A new algorithm for bidirectional deconvolution
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ABSTRACT

We introduce a new algorithm for bidirectional deconvolution. In our method,
we estimate the causal filters and anti-causal filters simultaneously instead of
alternately. We test three data examples (1D synthetic, 2D synthetic and 2D
field data). The results show that the wavelet can be compressed almost into
a spike using our method. The two filters can be estimated equally when we
are dealing with a zero-phase wavelet. In addition, our method has a lower

computational cost and faster convergence rate than the method discussed by
Zhang and Claerbout (2010).

INTRODUCTION

In a previous report, Zhang and Claerbout (2010) introduced a bidirectional decon-
volution method that overcomes the minimum-phase assumption of the conventional
deconvolution. They factored the mixed-phase wavelet into two parts, the minimum-
phase part and the maximum-phase part, which can be estimated by a causal filter
and an anti-causal filter, respectively. Since such deconvolution is a non-linear prob-
lem, a pair of conventional linear deconvolutions were utilized to invert these two
filters alternately and iteratively. In their paper, both theory and data examples
showed that the mixed-phase wavelet can be accurately inverted using this bidirec-
tional deconvolution.

However, there are some obstacles to inverting these two filters sequentially. There
is a battle between these two filters competing for the spectrum. This competition
makes the solution jump back and forth between the causal filter and the anti-causal
filter, which may lead to a low convergence rate and an unstable deconvolution result.
In addition, when Zhang and Claerbout (2010) inverted a zero-phase wavelet by this
method, they produced two different filters; that is, the causal part and the anti-causal
part are different, which is contrary to the nature of the zero-phase wavelet.

To avoid these problems, we invert these two filters at the same time instead of
sequentially, hoping this simultaneous inversion will lead to a faster convergence rate
and more stable solutions.
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THEORY

In this paper, we still rely on the idea of bidirectional deconvolution to deal with the
mixed-phase wavelet. The wavelet can be factored into a minimum-phase part and a
non-minimum-phase part. The deconvolution problem can be defined as follows:

dxax*xb =r, (1)

where d is the data, a and b are the unknown causal filters, and superscript r denotes
the time reverse of filter b. Again, the hybrid norm is applied to r, and the reflectivity
model is simply r plus a time shift. Now consider perturbations Aa and Ab:

d* (a+ Aa)* (b" + Ab") =r. (2)

If we assume the the nonlinear part AaAb is relatively small, we can neglect this
term:

dxaxb"+dxax Ab"+d=*b" xAa~r. (3)

We use matrix algebraic notation to rewrite the fitting goal. We also want to
guarantee filter a to be causal and filter 0" to be anti-causal during the iterations.
For this we need mask matrices (diagonal matrices with ones on the diagonal where
variables are free and zeros where they are constrained). The free-mask matrix for
Aa is denoted K, whose first diagonal element is zero, and that for Ab” is denoted
Y, whose last diagonal element is zero:

[d*a d*br]{g I%}{AAZ

}+d*a*brz0. (4)
From equation (4), we have our new model m = [ Ab” Aa ]T and new operator
F = [ dxa dxb" } . Now we can acquire these two filters only by applying the con-
ventional inversion method and hybrid norm solver. The pseudocode for minimizing

this new objective function by the hyperbolic conjugate-direction method developed
by Claerbout (2010) is:
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non - linear iteration

{
r=—-dsxaxb”
F:[d*a d*br]

linear iteration

{
g=(FJ)"H'(r)
Ar =FJg
m «— Hyperbolic_cgstep(g, m, Ar, r)

}

a<+— a+ Aa
b" — b"+ Ab"
}

where H'(r) is defined as the first derivative of the hybrid norm v R? 4+ r? — R, where
R is the [1/ly threshold parameter, J is the mask matrix { ?; I(; ], and g is the
gradient.

