Krylov space solver in Fortran 2009: Beta version

Robert G. Clapp

ABSTRACT

Solving linear systems using Krylov subspace methods is an ideal candidate for
object-orient programming. Iterative solver approaches use only a few different
operations on vectors and operators. These operations form the basis of abstract
vector and operator classes. Sophisticated solvers can then be written on top
of these abstract classes separating the geophysics (operators) from the mathe-
matics (solvers). The minimal set of object-oriented features of Fortran95 and
its predecessors limited the potential separation. New inversion approaches, such
as the hybrid norm, further hampered this separation when using conventional
vector class descriptions. By using the object-oriented features of Fortran 2008,
a separation between solvers and operators can be achieved.

INTRODUCTION

A geophysicist understands and/or approximates how a given set of earth properties
(model) would create a given set of measurements (data). Geophysics is often an
attempt to do the inverse: from a set of recorded data, estimate a model. When the
set of measurements and/or the number of model points is large, matrix-based ap-
proaches become impractical. Iterative approaches are often the method of choice for
large-scale estimation problems. Iterative solvers can become quite complex and are
generally more the domain of the mathematician than the geophysicist. Ideally we
would like to leverage the mathematician’s expertise without having to understand
all of the details of the implementation. Nichols et al. (1993); Gockenbach (1994)
all implemented model estimation through an object-oriented framework, allowing
this separation using C++. Schwab (1998) described a java-based approach to this
problem, and Clapp (2005) described a python-based approach for large, out-of-core
solvers. SEP chose instead to use Fortran 90. Unfortunately, Fortran 90 is far from
a complete object-oriented language, and as a result complicated inversion problems
are cumbersome to describe given its limitations. The problems encountered in im-
plementing the hybrid norm (Claerbout, 2009; Zhang and Claerbout, 2010) is but
one example of the limitations of Fortran 90 for solving inverse problems. Recently,
Fortran compilers have begun to support Fortran’s latest incarnation, Fortran 2008, a
more complete implementation of the needed object oriented constructs. This paper
is a follow up to Clapp (2010), which described how an implementation could be done
in Fortran 2003, but was hampered by the immaturity of the Fortran compiler.

SEP-1/2

Clapp 2 Inversion

In this paper, I show the implementation of an abstract solver class in Fortran
2008. I begin by describing one method to implement an abstract operator-based
iterative solver. I describe an abstract vector, abstract operator, and solver class. I
finish by showing how a small geophysical inverse problems can be solved using these
classes and concrete classes inherited from them.

OPERATOR-BASED OBJECT-ORIENTED SOLVERS

SEP (Claerbout, 1999) has traditionally taken an approach which is described as
either classical, traditional, or deterministic to iterative inversion. The classical ap-
proach attempts to find the model m that minimizes the data misfit. Given a recorded
dataset d, and a linear operator L, we attempt to minimize the residual vector r which
is defined as

O~r=d-Lm. (1)

In the simplest case where we are using steepest descent to solve the linear least
squares inversion, we estimate m by mapping the initial residual (in this simple case
—d) back into the same space as the model to form a gradient vector g by applying
the adjoint of L. We then map the gradient vector back into data-space by applying
L to form Ar. Finally, we find the scaling factor of Ar that will make r+ Ar as small
as possible. We then repeat this procedure until r is suitably small. More complex
inversion approaches are normally built on this basic concept.

Vector class

The solver writer doesn’t need to know anything about L other than how to apply
it and its adjoint. In fact, the solver writer doesn’t need to know much about m or
d. The steepest descent approach described above involves only three mathematical
operations. In order to find the best scaling factor Ar, we need to calculate a dot
product. In order to update the model and the residual, we will need to scale Ar
and add it to r. We can define the interface for calling the forward of L as

call lop (logical add, vec m, vec d)

If the vector class has the ability to perform the add, scale, and dot product func-
tions, we can begin to write a generic solver. Two more initialization functions are
needed in the vector class. We need to be able to create the gradient vector before
we can apply the adjoint. As a result, we need to be able to create a vector with the
same number of elements as the model. Put another way, we need to clone the model.
We also need to be able to zero this vector, or set the vector to some value. It is also
useful to seperate the space a vector exists in and the storage mechanism. The vec-
tor space contains thing like whether we are dealing irregular or regular dataset, the

SEP-1/2

Clapp

3 Inversion

number of samples, and the locations of the samples (for example the origin and sam-
pling of the axes). The table below gives a list of the abstract vector class components.

