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ABSTRACT

The blind-deconvolution problem for non-minimum-phase-source was established
in the time domain. This is a Fourier domain formulation. Changing variables
from A(Z)B(1/Z) to U(Z) = ln(A(Z)B(1/Z)) leads to a different kind of white-
ness — the output being orthogonal to its shifted soft clip.

INTRODUCTION

We three have been impressed by the excellent field data results of Zhang and Claer-
bout (2010), making us feel that proper blind deconvolution will give much more
reliable presentation of seismogram polarity, and hopefully impedance. Additionally
Fu et al. (2011) have estimated a field-data shot waveform of remarkable plausi-
bility. Exploring with programs similar to Zhang and Claerbout (2010), however,
we discovered a variety of unexpected irregularities that have sent us back to many
investigations with synthetic data. Indeed, we now have three quite independent ap-
proaches. We believe the heart of the problem lies in the fundamental non-linearity
of the basis of the formulation. We are not aware of any realistic linear formula-
tion of it. To allieviate the difficulties we have (1) come up with a much improved
starting solution in the form of Ricker wavelet inverses, (2) come up with a smooth
“simultaneous” descent method, and (3) come up with a log spectral formulation.
Unfortunately, we are not out of the woods yet. Hopefully, adding preconditioning to
our codes will guide us away from spurious solutions enabling us to make more firm
conclusions about the theory which would then allow us to plunge confidently into
many field data investigations.

THE LOG SPECTRAL APPROACH

A minimum phase wavelet can be made from any causal wavelet by taking it to
Fourier space, and exponentiating. The proof is straightforward: Let U(Z) = 1 +
u1Z + u2Z

2 + · · · be the Z transform (Z = eiω) of any causal function. Then eU(Z)

will be minimum phase. Although we would always do this calculation in the Fourier
domain, the easy proof is in the time domain. The power series for an exponential
eU = 1 + U + U2/2! + U3/3! + · · · has no powers of 1/Z, and it always converges
because of the powerful influence of the denominator factorials. Likewise e−U , the
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inverse of eU , always converges and is causal. Thus both the filter and its inverse are
causal. Q.E.D.

We seek to find two functions, one strictly causal the other strictly anticausal
(nothing at t = 0).

U+ = u1Z + u2Z
2 + · · · (1)

U− = u−1/Z + u−2/Z
2 + · · · (2)

Notice U , U2, etc do not contain Z0. Thus the coefficient of Z0 in eU = 1 + U +
U2/2! + · · · is unity. Thus a0 = b0 = 1.

eU+

= A = 1 + a1Z + a2Z
2 + · · · (3)

eU− = B = 1 + b1/Z + b2/Z
2 + · · · (4)

Define U = U− + U+. The decon filter is AB = eU and the source waveform is its
inverse e−U . With the Fourier transform of the data D(ω), the decon output is:

r = (rt) = FT−1 D(ω) eU(Z(ω)) (5)

where U is found with a penalty function, our choice being the hyperbolic penalty
function.

argmin(U) = hyp(r) =
∑

t

H(rt) (6)

where H(r) =
√

r2 + R2 −R, and R is the `1/`2 threshold parameter.

Take the gradient of the penalty function assuming there is only one variable, u3

giving a single regression equation:

0 ≈
∑

t

∂H

∂r

∂r

∂u3

=
∂r

∂u3

∂H

∂r
(7)

0 ≈
∑

t

(FT−1 D(ω)
∂

∂u3

eU(Z))t H ′(rt) (8)

0 ≈
∑

t

(FT−1 D(ω) Z3 eU(Z))t H ′(rt) (9)

so the deconvolution output selected at time t + 3 multiplies H ′(rt) (also known as
the “soft-clip” function).

Equation (9) requires us to do an inverse Fourier transform to find the gradient
for only u3. For u4 there is an analogous expression, but it is time shifted by Z4

instead of Z3. Clearly we need only do one Fourier transform and then shift it to get
the time function required for other filter lags. Thus the gradient for all nonzero lags
is:

0 ≈ ∆u = (∆uτ ) = (
∑

t

rt+τ H ′(rt)) (10)

∆U = FT(r) FT(softclip(r)) (11)
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where τ measures some filter lag. Actually, equation (11) is wrong as it stands.
Conceptually it should be brought into the time domain and have ∆u0 set to zero.
More simply, the mean can be removed in the Fourier domain.

Equation (10) says if we were doing least squares, the gradient would be simply
the autocorrelation of the residual. When the gradient at nonzero lags drops to zero,
the residual is white. Hooray! We long understood that limit. What is currently new
is that we now have a two-sided filter. Likewise the `1 limit must be where the output
is uncorrelated with the clipped output at all lags but zero lag.

