Two-parameters residual-moveout analysis for
wave-equation migration velocity analysis

Biondo Biondi

ABSTRACT

The use of two-parameter RMO functions has the potential of improving the
flatness of RMO-corrected gathers. The two RMO functions I propose add a
second term to the conventional angle-domain RMO function. The proposed
RMO functions achieve improved flatness when applied to two test CIGs that
are representative of situations when either strong lateral velocity variations or
anisotropy occur.

The use of two-parameter RMO functions could also improve the velocity gradi-
ents when applied within automatic MVA methods. My numerical experiments
indicate that the RMO function that I defined by adding a term proportional to
the fourth power of the tangent of the aperture angle should yield more accurate
gradients than the one-parameter RMO function. This choice is also more robust
with respect to the setting of processing parameters than the other two-parameter
RMO function I introduce in the paper, which adds a term proportional to the
absolute value of the sine of of the aperture angle

INTRODUCTION

The measurement of the residual moveout (RMO) in migrated common image gathers
(CIG) is an important component of any migration velocity analysis (MVA) method.
The choice of a robust method for measuring RMO is particularly important if the
MVA process is automatized to avoid explicit picking of RMO parameters from co-
herency spectra (Biondi, 2008, 2010; Zhang and Biondi, 2011). In Biondi (2011), I
illustrate with a simple example some of the challenges that these methods may en-
counter when a one-parameter RMO analysis is employed in presence of strong lateral
velocity variations. To address these concerns, in this report I introduce two possible
choices of RMO functions defined by two parameters instead of one. Both choices
add a term to the RMO function, in addition to the usual term that is proportional
to the square of the tangent of the aperture angle.

The first choice of RMO function adds a term proportional to the fourth power of
the tangent of the aperture angle, and thus I will dub it the “Taylor” RMO function.
The second choice adds a term proportional to the absolute value of the sine of the
normalized aperture angle. The angle is normalized to enable the sine to complete a
full cycle between zero and the maximum aperture angle used for the analysis. This
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choice is motivated by the fact that it is theoretically desirable to have the terms of
the RMO function to be mutually orthogonal (Siligi, 2009). The sine function is only
approximately orthogonal to the square of the tangent, but it has the advantage of
being extremely simple. I will dub this RMO function “Orthogonal”.

I test the efficacy of the proposed RMO functions using two CIGs that were
obtained by migrating two different synthetic data sets. The first CIG represents the
challenges presented by strong lateral velocity variations. The data were modeled
assuming a strong negative velocity anomaly above a flat reflector (Biondi, 2011).
The second CIG represents the effects of anisotropy on RMO analysis. The data were
modeled assuming a strongly anisotropic VTI medium (¢ = 0.0975 and 6 = —0.11)
above a flat reflector, and migrated assuming an isotropic velocity (Biondi, 2005).

In the following section I introduce the new RMO functions and apply them
to compute two-dimensional spectra measuring the stack power as a function of the
moveout parameters. In the subsequent section I analyze the accuracy of the potential
search direction that would be computed by evaluating the gradient of the stack power
as a function of the RMO parameters, and compare the results with the results of a
similar analysis when the conventional one-parameter RMO analysis is applied.

TWO-PARAMETER RMO FUNCTIONS

Biondi and Symes (2004) introduced the following one-parameter RMO function for
angle-domain CIG:

Az = (1 — p)tan®~, (1)
where v is the aperture angle and Az is the difference between the imaged depth
at normal incidence (v = 0) and the imaged depth at a given angle ~. For constant
velocity errors in the half space above the reflector, the parameter p has a direct phys-
ical interpretation. It is related to the ratio between the current migration slowness
Smig and the true slowness s; that is, p & Su;/s. However, in the following discussion
this physical interpretation of p is irrelevant, and it can be simply considered as a
free parameter describing a family of RMO functions.

What I call the Taylor RMO function adds the next higher-order even term to
equation 1 as follows

Azp = (1 —p)tan®y + (1 — Ap) tan' y, (2)

where A7 is the additional free parameter. As in equation 1, the RMO function is
equally flat when p =1 and A\ = 1.