From the template we notice that both linear and non-linear iterations are needed.
Perturbations Aa and Ab" are inverted by the hyperbolic conjugate-direction method
in each linear iteration. Filters a and b" are updated in the non-linear iteration, which
generates a new operator F to update the model. However, this method requires only
2 linear iterations to reach convergence, instead of the 100 linear iterations required
by the previous method, greatly speeding convergence. In addition, there is no need
to reverse the filters in the non-linear iteration, which makes our implementation
more convenient.

Although the fitting goal is linearized, we still need the initial model to be close
enough to get a good result. Here we expect an impulse function for both filters a and
b. The following sections will show the application of this new method and demon-
strate its effectiveness and limitations, when compared with the previous method
discussed by Zhang and Claerbout (2010).

APPLICATION
Single wavelet

The first data example is the simplest mixed-phase wavelet, which only has three
points [3,7,2]. We use it to verify the ability of our method to deal with the mixed-
phase wavelet. The input data and its bidirectional result are shown in Figures 1 and
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2. In this case, our new method is able to compress the simple mixed phase wavelet
into a spike.

Figure 1: The three data points
3,7,2]. [ER]

Figure 2: The result of our decon-
volution method. [ER]

To illustrate the capabilities and limitations of our new method, we analyze the
results obtained by inverting the zero-phase wavelet. This wavelet is created by
convolving the minimum-phase with its own time-reversed wavelet.

Figures 3(a) and 3(b) show the filters estimated by our method. Figures 3(c) and
3(d) show the filters inverted by the previous method of bidirectional deconvolution.
Here we time-reverse the anti-causal filter b" into a causal filter b for easier comparison.
Ideally, filter a and filter b should be identical, because the zero-phase wavelet is
symmetric, with its minimum-phase part the same as its maximum-phase part, but
time-reversed. The results of our method perfectly satisfy the theory, which shows
the extreme similarity between filter a and filter . When we invert the filters, the
update direction is the same for both filters, because the searching gradients are equal.
However, using the method from Zhang and Claerbout (2010) yields a filter a that is
quite different from filter b, because they are inverted separately.

Figures 4, 5 and 6 show the zero-phase wavelet and its bidirectional deconvolution,
using our new algorithm and the method of Zhang and Claerbout (2010). The results
show that the wavelet is almost compressed into a spike by our method, but it is not
as spiky as the result of the previous method. One possible reason may be the nature
of the non-linear problem. There may be multiple minima in this problem, and due
to our additional condition that filter a and filter b should be the same in this case,
we find a different minimum, which leads to a different result.

Thus a good starting guess may help us to get a better result. Or perhaps the
preconditioning can also make the solution fast converge to the global minima by
utilizing prior information.

Figures 7 and 8 show the wavelet estimated by our method and the previous
method. We notice that both of the wavelets approximate the input zero-phase
wavelet, which is shown in Figure 4. However our estimated wavelet looks more
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Figure 3: For zero-phase wavelet inversion, (a) filter a estimated by our method; (b)
filter b estimated by our method; (c) filter a estimated by the previous method; (d)
filter b estimated by the previous method. [ER]
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Figure 4: Zero-phase wavelet.
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symmetric and cleaner with less side lopes than the one estimated by the previous
method. The reason is that our estimated filters are identical, which make the causal
part and anti-causal part of the inverted wavelet the same.
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2D synthetic data

After applying deconvolution on the simple 1D case, we test the Zhang and Claerbout
(2010) method and our new method on more complicated 2D synthetic data. Figure
9(a) shows the starting reflectivity model. Figure 9(b) shows the data generated by
convolving the reflectivity model with the zero-phase wavelet in the previous section.
All traces use the same wavelet when generating the data, and all traces share the
same wavelet when we are doing the deconvolution.

Figures 10(a) and 10(b) show the bidirectional deconvolution using our method
and the older method. Both methods retrieve the sparse reflectivity model and com-
press the wavelet into a spike, but the deconvolution model produced by the previous
method is more spiky than ours, just as in the previous section, because of the wavelet
we use.

