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ABSTRACT

We pose the reflectivity-imaging problem as a linear inversion problem and solve
it in the image domain in a target-oriented fashion. The most computation-
ally intensive part of the image-domain inversion is the explicit computation of
the Hessian matrix. We show how we can overcome the cost issue by using
the phase-encoding technique in the 3-D conical-wave domain. We apply the
inversion-based imaging methodology to a 3-D field data set acquired from the
Gulf of Mexico (GOM), and we precondition the inversion with non-stationary
dip filters, which naturally incorporate interpreted geological information. Nu-
merical examples demonstrate that imaging by regularized inversion successfully
recovers the reflectivities from the effects of uneven illumination, yielding images
with more balanced amplitudes and higher spatial resolution.

INTRODUCTION

Successful geological interpretation requires accurate reflectivity images of the sub-
surface. Reflectivity images obtained by prestack depth migration, however, are often
distorted by uneven subsurface illumination. This is because the migration operator
is only the adjoint of the forward Born modeling operator (Lailly, 1983), which is
non-unitary due to the limited acquisition geometry, complex overburden and band-
limited wavefields. The distorted image, as exemplified by biased amplitudes and the
shadow zone effect, presents significant difficulties for accurate geological interpreta-
tion.

To correct the effects of uneven illumination, the reflectivity imaging problem can
be posed as a linear inverse problem, which, instead of using the adjoint operator, uses
the pseudo-inverse of the Born modeling operator to optimally reconstruct the reflec-
tivity. This inversion-based imaging method is also widely known as least-squares
migration (Nemeth et al., 1999; Kühl and Sacchi, 2003; Clapp, 2005; Valenciano,
2008).

Least-squares migration can be implemented in either the data domain or the
image domain. In this paper, we focus on the image-domain inversion scheme because
it can be implemented in a target-oriented fashion and hence is more suitable for large-
scale 3-D applications. The target-oriented image-domain formulation allows us to
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invert only areas of particular interest, enabling accurate imaging at the reservoir
level.

As shown by Valenciano (2008), image-domain least-squares migration contains
three main steps: (1) compute the migrated image for a chosen target area, (2) com-
pute the Hessian, the normal operator of the Born modeling operator, for the same
target area, and (3) deblur the migrated image using the Hessian with an iterative
solver. Among the three steps, the explicit computation of the Hessian is the most
computationally intensive part, because it requires either storing a huge number of
Green’s functions for reuse (Valenciano, 2008), or performing a large number of wave-
field propagations. (Each receiver-side Green’s function has to be recomputed for each
shot, if the Green’s functions are not stored) (Tang and Lee, 2010). Fortunately, the
computational cost can be drastically reduced by using the phase-encoding method,
which does not require storing any Green’s functions and significantly reduces the
required number of wavefield propagations (Tang, 2009). In this paper, we extend
phase-encoding theory to 3-D and show how the cost of Hessian can be drastically
reduced by using a simultaneous phase-encoding scheme in the 3-D conical-wave do-
main.

Regularization is a crucial component of solving an ill-posed inverse problem. One
important advantage of the image-domain inversion scheme is that solving the linear
inversion problem (step 3) is very fast, which involves only sparse-matrix and vector
multiplications. Therefore, different regularization parameters or schemes can be
tried at very low cost. The high efficiency of this method also makes interpretation-
driven interactive reflectivity imaging possible, where we can repeat the inversion
with regularizations that incorporate different geological scenarios and obtain the
results in almost real time. In this paper, we precondition the inversion problem with
non-stationary dip filters (Clapp, 2003; Hale, 2007; Claerbout, 2008), which impose
smoothness on the reflectivities along given dip directions. We show that the dip filter
naturally incorporates prior knowledge based on interpreter’s geological interpretation
into the inversion, and it helps the inversion converge to a geologically meaningful
result.