(I’m finding it fascinating to look back on what we did all these years with the
causal filter A(Z) and comparing it to the non-causal exponential filter eU(Z). In
an `2 norm world for filter A(Z) we easily saw the shifted output was orthogonal
to the fitting function input. For filter eU(Z) we easily see now the shifted output is
orthogonal to the output. The whiteness of the output comes easily with eU(Z) but
with A(Z) the Claerbout (2011) contains a lengthy and tricky proof of whiteness.)

Let us figure out how a scaled gradient α∆u leads to a residual modification α∆r.
The expression eU is in the Fourier domain. We first view a simple two term example.

eα∆U = eα(∆u1Z+∆u2Z2) (12)

eα∆U = 1 + α(∆u1Z + ∆u2Z
2) + α2(· · · ) (13)

FT−1 eα∆U = (1, α∆u1, α∆u2) + α2(· · · ) (14)

With that background, ignoring α2, and knowing the gradient ∆u, let us work
out the forward operator to find ∆r. Let “∗” denote convolution.

r + α∆r = FT−1(DeU+α∆U) (15)

= FT−1(DeUeα∆U) (16)

= FT−1(DeU) ∗ FT−1(eα∆U) (17)

= r ∗ (1, α∆u) (18)

= r + αr ∗∆u (19)

In familiar `2 problems we would find α as α = −(r · dr)/(dr · dr), now we must find
it by

argmin(α) = H(r + αr ∗∆u) (20)

This we do by the Newton method which iteratively fits the hyperbola to a parabola.

iterate {
alpha = - (Sum_i H’(r_i) dr_i ) / ( Sum H’’(r_i) dr_i^2 )
r = r + alpha dr
}

In the pseudocode above, in the `2 limit H ′(r) = r and H ′′(r) = 1, so so the first
iteration gets the correct α, and changes the residual accordingly so all subsequent α
values are zero.
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We are not finished because we need to assure the constraint u0 = 0. In a linear
problem it would be sufficient to set ∆u0 = 0, but here we soon do a linearization
which breaks the constraint. In the frequency domain the constraint is

∑
ω U = 0.

We meet this constraint by inserting a constant β in equation (15) and chosing β
to get a zero sum over frequency of U + α∆U + β. Let

∑
denote a normalized

summation over frequency. By normalized, I mean
∑

β = β. We must choose β so
that 0 =

∑
U + α

∑
∆U + β. Clearly, β = −

∑
U − α

∑
∆U . Pick up again from

equation (15) including β.

argmin(α) = H( FT−1(DeU eα∆U eβ) ) (21)

= H( FT−1(DeU eα∆U e−
P

U e−α
P

∆U) ) (22)

= H( FT−1(DeU−
P

U eα(∆U−
P

∆U)) ) (23)

= H( FT−1(DeU−
P

U) ∗ FT−1(eα(∆U−
P

∆U)) ) (24)

Proceed now along the lines of equation (17) through (20), but with means removed
in Fourier space leading to slightly different vectors r̃ and ∆ũ

argmin(α) = H( r̃ + αr̃ ∗∆ũ ) (25)

which is solveable by the method of the same pseudocode above.

ALGORITHM

Here we fill in more details of the algorithm. After we are certain of its behavior we
would naturally switch over to conjugate directions.

D(omega,x) = FT d(t,x)
u=0;
iteration {

U = FT(u)
remove mean from U(omega)
exp(U(Z))
dU = 0
for all x

r(t,x) = IFT( D exp(U) )
softclip( r )
dU += conjg(FT(r)) * FT(softclip) # "*" means multiply

remove mean from dU(omega)
for all x

dR = FT(r) * dU # "*" means multiply
dr = IFT(dR)

argmin(alpha) = H(r+alpha*dr)
u = u + alpha du
}

CONCLUSIONS

It is too early to draw reliable conclusions about this theory. It arose a few weeks
before the progress report deadline, and got coded a few days before. The coding

SEP–143



Claerbout et al. 5 Log spectral bidecon

(steepest descent) illuminated a bug in the initial theory regarding the constraint. A
few test cases were successfully run, but we do not know how this method compares
to Shen et al. (2011) and Fu et al. (2011).

The problem formulation itself is nonlinear and thereby susceptible to many min-
ima, mostly bad ones. We don’t know whether preconditioning applies in the usual
way to this method. Perhaps some kind of tapering of ∆ut is a means of directing
the method towards a more appropriate optimum, but for now this is no more than
speculation.
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