it does
not determine the final result.

The word “gradient” sounds like something fixed in the geometry of the application.
Nothing could be further from the truth. Every application offers us a choice of coordi-
nate systems and ways to parameterize the model, and changing the model representation
changes the gradient. For example, we could be seeking the earth density as a function of
location. We could establish the problem as just that, density as a function of location.
On the other hand, we could establish the problem as finding the spatial derivative of the

117
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density. The two formulations really seek the same thing, but operators, unknowns, and
gradients differ.

Each component of a gradient is independent of the other components and may be
scaled arbitrarily as long as its polarity is unchanged. That means that any gradient can be
multiplied by any diagonal matrix containing all positive numbers. Additionally, we show in
the theory section below that a gradient may be multiplied by any positive definite matrix.
That matrix happens to be the model covariance BTB, which in local terminology is the
inverse of the model styling goal times its adjoint. We may choose any positive definite
matrix to modify the gradient. We may even change that matrix from one iteration to the
next. What is important is that the matrix is positive definite. At early stages of descent,
it is helpful to make the gradient large where confidence is high, and small where it is not.
With linear regressions this has no effect on the solution. With nonlinear physics, it steers
the solution away from unwelcome local minima.

In image estimation there generally are locations in physical space and in Fourier space
in which we have little interest, where we have little expectation that our data contains
useful information or that the model will be findable. We need (in nonlinear cases) to be
certain such regions do not disturb our descent, especially in early iterations. Therefore,
we should view our gradient both in the model space and in the data space, then choose
an appropriate diagonal weighting and filter. Given a filter F and weight W, we apply
either FW or WF to the gradient. We then apply the matrix transpose, yielding either
(FW)T(FW) or (WF)T(WF). This procedure destroys no information in the data, but
merely selects what aspects of the data are used first. As the final solution is approached,
the gradient diminishes; and the down-weighted regions eventually emerge in the gradient,
because they are the only things left. Closer to the ultimate solution, it is far less dangerous
to have down-weighted regions affecting the solution.

=
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and change variables from m to p using m = A~ !p:

O~ry=Fm-d=FA 'p—d
O~r,=Am=1Ip

Without preconditioning, we have the search direction

Amp,g = [ FT AT ] [ " ], (3)

'm

and with preconditioning, we have the search direction

Apyooa =1 (PATT 11| X ] (1)

T'm

The essential feature of preconditioning is not that we perform the iterative optimization
in terms of the variable p, but that we use a search direction that is a gradient with respect
to pT, not mT. Using Am = p we have AAm = Ap. This enables us to define a good
search direction in model space:

Amgyoq = A Apgood = AHA Y TFTry + A7 ry,. (5)
We define the gradient by g = FTr, and notice that r,, = p.

Amgoog = A A Hg+m. (6)

The search direction (6) shows a positive-definite operator scaling the gradient. All
components of any gradient vector are independent of each other and independently point
to a direction for descent. Obviously, each can be scaled by any positive number. Now we
have shown that we can also scale a gradient vector by a positive definite matrix and still
expect the conjugate-direction algorithm to descend, as always, to the “exact” answer in a
finite number of steps. This is because modifying the search direction with A='(A~1)T is
equivalent to solving a conjugate-gradient problem in p.

Application to Bidirectional Deconvolution

Bidirectional deconvolution (Zhang and Claerbout, 2010; Shen et al., 2011; Claerbout et al.,
2011) is a non-linear problem, which has a low convergence rate and unstable result when
the starting solution is not close to the true answer. In this section, we apply precondi-
tioning to this problem to obtain a fast and stable result by utilizing prior knowledge. The
deconvolution problem is defined as follows:

dsaxb =7, (7)

where d is the data, a and b are the unknown causal filters, and the superscript r» denotes
the time reverse of filter b. The hybrid norm is applied to 7, and the reflectivity model is
simply 7 plus a time shift.
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We notice that there is only model regularization in this deconvolution problem. Now
we change our model from a and b to @ and b using a = p, *x @ and b = py, * b:

d* po * Py ax b" =~ 0. (8)

Thus, we focus on estimating @ and b instead of a and b. By applying the prior knowledge
in the preconditioners p, and p;, we can avoid unwelcome local minima.