The second two-parameter RMO function that I introduce adds a sine function to
equation 1 as follows

Azo = (1= p)tan’y + (1 = Ao) | sin 7], (3)

SEP-1/5



Biond;i 3 Two-parameters RMO

Angle |deg] Angle |deg] Angle |deg] Angle |deg]
- —25 0 25 —-25 0 25 —25 0 25 —25 0 25
S ‘
S
—_-
©
o
<3
=k
o ©
833
=
N
88
o
0
—_-
o
o

Figure 1: CIGs after constant velocity migration and: a) no correction, b) correc-
tion with a one-parameter RMO (equation 1), ¢) correction with the “Taylor” RMO
(equation 2), and d) correction with the “Orthogonal” RMO (equation 3). [CR]

where A\ is the additional free parameter, ¥ = 277 /Ymax 1S the normalized aperture
angle, and Y.y is the maximum aperture angle used for the analysis.

Figure 1a shows the first CIG that I use for my study. It was obtained by migrating
a synthetic data set that was modeled assuming a strong negative velocity anomaly
above a flat reflector and migrated assuming a constant velocity (Biondi, 2011). This
CIG is located under the center of the anomaly. Its moveout is not well described
by the conventional RMO function expressed in equation 1 because the image at
near angles is more affected by the anomaly than the image at far angles. Figure 1b
shows the result of correcting this CIG using equation 1 with p = 1.075 that is the p
value corresponding to the maximum of the stack power picked from a stack-power
spectrum. This corrected CIG is far from being flat.

Figure 2 shows stack-power spectra as a function of two parameters. The panel
on the left (Figure 2a) was computed using the “Taylor” RMO function described
by equation 2, whereas the panel on the right (Figure 2b) was computed using the
“Orthogonal” RMO function described by equation 3. In both cases the stack power
was computed over the range of —25° < v < 25°. Consequently, I set Y.x = 25° to
compute the normalized angle 4 in equation 3. The power spectra were averaged over
a thick (200 m) depth interval and slightly smoothed along the RMO parameters p
and .

The maxima of both of these two-parameter spectra are not along the A\ = 1
line, indicating that the two-parameter RMO improves the flatness with respect to
the one-parameter RMO. Indeed, when the values corresponding to the maxima of
the power spectra shown in Figure 2 are used to correct the original CIG I obtain
flatter gathers than when using a one-parameter RMO. Figure 1c shows the result of

SEP-145



Biondi 4 Two-parameters RMO

0.8 0.9 1 11 12 13 0.9 1 1.1 1.2 13 1.

9'0

o
w a) b)
Figure 2: Two-parameter stack-power spectra resulting from RMO analysis of the

migrated CIG shown in Figure la obtained applying: a) the “Taylor” RMO function
(equation 2), and b) the “Orthogonal” RMO function (equation 3). [CR|]

correcting the CIG shown Figure la using equation 2 with p = 1.15 and Ay = .55.
Figure 1c shows the result of correcting the CIG shown Figure la using equation 3
with p = 1.075 and A\p = 1.0055. The CIG corrected using the “Orthogonal” RMO
is almost perfectly flat within the —25° < v < 25° range.

Notice that the shape of the spectra around their respective maxima is substan-
tially different between the two plots. The function corresponding to the “Orthogo-
nal” RMO is more isotropic around the maximum than the one corresponding to the
“Taylor” RMO. This behavior is expected because the two terms of the “Orthogonal”
RMO function are close to be orthogonal with respect to each other. Theoretically,
this more isotropic shape could lead to better gradients. However, we can also notice
diagonal artifacts in Figure 2b. As we discuss below, the effects of these artifacts tend
to outweigh any advantage provided by the more isotropic shape of the spectrum.

Figure 3a shows the second CIG that I use for my analysis. It was obtained by
migrating a synthetic data set that was modeled assuming a strongly anisotropic VTI
medium (e = 0.0975 and 6 = —0.11) above a flat reflector, and migrated assuming an
isotropic velocity (Biondi, 2005). Because the anisotropy in the medium is not taken
into account by the isotropic migration, the CIG moveout is not well described by
the conventional one-parameter RMO function expressed in equation 1. Figure 1b
shows the result of correcting this CIG using equation 1 with p = .9375 that is the p
value corresponding to the maximum of the stack power picked from a stack-power
spectrum. This corrected CIG is far from being flat.