We also compare the computational costs of these two methods. To deal with
this synthetic data, we use 2 linear iterations and 280 non-linear iterations to reach
convergence, whereas Zhang and Claerbout (2010) used 100 linear iterations and 20
non-linear iterations, a total of 2000 iterations. In fact, our code is almost 6 times
faster than the previous method.

2D field data

The field data we use in this example is a common-offest section of marine field
data. Figure 11 shows the input data. Figures 12(a) and 12(b) show the bidirectional
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Figure 9: (a) The 2D synthetic reflectivity model; (b) the synthetic data generated
using the zero-phase wavelet. [ER]
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Figure 10: Given the 2D synthetic data in Figure 9(b), (a) reflectivity model retrieved
using our method; (b) reflectivity model retrieved using the previous method. [ER]
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deconvolution using our method and the previous method. Both perform well to
retrieve the sparse reflectivity in this field data.
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Figure 11: Input Common Offset data. [ER]

The filters estimated by our method are shown in Figures 14(a), and 14(b), and
the filters estimated by the previous method are plotted in Figures 14(c) and 14(d).
Because the wavelet we aim to invert is not symmetric, filter a and filter b are not
equal. However, the strong events look like a double ghost (white, black,white), which
approximates a symmetric wavelet. Thus we would like our filters to resemble each
other. From the result, we notice that our filters satisfy these expectation.

Figures 13(a) and 13(b) show the estimated shot waveform. The data sampling is
4ms. We notice that both of our method estimate the bubbles and the double ghost.
However, our inverted waveform is more like a double ghost, which can be noticed
in the data. The reason is that our filters more resemble each other than the ones
estimated by the previous method.

Our method requires 2 linear iterations and 100 non-linear iterations, or only 200
iterations in total. Zhang and Claerbout (2010) used 100 iterations and 8 non-linear
iterations, or 800 iterations in total. Therefore, our method is four times faster, which
is a large reduction in computational cost.
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Figure 12: Given the common offset data in Figure 11, (a) reflectivity model retrieved
using our method; (b) reflectivity model retrieved using the previous method. [ER]
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Figure 13: For 2D synthetic data, (a) shot wavelet estimated by our method; (b) shot
wavelet estimated by the previous method. [ER]
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Figure 14: Given the common offset data in Figure 11, (a) filter a estimated by our
method; (b) filter b estimated by our method; (c) filter a estimated by the previous
method; (d) filter b estimated by the previous method. [ER]
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CONCLUSION

In this paper, we introduce an algorithm for bidirectional deconvolution that estimates
the two filters simultaneously. We test the new method on three data examples.
The results show that the wavelet can be compressed almost into a spike. When
we are dealing with the zero-phase wavelet, we obtain two identical filters, a major
improvement compared with the previous bidirectional method. Another important
advantage is the low computational cost and fast convergence rate due to the reduced
number of linear iterations. However, we are surprise to see that our results are not
as spiky as the ones produced by Zhang and Claerbout (2010). One possible reason
may be the nature of the non-linear problem. Perhaps we need a good initial guess
or preconditioning to achieve acceptable results.

FUTURE WORK

As mentioned previously, the nature of the nonlinear problem strongly affects our
results. Thus, a good initial guess is needed to obtain a better sparse reflectivity.
In most cases, data will resemble the Ricker wavelet, as is true for the band-limited
marine seismic data with ghosts and the for the land response of an accelerometer. For
this situation, we can use the Ricker wavelet to approximate the data and derive the
initial filter from this wavelet. Since the Ricker wavelet vanishes at zero frequency and
at the Nyquist frequency, it has no stable inverse. Therefore, we use the approximated
Ricker wavelet instead of the true one.

Another potential solution is to do the preconditioning, which utilizes prior infor-
mation. In this non-linear problem, we hope it can guide the gradient along sensible
pathways thus avoiding potential local minima.
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