GALI-PEF versus PEF preconditioning

In the previous subsections, we showed theoretically that prior knowledge from precondi-
tioners p, and pp leads bidirectional deconvolution to the global minimum in the nonlinear
problem. We have various choices of preconditioners to indicate different prior knowledge.
Here we present two kinds of preconditioning, prediction-error filter(PEF) preconditioning
and gapped anti-causal leaky integration followed by PEF (GALI-PEF) preconditioning.

The PEF, whose output is white, is widely used for deconvolution in standard industry
practice. The expectation of whiteness in deconvolution encourages us to use PEF as
our preconditioner. Thus we choose PEF as the preconditioner p, and a spike as the
preconditioner p; in PEF preconditioning. Recall that a PEF is a causal filter with a causal
inverse. Theoretically, this property adds confidence that deconvolution with a PEF might
retrieve the correct phase spectrum as well as the correct amplitude spectrum. However,
the wavelet we aim to estimate is not always causal — can be mixed-phase. In most field
data —such as band-limited marine seismic data or land response of an accelerometer —the
wavelet is similar to a Ricker wavelet. It is dangerous to deal only with the causal part
of the data by using PEF, because it may mislead the bidirectional deconvolution to an
incorrect phase spectrum and into an unwelcome local minimum.

Therefore, utilizing the prior knowledge of the anti-causal part of the data becomes
necessary. A finite representation of the Ricker wavelet is the negative of the second finite
difference of some binomial coefficients. In Z-transform representation, this is

[(1=1/2)(1 = )N +1/2)" 1+ 2)"], (9)

where N is the order of the binomial coefficient. In real cases, such as the marine data
example, there is a time gap between the first ghost and first arrival; thus the numerical
representation of the wavelet becomes

(1= (p/2)") (X = (p))(L + /)N (1 + 2)"], (10)

where ¢ is an integer which indicates the length of the gap, and p is a real number which
reduces the energy in a trace and deals with the situation where the gap is not an integer.
With this numerical representation of the wavelet, we can divide the data by [(1 — (p/2)9)]
to estimate the anti-causal part of the wavelet. The inverse of [(1 — (p/2)9)] is gapped anti-
causal leaky integration, which is used as preconditioner p,. After convolving the data with
pp, we apply a PEF to the convolution result and use this estimated PEF as preconditioner
Pa. We hope this GALI-PEF preconditioning leads the bi-directional deconvolution to the
correct phase spectrum and makes the result fall into the global minimum.
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NUMERICAL EXAMPLE

Bidirectional deconvolution with and without preconditioning

We considered three bidirectional deconvolution methods (Zhang and Claerbout (2010),
Shen et al. (2011) and Claerbout et al. (2011)). Of these three methods, the method
proposed by Shen et al. (2011) most needs preconditioning. We therefore test our precon-
ditioning on this method to illustrate the effectiveness and limitation of preconditioning.

To illustrate the capabilities of preconditioning, we analyze the results obtained by in-
verting a zero-phase wavelet. This wavelet is created by convolving the minimum-phase
with its own time-reversed wavelet. Figures 2, 3 and 4 show the zero-phase wavelet and
its bidirectional deconvolution proposed by Shen et al. (2011), without and with PEF pre-
conditioning. The results show that the wavelet is not completely compressed into a spike
without preconditioning, but preconditioning does yield a spike. These results indicate that
preconditioning steers the non-linear problem away from unwelcome local minima. How-
ever, we can still see slight ringing around the spike in the preconditioned result, indicating
that PEF preconditioning does not fully guide the result to the global minimum. This
suggests we should introduce more prior knowledge into the preconditioning.
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After deconvolving the simple 1D case, we test preconditioning on more complicated 2D
synthetic data. Figure 5(a) shows the starting reflectivity model. Figure 5(b) shows the data
generated by convolving the reflectivity model with the zero-phase wavelet in the previous
section. All traces in the data share the same wavelet during modeling and deconvolution.

Figures 6(a) and 6(b) show the bidirectional deconvolution proposed by Shen et al.
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Figure 5: (a) The 2D synthetic reflectivity model; (b) the synthetic data generated using

the zero-phase wavelet. [ER] ‘yishen/ . synS,dataS‘
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(2011) without and with PEF preconditioning. The deconvolution model with PEF precon-
ditioning is more spiky than the one without preconditioning, but it still retains some slight
ringing around the events. Recall that results in the 1D example show similar properties,),
because the same wavelet is used to generate the data in the two examples.