Figure 4 shows stack-power spectra as a function of two parameters. The panel
on the left (Figure 4a) was computed using the “Taylor” RMO function described
by equation 2, whereas the panel on the right (Figure 4b) was computed using the
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“Orthogonal” RMO function described by equation 3. In both cases the stack power
was computed over the range of —50° < v < 50°. Consequently, I set Yy.x = 50° to
compute the normalized angle 74 in equation 3. The power spectra were averaged over
a thick (200 m) depth interval and slightly smoothed along the RMO parameters p
and .

As for the spectra computed from the first CIG (Figure 2), the function corre-
sponding to the “Orthogonal” RMO is more isotropic around the maximum than the
one corresponding to the “Taylor” RMO. This difference in shape is less pronounced
for this example than for the previous one.

Because the maxima of both of these two-parameter spectra are not along the
A = 1 line, we have indication that the two-parameter RMO improves the flatness
with respect to the one-parameter RMO. Indeed, when the values corresponding to
the maxima of the power spectra shown in Figure 4 are used to correct the original
CIG I obtain flatter gathers than when using a one-parameter RMO. Figure 3¢ shows
the result of correcting the CIG shown Figure 3a using equation 2 with p = 0.915 and
Ar = 1.075. Figure 3¢ shows the result of correcting the CIG shown Figure 3a using
equation 3 with p = 0.97 and Ao = 0.988. In particular, the CIG corrected using the
“Taylor” RMO is significantly flatter, within the —50° < v < 50° range, than the one
corrected using a one-parameter RMO.

CONVERGENCE ANALYSIS

In the previous section I showed that we can obtain flatter migrated CIGs by applying
a two-parameter RMO correction instead of a conventional one-parameter correction.
These results would be sufficient to motivate the use of a two-parameter RMO if the
goal were to improve the signal-to-noise in the stacked cube, or to perform velocity
analysis by picking the stack-power maxima. However, I am interested in using the
new RMO functions in an MVA method that avoids picking the maxima of coherency
spectra; this method computes the gradients of the objective function from the gradi-
ent of the stack-power spectra with respective to the RMO parameters (Biondi, 2008,
2010; Zhang and Biondi, 2011). It is therefore important to analyze the quality of
the gradient information computed from two-parameter spectra, and compare to the
corresponding gradient information computed from one-parameter spectra.

As a quality measurements of the gradient information, I compute the correlation
across the angle axis between the RMO function that would be computed by picking
the maxima of the coherency spectra ,Az and the RMO function ;Az computed using
the gradient.

For the “Taylor” RMO the reference RMO function ,Azy is computed as follows:
pA21 (3,0, M) = (p = p) tany + (Ar — A tan® 7. (4)
where (ﬁ, X;) are the coordinates of the power-spectrum maximum. The RMO
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Figure 3: CIGs after isotropic velocity migration and: a) no correction, b) correc-
tion with a one-parameter RMO (equation 1), ¢) correction with the “Taylor” RMO
(equation 2), and d) correction with the “Orthogonal” RMO shows the second CIG
that I use (equation 3). [CR]
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Figure 4: Two-parameter stack-power spectra resulting from RMO analysis of the
migrated CIG shown in Figure 3a obtained applying: a) the “Taylor” RMO function
(equation 2), and b) the “Orthogonal” RMO function (equation 3). [CR|]
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function ;Azp computed from the gradient of the power spectrum Py is,

oP oP
oAzr (7,0, 07) = ——— (p. Ar) tan® y — = (p, A7) tan' 7, (5)
6p 8>\T
and the correlation is computed as
Cr (p, Ar) = Y D21 (7, p, A1) oAz (7, 9, Ar)- (6)
2!