This paper is organized as follows: we first review the theory of image-domain
least-squares migration. Then we show how the phase-encoded Hessian can be effi-
ciently computed in the 3-D conical-wave domain. Following that, we discuss how
to precondition the inversion with dip filters. Finally, we apply the method to a
3-D field data set acquired from the Gulf of Mexico (GOM), where we invert subsalt
reflectivities in a target-oriented fashion.
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THEORY

Image-domain least-squares migration

Image-domain least-squares migration (Valenciano, 2008; Tang, 2009) optimizes the
reflectivity model by minimizing an objective function defined in the image domain
as follows:

J(m) =
1

2
||Hm−mmig||2 + εR(m), (1)

where m is the reflectivity model, and mmig is the migrated image

mmig = L∗dobs, (2)

where ∗ denotes taking the adjoint, dobs is the vector of observed primaries, and L is
the Born modeling operator, which models only singly scattered waves. In equation 1,
H = L∗L is the Hessian operator, which contains all necessary information, including
information of acquisition geometry, velocity model and frequency content of seismic
waves, for correcting the effects of distorted illumination. The second term R(m) in
equation 1 is a regularization term that incorporates user-defined model covariance
into the inversion, and ε determines the strength of the regularization. Objective
function J can be minimized with any iterative solver, such as the conjugate gradient
method. The most important components in minimizing J are the explicit calculation
of the Hessian operator H and the definition of the regularization term R(m). In
the subsequent subsections, we first demonstrate how to calculate the Hessian H effi-
ciently in 3-D. Then we discuss how to incorporate dip constraints into the inversion
and solve it as a preconditioning problem.

The 3-D phase-encoded Hessian

3-D conical-wave migration (Whitmore, 1995; Duquet et al., 2001; Zhang et al., 2005;
Liu et al., 2006) has been widely used to migrate marine streamer data sets. In this
section, we demonstrate how the Hessian can be efficiently computed in this domain
using simultaneous phase encoding, which encodes both source- and receiver-side
Green’s functions.

As derived in Appendix A, each component of the the 3-D conical-wave domain
Hessian reads

H(x,x′) =
∑
ω

|ω|5
∑
ys

∑
psx

∑
xr

G(x,xr, ω)G∗(x′,xr, ω)

∑
xs

W (xr, xs, ys)fs(ω)G(x, xs, ys, ω)eiωpsxxs

∑
x′

s

W (xr, x
′
s, ys)f

∗
s (ω)G∗(x′, x′

s, ys, ω)e−iωpsxx′
s , (3)
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where fs(ω) is the source signature at frequency ω; xs and ys are the source locations in
the inline and crossline directions, respectively; xr = (xr, yr, 0) is the receiver location;
psx is the horizontal component of the source ray parameter; W (xr, xs, ys) is the
acquisition mask operator, which contains ones where we record data, and zeros where
we do not; and G(x, xs, ys, ω) and G(x,xr, ω) are the Green’s functions connecting
the source and receiver positions to the image point x = (x, y, z), respectively.

The diagonal part of the Hessian (when x = x′), which contains autocorrelations
of both source and receiver-side Green’s functions, can be interpreted as a subsurface
illumination map with contributions from both sources and receivers. The rows of
the Hessian (for fixed x’s and varying x′), which contains crosscorrelations of both
source and receiver-side Green’s functions, can be interpreted as resolution functions
(Lecomte, 2008; Tang, 2009). They measure how much smearing an image can have
due to a given acquisition setup.

The exact Hessian defined by equation 3, however, is nontrivial and very expensive
to implement. It requires either storing a huge number of Green’s functions for reuse,
or performing a large number of wavefield propagations to repeatedly calculate the
Green’s functions, resulting in a computational cost proportional to NysNpsx

NxrNyr ,
with Nys , Npsx

, Nxr and Nyr being the number of crossline shots, inline conical waves,
inline receivers and crossline receivers, respectively.

In order to reduce the computational cost, we use the simultaneous phase-encoding
technique to efficiently calculate an approximate version of equation 3. The simul-
taneous phase-encoding, however, is only strictly valid when the acquisition mask
operator is independent along the encoding axes (Tang, 2009). For the 3-D conical-
wave-domain Hessian, the encoding axes are the inline source axis xs and the receiver
axis xr = (xr, yr), respectively. Ocean-bottom cable (OBC) and land acquisition ge-
ometries, where receivers are fixed for all sources, obviously satisfy this condition. But
marine-streamer acquisition geometry, where the receiver cable moves with sources,
apparently does not. To make the theory applicable to the marine-streamer data case,
we assume that the receiver location xr depends only on the crossline source position
ys, but is independent of the inline source position xs. This implicitly assumes that
for a fixed crossline ys, all inline shots share the same receiver array. Therefore, we
can express the acquisition mask operator as a product of two separate functions:

W (xr, xs, ys) ≈ Wr(xr, ys)Ws(xs, ys), (4)

where Wr and Ws define the distributions of receiver position xr and the inline source
position xs, respectively, for a given crossline source position ys.