The last example is a common-offest section of marine field data. Figure 7 shows the
input data. Figures 8(a) and 8(b) show the bidirectional deconvolution proposed by Shen
et al. (2011) without and with PEF preconditioning. Both methods perform well to re-
trieve the sparse reflectivity in this field data. However, the preconditioned result has fewer
precursors and cleaner events than the one without preconditioning. Another important
difference is that around 2.4 seconds, there is an unknown event appearing in Figure 8(a),
but it disappears in Figure 8(b). Thus we get a cleaner salt body when we apply precon-
ditioning to this set of field data. The cause of the unknown event is still unidentified, but
we have one possible explanation for this event. In this dataset, every trace looks identical,
but with a time shift. There are two parallel events between 1.7 sec and 1.8 sec which
have almost the same distance for all common midpoints. This phenomenon is unusual and
may cause the unknown event, because the distance between the salt top and the unknown
event is the same as that between the two parallel events. We hope the unknown event will
disappear if we use another data set with more variable traces.

Figures 9(a) and 9(b) show the shot wavelet estimated without and with PEF precondi-
tioning. We notice that both results estimate the bubbles and the double ghost, which can
be seen in the data. However, the estimated wavelet with preconditioning is more symmet-
ric than the one without preconditioning. This symmetric quality meets our expectation
that the wavelet we invert should look like a Ricker wavelet.

PEF versus GALI-PEF preconditioning

In this subsection, we test the PEF preconditioning and GALI-PEF preconditioning on
bidirectional deconvolution. Fu et al. (2011) shows that the method proposed by Claerbout
et al. (2011) produces the most stable result among the three bidirectional deconvolution
methods considered above. Therefore, we use Claerbout et al. (2011) to compare these two
preconditionings to make the comparison reliable.

We use the same field data shown in the previous subsection for this example. First,
we convolve the data with PEF and GALI-PEF preconditioning respectively, as shown
in Figure 10. Then we apply bidirectional deconvolution to the convolution results, as is
displayed in Figure 11. We may draw the following conclusions from the comparison results.

GALI-PEF preconditioning helps constrain the spike to the central wavelet.
As the data shows, the events in Figure 7 look like a Ricker wavelet, with two weak side
lobes and one strong middle lobe. We expect the preconditioned spike to coincide with the
strong middle lobe. Because PEF is a causal filter with causal inverse, it shifts the output
toward the first lobe of the Ricker wavelet. Thus the polarity of the output is the same
as the first lobe of the Ricker. From panel (b) in Figure 10, the strong event(the water
bottom) is black. This polarity, as well as its output location, is the same as that of the
first lobe of the mixed-phase wavelet, around 1.8 seconds in Figure 10. Focusing on the first
lobe in preconditioning leads to same effect in the bidirectional deconvolution. Panel (b) in
Figure 11 shows exactly the same outcome: the output is in the same location and has the



124 Yi Shen et al. SEP-145

cmp_x(km)
0 1 2 3 4 5 6 7 8 9 10 11 12

(a)
cmp_x(km)
0 1 2 3 4 5 6 7 8 9 10 11 12

9'1

Figure 6: Given the 2D synthetic data in Figure 5(b), (a) reflectivity model retrieved
without preconditioning; (b) reflectivity model retrieved with PEF preconditioning. [ER|]
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Figure 7: Input Common Offset data. [ER] |yishen/ . data4|

same polarity as the first lobe of the Ricker wavelet.

On the other hand, GALI-PEF preconditioning helps shift the time of output. Panel (c)
in Figure 10 shows that the event is produced in the same location and polarity as the middle
of the Ricker wavelet. The same is true of the bidirectional deconvolution results. To take
the water bottom for example, the event appears white in both GALI-PEF preconditioning
and its bidirectional deconvolution result, which is the same polarity as the middle lobe of
the wavelet. This centered spike is the usual goal of GALI-PEF preconditioning, but by
manipulating the length of the gap, we can shift the spike to any desired location. In this
case, the gap between the first ghost and first arrival is roughly 10-15 ms. If the gap in
GALI-PEF preconditioning is longer than this separation, the output will move towards
the second side lobe of the wavelet, and vice versa.