’ Function \ Purpose
add (vector) Add another vector to current vector
(x =2 +vy).
scale(real) Scale the vector (z = x * a).

scale_add(scalel,vector,scale)

Add another vector to current vector
(x = ax + by).

scale(vector) Calculate the dot product with another
vector (return sum;a(i) * b(7).

set(real) Set the value of a vector (z = v).

mult(real)) Multiply a vector with another vector
(y=yx*x).

clone(vec) Create another vector of the same type

with the same values.

clone_space(vec)

Create another vector of the same type
with no storage mechanism.

check_same (vec)

See if two of vector of the same type and exist
in the same space.

alloc()

Create a vector from a vector space.

info(character(len=*),integer)

Provide user specified debugging information.

From this base class I inherit a real vector class and then 1-D to 7-D real from
this class (Figurel). Further non-uniform classes would inherit form the real vector
class while out-of-core classes would come directly from the vector class.

vector
vector real
I 1 1 1
real |-D real2-D | | real 7-D

Figure 1: Inheritance class for vectors. The 1-D to 7-D real vectors are inheriting
from a real vector class which is inherited from the virtual vector class. [NR]

Operators

The base operator class contains the ability to perform a mapping from the vector-
space of the operators domain, to the vector space of operator’s range (the forward of

SEP-1/2

Clapp 4 Inversion

the operator), and vice versa (applying the adjoint). It is beneficial for an operator
to store a description of these two spaces (the reason for the clone-space function
described above). This performs two functions. First, the operator can perform a
sanity check to make sure that the spaces of model and data passed into the forward
or adjoint function call match the space of initialized domain and range. The second
reason is that inversion problems are often more complicated then the generic problem
described by equation 1. For example, if L is actually the cascade of two operator A
and B,

L=AB (2)

we need the ability to check that the domain of is A is equivalent to the range of B
and we need to create a vector of that size to hold the intermediate result of applying
B in the forward case (and A in the case of the adjoint).

A Fortran 2008 type must be declared in a module. An example of an operator
declaration is seen below. In this case I am creating a causal integration operator.

module causal_mod
use operator_mod !Description of the generic operator class
use vec_nd_mod IThe specific vector class used in this module
implicit none
type,extends(operator) ::causint_op !Causint operator declaration
contains
procedure,pass :: op=>causint_it !Pointer to the generic forward/adj
final:: causint_close !clean function (not necessary in this case)
end type

When leaving a functional unit that has declared a type or when deallocating a type
the final function is called. In this case we haven’t allocated any memory but for
completeness, and for debugging, it is often useful to include it.

subroutine causint_close(myop)
type(causint_op) :: myop
end subroutine

We need a subroutine that sets up a causal integration operator. The only information
we need is the size of the vector space in which we are going to be performing causal
integration on.

subroutine create_causint_op(myop,v)
class(vector) :: v lvector space we are operating on
class(causint_op) :: myop !operator we are setting up
logical :: bm=.false. !default to having the wrong type of vector
myop’%lab=1
select type(v) Icheck the type of vector

SEP-1/2

Clapp) Inversion

class is (real_1d) !make sure it is a 1-D real vector
bm=.true. !we have the right type of vector
end select

if (.not. bm) call seperr("model and vector must be real_1d")

call myop’set_domain_range(v,v) !store the domain and range
end subroutine

The only thing left is the actual operator. I am going to break it into to parts. The
first part is the initialization and the overhead associated with Fortran 2008.

subroutine causint_it(myop,adj,add,mod,dat)

class(causint_op) :: myop !causal integration object
logical, intent(in) :: adj,add

class(vector) :: mod,dat !vector spaces
real,dimension(:), pointer :: xx,yy
real,dimension(:,:),pointer :: ar

integer :: i,j,nm,nd

real :: t

!Check to make sure the model and data vector
Ispaces match those stored in the operator declaration
if (.not. modlcheck_same (myop/domain))&
call seperr("domains don’t match")
if (.not. datlcheck_same(myoplrange)) &
call seperr("ranges don’t match")
call adj_null(adj,add,mod,dat)

!Create a pointer to the model values
select type(mod)
class is (real_1d)
xx=>mod%vals
nm=size (modj,vals)
end select

ICreate a pointer to the data values
select type(dat)
class is (real_1d)
yy=>dat’vals
nd=size(dat’vals)
end select

The second part is standard Fortran77/90/2003/2008.
t=0

SEP-1/2

Clapp 6 Inversion

if (adj) then
do i= nd, 1, -1
t =t + yy(i)
xx(1) = xx(i) + t
end do
else
do i= 1, nd
t =t + xx(i)
yy(i) = yy(i) + t
end do
end if

end subroutine
end module

Combining operators

The number of different ways that an operator might need to be combined to solve
a given inversion problem is infinite. Fortunately, all possible combinations can be
built from four building blocks. The first is a chain operator. When the results of
applying the first operator L; is fed into a second operator Lo,

d= L2L1m. (3)