Substituting equation 4 into equation 3 yields

H(x,x′) =
∑
ω

|ω|5
∑
ys

∑
psx

∑
xr

Wr(xr, ys)G(x,xr, ω)G∗(x′,xr, ω)

∑
xs

Ws(xs, ys)fs(ω)G(x, xs, ys, ω)eiωpsxxs

∑
x′

s

Ws(x
′
s, ys)f

∗
s (ω)G∗(x′, x′

s, ys, ω)e−iωpsxx′
s . (5)
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With further encoding on the receiver-side Green’s functions, we obtain the simulta-
neously phase-encoded Hessian as follows:

˜̃
H(x,x′,pr) =

∑
ω

|ω|5
∑
ys

∑
psx

×
∑
xr

Wr(xr, ys)G(x,xr, ω)α(xr,pr, ω)

×
∑
x′

r

Wr(x
′
r, ys)G

∗(x′,x′
r, ω)α(x′

r,pr, ω)

×
∑
xs

Ws(xs, ys)fs(ω)G(x, xs, ys, ω)eiωpsxxs

×
∑
x′

s

Ws(x
′
s, ys)f

∗
s (ω)G∗(x′, x′

s, ys, ω)e−iωpsxx′
s , (6)

where α is the receiver-side encoding function, to be specified later. Equation 6 can
be greatly simplified as follows:

˜̃
H(x,x′,pr) =

∑
ω

|ω|5
∑
ys

∑
psx

S(x, psx , ys, ω)S∗(x′, psx , ys, ω)

R(x, psx , ys,pr, ω)R∗(x′, psx , ys,pr, ω), (7)

if we define

S(x, psx , ys, ω) =
∑
xs

Ws(xs, ys)fs(ω)G(x, xs, ys, ω)eiωpsxxs , (8)

and

R(x, psx , ys,pr, ω) =
∑
xr

Wr(xr, ys)G(x,xr, ω)α(xr,pr, ω). (9)

For one-way wave-equation-based applications, S and R can be obtained by solving
the following one-way wave equations:{ (

∂
∂z
− i

√
ω2

v2(x)
+∇2

)
S(x, psx , ys, ω) = 0

S(x, y, z = 0, psx , ys, ω) =
∑

xs
Ws(xs, ys)δ(x− xs, y − ys)fs(ω)eiωpsxxs

. (10)

and{ (
∂
∂z
− i

√
ω2

v2(x)
+∇2

)
R(x, psx , ys,pr, ω) = 0

R(x, y, z = 0, psx , ys,pr, ω) =
∑

xr
Wr(xr, ys)δ(x− xr, y − yr)α(xr,pr, ω)

. (11)

In both equations 10 and 11, v(x) is the velocity at image point x, ∇2 = ∂2

∂x2 + ∂2

∂y2

is the Laplacian operator, and δ(·) is the Dirac delta function. Therefore, S is the
wavefield generated by propagating the conical-wave source

∑
xs

Ws(xs, ys)δ(x−xs, y−
ys)fs(ω)eiωpsxxs , whereas R is the wavefield generated by propagating the encoded-
area source

∑
xr

Wr(xr, ys)δ(x − xr, y − yr)α(xr,pr, ω). It is quite obvious that the
computational cost of equation 7 is independent of the number of receivers, as opposed
to equation 3, for which the cost is proportional to the number of receivers.
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However, the phase-encoded Hessian brings unwanted crosstalk. This becomes
clear by comparing equations 6 and 3. The crosstalk can be suppressed by carefully
choosing the phase-encoding function α (Tang, 2009). In this paper, we choose α
to be a random phase-encoding function; thus pr denotes the realization index of
the random phase-encoding function. It would be very easy to verify that, with this
choice of encoding functions, the expectation of the crosstalk becomes zero. Therefore,
equation 6 converges to equation 5 by stacking over pr, according to the law of large
numbers (Gray and Davisson, 2003):

˜̃
H(x,x′) =

∑
pr

˜̃
H(x,x′,pr) ≈ H(x,x′). (12)

For most practical applications where the number of shots is big, the randomly phase-
encoded Hessian with one realization seems to be sufficient (Tang, 2009).

