next up previous [pdf]

Next: About this document ... Up: Appendix-B Previous: Appendix-B

Details of $ \frac{\partial{\alpha}}{\partial{s}}$ sensitivity kernel calculation

This section provides the derivation of the direct $ \frac{\partial{\alpha}}{\partial{s}}$ operator. The approach is to define the auxilary function that links moveout parameter $ \alpha(z,x)$ and the slowness $ s$ .

$\displaystyle J_{aux} = \int dz_w \int d\gamma \, I(z+z_w+\theta(\alpha,\beta,\gamma),\gamma;z,x,s_0)I(z,\gamma;z,x,s) \;$   for each z,x$\displaystyle \; ,$ (11)

in which

$\displaystyle \theta(\alpha,\beta,\gamma) = \alpha \tan^2{\gamma} + \beta = \alpha g(\gamma) + \beta h(\gamma) .
$

Notice that here the moveout between the initial image $ I(s_0)$ and the new image $ I(s)$ is characterized by both curvature $ \alpha$ and constant shift $ \beta$ . The $ \beta$ parameter does not affect the gather flatness; therefore there is no need to put it into the objective function in ([*]) , however $ \beta$ is essential to describe the change of image's kinematics.

Since $ \alpha,\beta$ maximize eq (11),

$\displaystyle \{ \begin{array}{c} \frac{\partial{J_{aux}}}{\partial \alpha} = 0 \\ \\ \frac{\partial{J_{aux}}}{\partial \beta} = 0 \end{array} \, .$ (12)

We differentiate the equation (12) with respect to $ \alpha,\beta$ and $ s$ , which gives

$\displaystyle \left[ \begin{array}{cc} \frac{\partial^2{J_{aux}}}{\partial{\alp...
...\ \\ \frac{\partial{J_{aux}}}{\partial{\beta}\partial{s}} \end{array} \right] .$ (13)

Now we need to invert a Jacobian to get $ d\alpha/ds$ . We define the following:

$\displaystyle \frac{\partial^2{J_{aux}}}{\partial{\alpha}^2} =$ $\displaystyle \int dz_w \int d\gamma \, \ddot{I}(z+z_w+\theta,\gamma;z,x,s_0) g^2(\gamma) I(z+z_w,\gamma;z,x,s) =$ $\displaystyle E_{11}(z,x)$    
$\displaystyle \frac{\partial^2{J_{aux}}}{\partial{\alpha}\partial{\beta}} =$ $\displaystyle \int dz_w \int d\gamma \, \ddot{I}(z+z_w+\theta,\gamma;z,x,s_0) g(\gamma)h(\gamma) I(z+z_w,\gamma;z,x,s) =$ $\displaystyle E_{12}(z,x)$    
$\displaystyle \frac{\partial^2{J_{aux}}}{\partial{\beta^2}} =$ $\displaystyle \int dz_w \int d\gamma \, \ddot{I}(z+z_w+\theta,\gamma;z,x,s_0) h^2(\gamma) I(z+z_w,\gamma;z,x,s) =$ $\displaystyle E_{22}(z,x)$ (14)

Let the inverse of matrix $ E$ to be matrix $ F$ :

$\displaystyle F = \left[ \begin{array}{cc} F_{11} & F_{12} \\ F_{12} & F_{22} \...
...\begin{array}{cc} E_{11} & E_{12} \\ E_{12} & E_{22} \end{array} \right]^{-1}
$

Then

$\displaystyle \frac{\partial{\alpha}}{\partial{s}}\vert _{s=s_0} = -\int dz_w \...
...t{I}(z+z_w,\gamma;z,x,s_0) \frac{\partial{I(z+z_w,\gamma;z,x,s)}}{\partial{s}}.$ (15)

There is another way to define the relation between $ \alpha$ and $ s$ , leading to the indidirect $ \frac{\partial{\alpha}}{\partial{s}}$ operator using a weighted least-squares fitting formula. Suppose we have the locations of one event in the ADCIGs at location ( $ \gamma_{i},z_i)$ , and we introduce a moveout formula $ \theta(\gamma)={z_0}+\alpha \tan^2{\gamma}$ . Now we define the best fitted intercept and curvature ( $ z_0$    and $ \alpha$ ) values as follows:

$\displaystyle (z_0,\alpha) = \arg\min_{z_0,\alpha} \, \sum_{i}\{ (z_i - \alpha \tan^2{\gamma_{i}} - z_0)^2 w_i^2 \},$ (16)

where $ w_i$ is the energy of the event at angle $ \gamma_i$ , serving as a weight for the least-squares fitting. We denote $ \overline{x} = \sum_{i}x_{i} w^2_i$ (the weighted average of quantity $ x$ ), then

$\displaystyle \alpha = \frac{\overline{1}\,\overline{(z \tan^2{\gamma})} - \ove...
...z}} {\overline{1}\,\overline{\tan^4{\gamma}} - (\overline{\tan^2{\gamma}})^2}.
$

It is easy to find $ \Delta\alpha$ if there is a pertubation of $ b_i$ on $ z_i$ :

$\displaystyle \frac{\partial{\alpha}}{\partial{b_i}} = \frac{w_i^2(\overline{1}...
...)} {\overline{1}\,\overline{\tan^4{\gamma}}-(\overline{\tan^2{\gamma}})^2} \, .$ (17)

Finally,

$\displaystyle \frac{\partial{\alpha}}{\partial{s}} = \sum_{i}{\frac{\partial{\alpha}}{\partial{b_i}} \frac{\partial{b_i}}{\partial{s}}},$ (18)

where $ \frac{\partial{\alpha}}{\partial{b_i}},\frac{\partial{b_i}}{\partial{s}}$ are defined respectively in equations (17) and (10).

[width=14cm]/net/server/wrk/sep143/Filler/Fig/filler3.pdf


next up previous [pdf]

Next: About this document ... Up: Appendix-B Previous: Appendix-B

2011-05-24