I compare this correlation function over a range of (p, Ar) with the correlation function
computed by
Cri (p, M) = Y pAzr (7,0, M) gDz (7, p, A7), (7)
0
where the one-parameter RMO ,Azp is computed as follows

OP.
gAZTl (77 P, )\T) = __T (IO> >‘T) tan2 - (8)

dp
Figure 5 compares the correlation functions Cr (panel a) and Cry (panel b) for
the first CIG analyzed (Figure la). The asterisk superimposed onto the plots of the
correlation functions is located at the maximum of the power spectrum displayed

in Figure 2a. The coordinates (70\7 X;) of this maximum are used to evaluate the

moveout ,Azp according to equation 4. Accurate gradient directions correspond to
positive correlation (plotted in white in the figure), whereas potentially misleading
gradient directions correspond to negative correlation (plotted in black in the figure).

The correlation functions are mostly positive over a wide range of parameters
(p, A7), indicating that a velocity estimation method based on these RMO functions
is likely to have good global convergence properties. In particular, the positive cor-
relation functions at (p = 1, A\r = 1) indicates that the gradient computed starting
from the migrated CIG shown in Figure 2a would be accurate, even if this CIG is far
from being flat.

The correlation functions shown in Figure 5 are very similar. Therefore, the global
convergence of the velocity estimation would be robust independently of whether the
one-parameter or the two-parameter RMO function is used.

Similar correlation analysis of the RMO function can be performed when applying
the “Orthogonal” RMO instead of the “Taylor” RMO. In this case the reference RMO
function ,Az¢ is computed as follows:

vA%0 (7,0, 00) = (p = ) tan?y + (Ao = Ao ) [sin3]. (9)

where (ﬁ, X;) are the coordinates of the corresponding power-spectrum maximum.

The RMO function ;Azo computed from the gradient of the power spectrum Fp is,
8PO 0P, O

Az20 (7, p, Xo) = o (p, Ao) tan®y — T (p, Ao) |sin7l, (10)
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Figure 5: Correlation functions corresponding to the CIG shown in Figure 1a for: a)
the “Taylor” two-parameter RMO function (equation 6), and b) the one-parameter
RMO function (equation 7). [CR|]
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Figure 6: Correlation functions corresponding to the CIG shown in Figure la for:
a) the “Orthogonal” two-parameter RMO function (equation 11), and b) the one-
parameter RMO function (equation 12). [CR|]
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and the correlation is computed as

Co (p,20) = Y pAz0 (7, . A0)e%0 (7, £, Xo).- (11)

Y

This correlation is compared with the correlation

Cor (P, 20) = Y 220 (7,9, A0)gA201 (7, p, Mo), (12)

Y

where the one-parameter RMO ;Az¢; is computed as follows

0Py

gA201 (77 P, )‘O) = _8_,0 (pa )‘O> tan2 - (13)

Figure 6 compares the correlation functions Cp (panel a) and Cp; (panel b) for
the first CIG analyzed (Figure 1a). The asterisk superimposed onto the plots of the
correlation functions is located at the maximum of the power spectrum displayed

in Figure 2b. The coordinates (ﬁ, Xg) of this maximum are used to evaluate the

moveout ,Azp according to equation 9. As for the previous figure, accurate gradient
directions correspond to positive correlation (plotted in white in the figure), whereas
potentially misleading gradient directions correspond to negative correlation (plotted
in black in the figure).