Unfortunately, however, GALI-PEF preconditioning does not improve the result com-
pared to PEF preconditioning. Both the PEF and GALI-PEF preconditioning results are
almost the same except for reversed polarity and a time shift. In addition, the precursors
in Figure 10(c) are strong, because of the anti-causal integration. From another perspec-
tive, although the GALI-PEF preconditioner produces a noisier, more resonant section than
does PEF, that section illustrates the polarity more clearly than does PEF. Also, the inter-
val between every two adjacent precursors illustrates the gap between first ghost and first
arrival.

Both preconditioning methods speed convergence. The convergence rates with
and without preconditioning are shown in Figure 12. The average mismatch here is mea-
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Figure 8: Given the common offset data in Figure 7, (a) reflectivity model retrieved
without preconditioning; (b) reflectivity model retrieved with PEF preconditioning. [ER|]
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Figure 9: Given the common offset data in Figure 7, (a) shot wavelet estimated
without preconditioning; (b) shot wavelet estimated with PEF preconditioning. [ER|]
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sured by using a hybrid penalty function (Claerbout, 2010):

T - 1 N 7'? 9
7 =7(H) = (N; L+ 23)° =1 (11)

where H(r) = vV R? +r2— R, and R is the threshold. This expression of the misfit is dimen-
sionless and reflects the speed of convergence. Note that the three convergence curves in
Figure 12 originate from different points, because the average residual without precondition-
ing is calculated directly from the raw data, whereas the ones with the two preconditioning
methods are calculated from the data transformed by PEF and GALI-PEF precondition-
ings respectively. Thus, we only consider the relative trend, not the absolute value, of the
curves. We notice that the convergence rates drop somewhat with preconditioning, because
both PEF and GALI-PEF already help reduce the average mismatch. However, conver-
gence is reached soon after 30 iterations with the help of preconditioning, whereas without
preconditioning convergence takes more than 55 iterations. Therefore, preconditioning does
reduce the computational cost.

Both methods of preconditioning improve bidirectional deconvolution. The
logarithm bidirectional deconvolution proposed by Claerbout et al. (2011), which estimates
the filters in the Fourier domain, is more stable than the one proposed by Shen et al. (2011).
Thus the result depends less on preconditioning in the logarithm method. However, we still
notice that both methods of preconditioning improve the results by reducing precursors.
In addition, the unknown event around 2.4 seconds in panel (a) of Figure 11 becomes
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weaker in the results with preconditioning, especially in bidirectional deconvolution with
PEF preconditioning.

emp_x(kft) cmp_x(kft) emp_x(kft)

8000 9000 10000 11000 8000 9000 10000 11000 8000 9000 10000 11000

(s)oumy
(s)ewrny

(s)ewny

(a) (b) (c)

Figure 10: Given the common offset data in Figure 7, (a) 1/3 of original data; (b) data
transformed by PEF preconditioning; (¢) data transformed by GALI-PEF preconditioning.
These three panels are the inputs to the bidirectional deconvolution output in Figure 11.
[ER] |yishen/ . dataside

CONCLUSION

In this paper, we illustrate the importance of preconditioning in non-linear problems, and
we apply preconditioning to bidirectional deconvolution. The results of three data examples
show that wavelets are more spiky in the results with preconditioning than in those without
preconditioning. However, the results with preconditioning in the 1D and 2D synthetic
sections show slight ringing around the spike, which may encourage us to use more prior
knowledge in the preconditioning. For field data, the results with preconditioning have
fewer precursors, a cleaner salt body, and a more symmetric wavelet than those without
preconditioning. This proves that preconditioning can guide the gradient along sensible
pathways, thus avoiding potential local minima, making the results more reliable, and
speeding convergence.

In addition, we introduce two methods of preconditioning —PEF and GALI-PEF—and
apply them to the field data. Both approaches improve the bidirectional deconvolution
result and improve the convergence speed. But unlike PEF preconditioning, GALI-PEF
preconditioning helps constrain the spike to the center of the wavelet (or other positions in
the wavelet if we change the length of gap). However, we have tested these two methods on
only one set of field data. More experiments on other datasets are needed to illustrate the
effectiveness and limitations of these two methods of preconditioning in our future work.
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Figure 11: Given the common offset data in Figure 7, (a)bidirectional deconvolution without
preconditioning; (b) bidirectional deconvolution with PEF preconditioning (c) bidirectional
deconvolution with GALI-PEF preconditioning. [ER] |yishen/ . modelside|
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