next up previous [pdf]

Next: Bibliography Up: APPENDIX A Previous: Joint Inversion of Multiple

Regularized Joint inversion of Multiple Images (RJMI)

Because in the JMI formulation, the models are completely decoupled, they can be regularized by minimizing the norm

\begin{displaymath}\begin{array}{ccc} \left \vert\left\vert \left [ \begin{array...
...rray} \right ] \right \vert \right \vert \approx 0 \end{array},\end{displaymath} (A-32)

where $ {\bf R}_{i}$ is the spatial regularization operator and $ {\bf\epsilon}_{i}$ the spatial regularization parameter for survey $ i$ . To add any temporal regularization, we need to warp the inverted monitor images to the baseline and then apply temporal constraints or we can regularize the time-lapse image directly by minimizing the norm:

\begin{displaymath}\begin{array}{ccc} \left \vert\left\vert \left [ \begin{array...
...rray} \right ] \right \vert \right \vert \approx 0 \end{array},\end{displaymath} (A-33)

where $ \Lambda_{i}$ is the temporal regularization operator and $ \zeta_{i}$ is the regularization parameter. Therefore the full regularized inversion requires a minimization of the norm:

\begin{displaymath}\begin{array}{ccc} \left \vert\left\vert \left [ \begin{array...
...rray} \right ] \right \vert \right \vert \approx 0 \end{array},\end{displaymath} (A-34)

which leads to the image-space problem

\begin{displaymath}\begin{array}{c} \left [ \begin{array}{ccc} {\bf H }_{0} & {\...
...\\ \hline {\bf0} \\ {\bf0} \\ \end{array} \right ], \end{array}\end{displaymath} (A-35)


where $ {\bf R}_{ii}={\bf\epsilon}^{2}_{ i}{\bf R}_{ i}^{^T}{\bf R}_{ i}$ and $ {{\bf\Lambda}_{ij} = {\bf\zeta}_i {\bf\Lambda}_{ i}^{^T} {\bf\zeta}_j {\bf\Lambda}_j}$ are the spatial and temporal constraints, respectively.

If the monitor has been aligned to the baseline, then we can impose the spatial regularization by minimizing

\begin{displaymath}\begin{array}{ccc} \left \vert\left\vert \left [ \begin{array...
...rray} \right ] \right \vert \right \vert \approx 0 \end{array},\end{displaymath} (A-36)

and the temporal regularization by minimizing

\begin{displaymath}\begin{array}{ccc} \left \vert\left\vert \left [ \begin{array...
...rray} \right ] \right \vert \right \vert \approx 0 \end{array},\end{displaymath} (A-37)

where $ {\bf R}^{b}_{1}$ and $ {\bf\Lambda}^{b}_{1}$ are defined with respect to the baseline-aligned monitor image. If the time-lapse image at the baseline position, the regularized image-space inversion problem is given by

\begin{displaymath}\begin{array}{c} \left [ \begin{array}{ccc} {\bf H }_{0} & {\...
...\\ \hline {\bf0} \\ {\bf0} \\ \end{array} \right ], \end{array}\end{displaymath} (A-38)


where the superscript $ (^{b})$ denotes that the operators and images are referenced to the baseline position. Note that in the simplest case, where the temporal regularization is a difference operator equation A-33 becomes

\begin{displaymath}\begin{array}{ccc} \left \vert\left\vert \zeta \left [ \begin...
...rray} \right ] \right \vert \right \vert \approx 0 \end{array},\end{displaymath} (A-39)

and for the baseline-aligned images, the temporal constraint in equation A-37 becomes

\begin{displaymath}\begin{array}{ccc} \left \vert\left\vert \zeta \left [ \begin...
...rray} \right ] \right \vert \right \vert \approx 0 \end{array}.\end{displaymath} (A-40)


next up previous [pdf]

Next: Bibliography Up: APPENDIX A Previous: Joint Inversion of Multiple

2011-05-24