Regularizations

Regularization helps to stabilize the inversion; it can shape the null space and remove
unwanted features in the inverted result by introducing user-defined model-covariance
operators. In this paper, we choose to use the following regularization term:

R(m) =
1

2
||D∗Dm||2, (13)

where operator D contains wavekill filters (Claerbout, 2008), which annihilate local
planar-events with given dips. The operator imposes continuity of reflectors along its
dipping direction. This idea has also been explored by Clapp (2005) and Ayeni et al.
(2009), who use similar filters (Clapp, 2003; Hale, 2007) to regularize the data-domain
least-squares migration.

Instead of solving the inversion problem as a regularization problem, we solve it
as a preconditioning problem by making change of variables as follows:

m = Sn, (14)

where n is the vector of preconditioned variables and S is the preconditioning op-
erator, which is defined to be an approximate inverse of the regularization operator
D∗D. To find the inverse of D∗D, we factorize it into minimum-phase filters A such
that D∗D ≈ A∗A. We use the Wilson-Burg factorization (Claerbout, 1992; Fomel
et al., 2003) and apply it on the helix (Claerbout, 1998, 2008). Since minimum-phase
filters have stable inverses, we can define the preconditioning operator as follows:

S = A−1 (A∗)−1 . (15)

Unlike D∗D, operator S contains dip filters, which smooth along given dip directions.
Substituting equations 13, 14 and 15 into 1 yields

Jp(n) =
1

2
||HSn−mmig||2 + ε||n||2. (16)
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Objective function 16 is often solved by setting ε = 0 and iterating until an acceptable
result is obtained (Claerbout, 2008). Solving it in this way implicitly assumes that
we are starting with a model that has all the user-defined covariance, and that the
more iterations we run, the more we honor the data. Once a solution vector nsol has
been found, the final model is obtained by computing msol = Snsol.

3-D FIELD-DATA EXAMPLES

We apply the target-oriented inversion method to a data set acquired from the
Gulf of Mexico (GOM). The data set was acquired using a narrow-azimuth towed-
streamer (NATS) acquisition system, and further rotated using azimuth moveout
(AMO) (Biondi et al., 1998) into zero azimuth. The minimum and maximum inline
offsets are 0.3 km and 8.2 km, respectively. The frequency content of the data set
ranges between 5 Hz and 35 Hz. The velocity model used for migration and Hessian
computation is shown in Figure 1, which is obtained using target-oriented wavefield
tomography (Tang and Biondi, 2011).

We compute the migrated image using the 3-D conincal-wave migration operator,
where we synthesize 101 conical waves for each crossline and migrate 12625 conical
waves in total. The minimum and maximum inline take-off angles at the surface for
the conical waves are −30◦ and 30◦, respectively. The maximum frequency used for
migration is 20 Hz. The image obtained for the target area is shown in Figure 2. Note
that the amplitudes of the sediment reflectors are biased; also notice the illumination
shadows below the salt due to the non-unitary characteristic of the Born modeling
operator.

The 3-D Hessian matrix

We compute the phase-encoded Hessian using equations 6, 10 and 11. Since the num-
ber of shots is big, we compute only one random realization of the phase-encoded Hes-
sian. The target region contains 784740 points, with 123 samples inline, 58 crossline
and 110 in depth. The number of elements computed per row for the Hessian is
5155 (11 in x, 15 in y and 31 in z). Therefore, the widths of the local filter for each
image point are 0.25 km, 0.35 km and 0.27 km in x, y and z directions, respectively.
The top panels in Figures 3 and 4 present the diagonal components of the Hessian
matrix at two different slices. Note that the values of the diagonal of the Hessian are
far from uniform, and the left-side values are much higher than those elsewhere in
the target region. This is because the salt body, which has relatively high velocities,
prevents most of the energy from penetrating itself. The unevenness of the diagonal
components also suggests that the Hessian matrix is highly nonstationary (each row
is substantially different than the others). This is further illustrated by the bottom
panels in Figures 3 and 4, which show the off-diagonal components of the Hessian
matrix at two different image points. For an image point that is well illuminated
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Figure 1: Target area selected (outlined by a box) for wavefield least-squares migra-
tion. [CR]

Figure 2: Migrated image for the selected target region. Note the illumination shad-
ows below the salt. [CR]
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(bottom panels in Figure 3), the off-diagonals have relatively wide spectrum cover-
age and are more focused around the diagonal. On the other hand, for an image
point that is poorly illuminated (bottom panels in Figure 4), the off-diagonals have
relatively narrow spectrum coverage and are more spread in the space domain.