A second applies two different operators to the same vector (a column vector),

d, | | LIn
][] 2
Its corollary, a row operator, which forms a single data d from to models,

d=1, Lz][ml}. (5)

Finally, a diagonal operator that applies different operators to different models

d, . L, m;
-l] g
The final three all imply the creation of a new vector class that is the combination
of two or more vectors. This super vector class is a storage object that calls the
appropriate vector class function sequentially (except for the dot product function
that must add the result of each call). As described in the next section inversion

problems are often combinations of several of these combo-operator/vectors and these
functions are often called recursively.

SEP-1/2

Clapp 7 Inversion

Solvers

An iterative solver operates one a problem that can be described as simply as equa-
tion 1. Translating a complicated problem into this simple form is a more complex
problem. The problem is broken up into three steps: obtaining an initial residual,
finding the vector that best solves the constructed inverse problem, and updating
the model according to this vector. Each one of these steps involve several different
potential user inputs. For simplicity, I am going to describe all potential inversion
problems in terms of a regularized inversion problem with two fitting goals (each
goal could be actually multiple fitting goals combined using the functions described
above).

The first step involves constructing the data space vectors, rq and ry,. The user
might begin by specifying some initial values for these two vectors. These values then
need to be updated according to the data d associated with the problem, a potential
initial model mg, the operators being used Ly, Lo, and weights applied to the residual

Wo, Wj.
rq . rq W1 0 d L1
sl (] []) o
Once the initial residual is calculated, we iterate to find x through,
rgq . W1L1
)L s ®
where S is a preconditioning operator. Finally we need update our model,

m = my + Sx. (9)

This procedure allows a single solver to be written for a myriad of different inverse
problems. It also demonstrates one of the biggest weaknesses of Fortran 90. Fortran
90 does not support function pointers. As a result, SEP has traditionally written
different solvers for regularized and preconditioned problems. Combination operators
could only be created by writing a function that specifically named the two operators
that were to be combined. As a result, creating complex inversion problems quickly
became cumbersome and prone to errors.

EXAMPLE

Converting RMS velocities to interval velocities is one of the most basic problems
in reflection seismology. The Dix equation is one of the most common approaches
but often leads to unrealistic velocities when dealing with the noise in the RMS
velocity measurement. Clapp et al. (1998) points out that there is a linear relationship
between v2 . and v2, using either a modified version of causal integration or using
causal integration C directly and first scaling v2 . by sample number. With this

SEP-1/2

Clapp 8 Inversion

2

2t given us

linear relation we can now add a model styling goal, such as smooth v
the fitting goals

d ~ Cm (10)
0

Q

eDm,

where D is the derivative operator, d is the scaled v2 ., and the model is v2,. We
need a weighting term which gives higher importance to good RMS picks, and equal
weights all of the RMS velocities (undoing the effect of the sample number scaling),

resulting in

0
0

Q

W(d — Cm) (11)

eDm.

Q

We can precondition the model by noting that causal integration is the inverse of the
derivative except at the first sample. We know that first interval velocity value is the
same as the first RMS velocity, resulting in the final setting of fitting equations,

0
0

W(d — CMp) (12)
Ep?

Q

Q

where p is the preconditioned variable and M is a masking operator that doesn’t
allow the first value to change. The advantage of selecting this problem is that
its solution is a rather thorough test of all the necessary features of the solver. It
involves a starting model, a weighting operator, and a masking operator. It requires
both chaining operators and making column operator objects. All of the hard stuff is
done away from the user in the solver, the user only needs to construct the required
operators and initialize and run the solver.

For this example the conversion is all handled in a module. The module begins by
using all of the modules that declare the operators and solvers, and the declaration
of variables.

module vrms_2_int_mod !Transform from RMS to interval velocity
use causint_mod !Causal integration
use weight_mod IWeighting operator
use mask_mod IMasking operator
use cg_step_mod !Conjugate gradient
use obj_solver_mod !Solver module

contains
subroutine vrms2int(niter, eps, weight, vrms, vint)
integer, intent(in) :: niter I iterations
real, intent(in) 11 eps ! scaling parameter
type(real_1d) 1 ovrms ! rms velocity
type(real_1d) ,target :: vint! interval velocity
real, dimension(:), pointer 1 weight I data weighting