In this case the correlation functions shown in Figure 6 are not as similar as in
the previous case. In particular, the black area around the value (p =1,Ap = 1) in
Figure 6a indicate that the two-parameter RMO analysis would provide unreliable
gradients. This problem is related to the diagonal artifacts visible in the power
spectrum shown in in Figure 2a. These artifacts are caused by the fact that the
second term in the “Orthogonal” RMO function has an extremum in the middle of
the angular range, in contrast with the other RMO functions that have an extremum
at normal-incidence. This mid-range extremum causes spurious local maxima of the
spectrum at depths different than the normal incidence depth of the imaged reflector.
These artifacts are much weaker when I averaged the power spectrum over a thinner
depth interval (30 m) than the one used for computing the function displayed in
Figure 6a. The new averaging window is of thickness comparable to the image of the
reflector. Figure 7a shows the power spectrum obtained with this thinner averaging
window, and Figure 7b corresponds to the two-parameters correlation function, which
is a substantial improvement with respect to the one shown in Figure 6a. Figure 8
and Figure 9 shows the analysis of the correlation functions for the second CIG
analyzed (Figure 3a); that is, the CIG suffering from the effects of anisotropy. Figure 8
corresponds to the ”"Taylor” RMO function, whereas Figure 9 corresponds to the
”Orthogonal” RMO function. For this CIG, the two-parameter RMO analysis seems
to improve the global convergence of the method, in particular when the “Orthogonal”
function is applied (Figure 9).
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Figure 7: Panel a): Two-parameter stack-power spectra resulting from RMO analysis
of the CIG shown in Figure la obtained using a thinner averaging window (30 m)
than the one used to compute the spectrum shown in Figure 2b. Panel b): Correla-
tion function for the “Orthogonal” two-parameter RMO function obtained using the
thinner averaging window. [CR]

Local convergence analysis

To gain an insight whether using a two-parameter RMO provides more accurate
gradients starting from a CIG that is already close to be flat, we can zoom into the
previous correlation plots around the location of the maximum. The correlation func-
tion in these smaller windows is related to “local convergence” of velocity estimation
methods based on the selected RMO functions.

Figure 10 shows the zooms into the plots shown in Figure 5; that is, comparing the
correlation function for the first CIG (velocity anomaly) obtained using the “Taylor”
RMO function (Figure 10a) and the conventional one-parameter RMO function (Fig-
ure 10b). I set the width of the close up windows to be equal to the distance of the
maximum from the starting CIG; that is, the difference between the minimum and
the maximum value of the p parameter is Ap = (p — 1) and the difference between

the minimum and the maximum value of the Ay parameter is A\ = (X\T — 1>. The

two plots shown in Figure 10 are almost identical, indicating that in this case there
would be a negligible advantage to be gained by employing a two-parameter RMO
function.

Figure 11 analyze the application of the “Orthogonal” RMO function to the same
CIG as the previous figure. It shows the zooms into the plots shown in Figure 7b and
Figure 6b, respectively. I set the window width following the same criterion described
above for the “Taylor” RMO function. In this case, the one-parameter RMO function
seems to provide better local convergence than the two-parameter RMO function.
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Figure 8: Correlation functions corresponding to the CIG shown in Figure 3a for: a)
the “Taylor” two-parameter RMO function (equation 6), and b) the one-parameter
RMO function (equation 7). [CR]
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Figure 9: Correlation functions corresponding to the CIG shown in Figure 3a for:
a) the “Orthogonal” two-parameter RMO function (equation 11), and b) the one-
parameter RMO function (equation 12). [CR|]
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The last two figures, Figure 12 and Figure 13, show similar analysis as the previous
two, but applied to the CIG that suffers from the effects of anisotropy. For these CIG
the two-parameters RMO function provides a better local convergence than the one-
parameter function. The improvements look more substantial for the “Orthogonal”
RMO function than for the “Taylor” RMO function.

DISCUSSION AND CONCLUSIONS

The introduction of a second term to the conventional RMO function for angle-domain
CIGs improves the flatness of the corrected gathers for both CIGs I used in my testing
and for both choices of two-parameter RMO function I proposed.

The answer to the question of whether using a two-parameter RMO function yields
more reliable gradients when applied in automatic MVA methods is more ambiguous.
The correlation analysis I presented indicates that the “Taylor” RMO function yields
more robust gradients than the simple one-parameter RMO function for both CIGs
I used as representative of situations when either strong lateral velocity variations or
anisotropy occur. The impact of these improvements in real situation is difficult to
predict. More testing and analysis are needed to determine whether the additional
computation and code complexity introduced by the addition of a second term to the
RMO function are worthy.

The “Orthogonal” RMO function may yields better gradients, but it is also more
sensitive with respect to the thickness of the depth-averaging window for the power
spectra. This fragility is caused by the location of the extremum of the second term
of the “Orthogonal” RMO function in the middle of the angular range. Although the
“Orthogonal” function has some theoretical advantages, its lack of robustness make
it a less desirable choice.
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