To further appreciate the nonstationarities of the 3-D Hessian matrix, we apply
the Hessian to a reflectivity model containing a collection of point scatterers (Figure
5). The result can also be considered as the filter response of the Hessian (where each
row can be seen as a filter) to point scatterers. Note how the shape and strength of
the filters change across the space. Also note that the filter is more elongated in the
crossline direction than in the inline direction. This is a result of the single-azimuth
acquisition geometry. Figure 6 shows the Hessian filter response for four horizontal
reflectors. Note the imprint of shadow zones on the reflectors. The characteristics of
the shadow zones very closely match those in the migrated image (Figure 2), indicat-
ing that the computed Hessian matrix, albeit with some approximations, accurately
captures the effects of uneven subsurface illumination due to limited acquisition ge-
ometry, band-limited wave phenomena and complex overburden. In the subsequent
section, I demonstrate how the effects of uneven illumination can be optimally re-
moved by inverting the Hessian matrix through regularized linear inversion.

Inversion result

Since the goal is to invert sediment reflectivities, we incorporate a mask operator (Fig-
ure 7) into the inversion to prevent updating the reflectivities of the salt boundary.
We first run the inversion without applying any regularizations; the inverted image
after 100 iterations is shown in Figure 9. Compared to migration (Figure 8), inversion
significantly improves the spatial resolution of the image; the amplitudes are more
balanced, and the illumination shadows are filled in. However, the inverted image is
more noisy, and the continuity of the reflectors seems to be degraded. The increased
noise level reveals the ill-posedness of the inversion problem due to the narrow band-
width of the Hessian filter (bottom panels of Figures 3 and 4). Another reason might
be that the approximations used to compute the Green’s function (acoustic one-way
wave equation) and the migration do not fully match the way seismic waves propa-
gate through the earth. The inconsistency of the operator and the data may further
increase the ill-posedness of the inversion problem. Therefore, regularization becomes
necessary.

In order to regularize the inversion with a reasonably accurate model covariance,
we interpret the migrated image and manually pick several key reflectors (Figure 10).
We estimate dip fields based on the interpreted reflectors using the structure tensor
method (van Vliet and Verbeek, 1995; Hale, 2007). The estimated dips have been
smoothed with a triangle filter and are shown in Figure 11. The dip field is then
used to build a bank of dip filters for preconditioning. Figures 12, 13 and 14 show
impulse responses of the dip filters as smoothing strength increases. Note that the
stronger the smoothing effect, the longer the filter response. These dip filters also vary
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Figure 3: The Hessian matrix for the target region. The top panel shows the diagonal
components of the matrix; the bottom left panel shows the off-diagonals of the matrix
taken from the image point at inline 7.45 km, crossline 2.50 km and relative depth
0.30 km (the intersection of the crosshairs in the top panel); the bottom right panel
shows the amplitude spectrum of the off-diagonal components. [CR]
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Figure 4: The Hessian matrix for the target region. The top panel shows the diagonal
components of the matrix; the bottom left panel shows the off-diagonals of the matrix
taken from the image point at inline 8.65 km, crossline 1.60 km and relative depth
0.80 km (the intersection of the crosshairs in the top panel); the bottom right panel
shows the amplitude spectrum of the off-diagonal components. [CR]
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(a)

(b)

Figure 5: Hessian filter response for point scatterers. Panels (a) and (b) show different
slices of the same 3-D cube. Note the nonstationarity of the filters. [CR]
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(a)

(b)

Figure 6: Hessian filter response for horizontal reflectors. Panels (a) and (b) show
different slices of the same 3-D cube. Note the imprint of shadow zones on the
reflectors. [CR]
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Figure 7: A mask operator used during inversion. [CR]

spatially, and each dip filter smooths along a direction conformal to the corresponding
dip values.