SEP-1/2

Clapp 9 Inversion

integer ;1 st,it,nt

logical, dimension(size(vint%vals)) :: mask

logical, dimension(:), pointer 1 msk

real, dimension(size(vrmsYvals)) il owt

real, dimension(:), pointer 11 wght

type(prec_solver) :: p_s IPreconditioned solver
type(causint_op) ,target :: ca_op,ca2_op ICausal integration
type (mask_op) ,target $: m_op Masking operator

type(weight_op) ,target :: wt_op !Weighting operator
type(cgstep) ,target :: cg IConjugate gradient operator
type(real_1d) ,target :: dat !Data

Next we need to scale the data, create the weighting vector, and masking vector.

vrms2int.f90 vrms2int.unrat vrms_2_int_mod.mod
nt = size(vrmsYvals)

call create_vecl(dat,vrms’vals)
do it= 1, nt
dat¥vals(it) = vrmsYvals(it) * vrmsYvals(it) * it

wt(it) = weight(it)=*(1./it) ! decrease weight with time
end do
mask = .false.; mask(1) = .true. ! constrain first point
vintYvals = 0. ; vintYvals(1l)= dat%vals(1)

allocate(msk(size(mask)))
msk=.not .mask

allocate(wght(size(wt)))
wght=ut

Finally we need to initialize the operators, setup the solver, and solve for the
interval velocity squared.

call create_weight_op(wt_op,vrms,wght) !Create weighting op
call create_causint_op(ca_op,vint,"al") !Causal op

call create_causint_op(ca2_op,vint,"a2")!Preconditioning
call create_mask_op(m_op,vint,msk) !Masking operator

p_s%lop=>ca_op; 'Mapping operator
p_skst=>cg; IStep function

SEP-1/2

Clapp 10 Inversion

end
end

p_s’pop=>ca2_op 'Preconditioning operator
p_s/dat=>dat; IData

p_s/mod=>vint Imodel

p_s’hjop=>m_op; IMasking operator
p_shwop=>wt_op Weighting operator

p_sheps=eps; !Scaling factor

p_s%p0=>vint !'Initial preconditioned variable

call p_s¥%solve(niter) !Solve for interval v~2
call ca_oplop(.false.,.false.,vint,dat) !Estimated RMS~2

do it= 1, nt
vrmsj4vals(it) = sqrt(dat%vals(it)/it) !RMS velocity
end do
vintjvals = sqrt(vintivals) !Interval velocity
deallocate(wght); deallocate (msk)
subroutine
module

Figure 2 shows the result of running the inversion. The left panel shows the original
RMS velocity and the mapped RMS velocity. The right panel shows the estimated
interval velocity.

(oes)ewuny

RMS Velocity Interval velocity

observed

predicted - - - -

T T T T T T T T T T T T
1.4 1.6 1.8 2 2.2 2.4 2.6 1.6 2 2.4 2.8 3.2
velocity(km/sec) velocity(km/sec)

Figure 2: The left panel shows the original RMS velocity and the mapped RMS
velocity. The right panel shows the estimated interval velocity. [ER]

Ttera

CONCLUSIONS

tive-based inversion maps cleanly into an object-oriented framework. Vector,

operator, and solver abstract classes can be built upon to solve nearly any inversion
problem. The Fortran 2008 standard contains all of the object-oriented features
needed to write an inversion library. The resulting inverse code is more verbose than
the Fortran 90 approach but the added flexibility makes this an acceptable penalty.

SEP-1/2

Clapp 11 Inversion

REFERENCES

Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings
image enhancement: Stanford Exploration Project.

——, 2009, Blocky models via the 11/12 hybrid norm: SEP-Report, 139, 1-10.

Clapp, R. G., 2005, Inversion and fault tolerant parallelization using Python: SEP-
Report, 120, 41-62.

———, 2010, Hybrid-norm and fortran 2003: Separating the physics from the solver:
SEP-Report, 142, 85-92.

Clapp, R. G., P. Sava, and J. F. Claerbout, 1998, Interval velocity estimation with a
null-space: SEP-Report, 97, 147-156.

Gockenbach, M. S., 1994, Object-oriented design for optimization and inversion soft-
ware: A proposal: TRIP-Report, 1994, 1-24.

Nichols, D., H. Urdaneta, H. I. Oh, J. Claerbout, L. Laane, M. Karrenbach, and M.
Schwab, 1993, Programming geophysics in C++: SEP-Report, 79, 313-471.

Schwab, M., 1998, Enhancement of discontinuities in seismic 3-D images using a Java
estimation library: 99.

Zhang, Y. and J. Claerbout, 2010, Least-squares imaging and deconvolution using
the hb norm conjugate-direction solver: SEP-Report, 140, 129-142.

SEP-1/2