Figure 15 presents the inverted image after 100 iterations when preconditioned by
the dip filter with weak smoothing (Figure 12). The result is significantly improved
over the one obtained without any regularizations (Figure 9). The reflectors are much
more coherent and they extend further into the shadow zone, filling in the illumination
gap almost completely. The regularized image is much easier to interpret geologically.

To see the effects of regularization (or preconditioning), we increase the smoothing
strength of the dip filters. Figure 16 shows the inversion result after 100 iterations
when we use dip filters with moderate smoothing (Figure 12) for preconditioning.
The result further enhances the coherence and continuity of the reflectors and the
inverted image looks even cleaner. However, the spatial resolution of the image seems
somewhat degraded by the smoothing effect of the preconditioner (This becomes clear
by comparing the depth slices of Figures 9, 15 and 16).

Figure 17 shows the inversion result when we further increase the smoothing
strength of the dip filters (Figure 14). In this extreme case, inversion is dominated
by preconditioning. The inverted image honors the user-supplied model-covariance,
but not necessarily the data. (The data fitting plays little role in this case.)

Figures 18 and 19 compare the residuals at the last iteration and the convergence
of objective functions for different methods. As expected, inversion without any
regularization, which fits the data most closely, has the smallest residual, whereas
inversion preconditioned with strong dip filters, which fits the data least closely, has
the biggest residual.
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(a)

(b)

Figure 8: The migrated image of the 3-D GOM data set. Panels (a) and (b) show
different slices of the same 3-D cube. The image has been masked using the mask
operator shown in Figure 7 to focus on comparing sediment reflectivities. [CR]
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(a)

(b)

Figure 9: The inverted image without applying any regularization. Panels (a) and
(b) show different slices of the same 3-D cube. [CR]
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Figure 10: Interpreted horizons from the migrated image. The horizons are then used
to build the dip field for dip filtering. [CR]

CONCLUSIONS

Solving wavefield least-squares migration in the image domain makes possible target-
oriented application of this method, allowing reflectivity inversion at the reservoir
level. The 3-D examples demonstrate that simultaneous phase-encoding in the conical-
wave domain drastically reduces the computational cost of the 3-D Hessian matrix.
The phase-encoded Hessian, albeit with some approximations, accurately quantifies
the illumination effects on the migrated image. Since inverting the Hessian is very
fast, different regularization parameters or schemes can be tried at very low cost. For
the 3-D example shown in this chapter, it takes only about 6 minutes to run 100
iterations using 34 CPUs (17 nodes with 2 cores on each). This is a very important
advantage over the conventional data-domain implementation, which requires full-
domain modeling and migration at each iteration. The high efficiency of this method
also makes interactive reflectivity imaging possible, where we can repeat the inver-
sion with regularizations that incorporate different geological scenarios and obtain
the results in almost real time. The 3-D reflectivity inversion results illustrate that
inversion preconditioned with dip filters successfully recovers the reflectivity from the
effects of uneven illumination, yielding more balanced amplitudes and higher spatial
resolution in the inverted image.
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(a)

(b)

Figure 11: The estimated dip field from the interpreted reflectors. Panels (a) and (b)
are the slopes in the inline and crossline directions, respectively. [CR]
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Figure 12: Impulse responses of the dip filters with weak smoothing. [CR]

Figure 13: Impulse responses of the dip filters with moderate smoothing. [CR]
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Figure 14: Impulse responses of the dip filters with strong smoothing. [CR]
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(a)

(b)

Figure 15: The inverted image when preconditioned using dip filters with weak
smoothing (Figure 12). [CR]
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(a)

(b)

Figure 16: The inverted image when preconditioned using dip filters with moderate
smoothing (Figure 13). [CR]
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(a)

(b)

Figure 17: The inverted image when preconditioned using dip filters with strong
smoothing (Figure 14). [CR]
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(a) (b)

(c) (d)

Figure 18: Residuals at the last iteration for different methods. Panel (a) is obtained
using inversion without regularization. Panels (b), (c) and (d) are obtained using
inversion preconditioned with weak, moderate and strong dip filtering, respectively.
All panels are clipped to the same value. [CR]
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Figure 19: Evolution of objective functions for different inversion methods. [CR]
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APPENDIX A

3-D CONICAL-WAVE DOMAIN HESSIAN

In general, a 3-D surface seismic data set can be represented by a 5-D object d(xr,xs, ω),
with xr = (xr, yr, zr = 0) and xs = (xs, ys, zs = 0) being the receiver and source posi-
tion, respectively, and ω being the angular frequency. Under the Born approximation
(Stolt and Benson, 1986), the data can be modeled by a linear operator as follows:

d(xr,xs, ω) =
∑
x

ω2fs(ω)G(x,xs, ω)G(x,xr, ω)m(x), (A-1)

where fs(ω) is the source function; G(x,xs, ω) and G(x,xr, ω) are the Green’s func-
tions connecting the source and receiver position to the image point x = (x, y, z),
respectively. We can transform data into the conical-wave domain by slant-stacking
along the inline source axis xs as follows:

d(xr, psx , ys, ω) =
∑
xs

W (xr, xs, ys)d(xr, xs, ys, ω)eiωpsxxs , (A-2)

where W (xr, xs, ys) is the acquisition mask operator, which contains ones where we
record data, and zeros where we do not; psx is the surface ray parameter in the inline
direction. The inverse transform is

W (xr, xs, ys)d(xr, xs, ys, ω) = |ω|
∑
psx

d(xr, psx , ys, ω)e−iωpsxxs , (A-3)

where |ω| on the right hand side of the equation is also known as the “rho” filter
(Claerbout, 1985).

To find a reflectivity model m that best fits the observed data for a given back-
ground velocity, we can minimize a data-misfit function that measures the differences
between the observed data and the synthesized data in a least-squares sense. In the
point-source case, the data-misfit function is

F (m) =
1

2

∑
ω

∑
xs

∑
xr

|W (xr,xs)[d(xr,xs, ω)− dobs(xr,xs, ω)]|2, (A-4)

where dobs is the observed data. Substituting equation A-3 into A-4 yields

F (m) =
1

2

∑
ω

∑
ys

∑
xr

∑
psx

∑
p′

sx

|ω|2

×[d(xr, psx , ys, ω)− dobs(xr, psx , ys, ω)]∗

×[d(xr, p
′
sx

, ys, ω)− dobs(xr, p
′
sx

, ys, ω)]
∑
xs

e−iω(p′
sx−psx )xs . (A-5)
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If the inline source axis xs is reasonably well sampled, we have
∑

xs
e−iω(p′

sx−psx )xs ≈
1
|ω|δ(p

′
sx
−psx), where δ(·) is the Dirac delta function. Therefore, an objective function

equivalent to equation A-4 in the 3-D conical-wave domain takes the following form:

F (m) ≈ 1

2

∑
ω

|ω|
∑
ys

∑
psx

∑
xr

|d(xr, psx , ys, ω)− dobs(xr, psx , ys, ω)|2. (A-6)

The Hessian operator in the 3-D conical-wave domain can be obtained by tak-
ing the second-order derivatives of F (m) (equation A-6) with respect to the model
parameters:

H(x,x′) =
∑
ω

|ω|5
∑
ys

∑
psx

∑
xr

(
∂d(xr, psx , ys, ω)

∂m(x)

)(
∂d(xr, psx , ys, ω)

∂m(x′)

)∗

. (A-7)

When x = x′, we obtain the diagonal components of the Hessian, which are also known
as the subsurface illumination; otherwise, we obtain the off-diagonal components of
the Hessian, which are also known as the resolution function for a given acquisition
setup.

With equations A-1 and A-2, we obtain the expression of the derivative of d with
respect to m as follows:

∂d(xr, psx , ys, ω)

∂m(x)
=

∑
xs

ω2W (xr, xs, ys)fs(ω)G(x, xs, ys, ω)

×G(x,xr, ω)eiωpsxxs . (A-8)

Substituting equation A-8 into equation A-7 yields the expression for each component
of the Hessian matrix in the 3-D conical-wave domain:

H(x,x′) =
∑
ω

|ω|5
∑
ys

∑
psx

∑
xr

G(x,xr, ω)G∗(x′,xr, ω)

∑
xs

W (xr, xs, ys)fs(ω)G(x, xs, ys, ω)eiωpsxxs

∑
x′

s

W (xr, x
′
s, ys)f

∗
s (ω)G∗(x′, x′

s, ys, ω)e−iωpsxx′
s . (A-9)
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