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ABSTRACT

Anisotropic model building is a challenging problem, well-known for its non-
linear and underdetermined nature. To reduce the null-space and stabilize the
inversion, we propose a new preconditioning scheme in linearized tomography to
include rock physics prior information. We introduce the rock physics informa-
tion in the form of covariance among P-wave vertical velocity (vg), € and 6, and
is generated by stochastic realizations of a compacting shale model. We design
a VSP synthetic survey with the common industry geometry on two different
examples, of which one fulfills the assumption of our rock physics model and the
other does not. The results show that by utilizing the proper rock physics prior
information, tomography can better resolve the anisotropy parameters, especially
in the area where inversion is poorly constrained by the data. However, precau-
tions should be taken when the lithology of the subsurface is largely unknown.
Finally, we perform a posterior uncertainty analysis to evaluate the contribution
of the rock physics prior information. The results show that the null-space is
greatly reduced by introducing the prior information.

INTRODUCTION

Anisotropic model building tries to resolve more than one parameter at each grid
point of the subsurface. This number could be 3 for a vertical transverse isotropic
(VTI) media, and increase to 5 for a tilted transverse isotropic (TTI) media. Tra-
ditional surface seismic tomography may be able to produce accurate isotropic earth
models efficiently for a large area when the acquisition is dense and the earth is
well-illuminated by rays at a wide range of angles. However surface seismic data in-
version becomes ill-posed and highly underdetermined due to the rapidly increasing
dimensionalities of the model space with the increasing complexity of the subsurface.

One big disadvantage of the surface seismic tomography is the lack of the depth
information. During tomography, not only is the low wavenumber earth model esti-
mated, but the depth of the reflectors is unknown as well. To add the depth dimension
into the inversion, several localized tomography experiments around the wells are an-
alyzed (Bakulin et al., 2010d,c). In these studies, joint inversion of surface seismic
data and borehole data (check-shots, walkaway VSPs) shows great potential to yield
better defined earth models. However, due to the ambiguity among the parameters,
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even the borehole aided localized tomography has difficulty in resolving a reliable,
unique anisotropic model in 3D (Bakulin et al., 2009).

To constrain the inversion further, we need to consider some prior knowledge of the
subsurface. This prior knowledge can be characterized by the covariance of the model
space and is independent of the data. There are many ways to obtain the covariance
information based on different assumptions. For example, we often smooth our earth
model horizontally and vertically, which implies a certain user-defined spatial correla-
tion lag. More realistically, we can use the geological information as a prior and shape
our estimate accordingly. This model shaping can be posed as a decomposition of
the earth model into different layers and horizons before tomography (Bakulin et al.,
2010a), or as a regularization /preconditioning operator during tomography (Bakulin
et al., 2010b). We can obtain the geological information either by interpreting and
picking the horizons or by building a set of steering filters (Clapp, 2000) according to
the current subsurface image.

In addition to the spatial covariance, for a multi-parameter estimation, a point-
by-point cross-parameter covariance is also needed to fully describe the subsurface.
One source of the cross-parameter covariance comes from rock physics study (Hornby
et al., 1995; Sayers, 2004, 2010; Bachrach, 2010b). In particular, Bachrach (2010a) de-
velops both deterministic and stochastic modeling schemes based on the rock physics
effective media models for compacting shale and sandy shale. Along with appropri-
ate laboratory core measurements, the parameters needed by the rock physics model
are limited in a certain range, which greatly reduces the correlation lag in the earth
model parameters. These rock physics modeling results can be used to construct
the initial earth model and the covariance relationships among the earth model pa-
rameters. When all of these four ingredients - surface seismic, borehole traveltime
measurements, geological information and rock physics priors - are available, we will
have a better chance to resolve anisotropic models that both flatten the gathers and
follow the geological and rock physics principles at the same time.

In this paper, we assume the spatial covariance and the local cross-parameter
covariance can be fully separated and focus on utilizing the rock physics modeling
results to constrain the anisotropic tomography. A VSP survey with a common
industry geometry is simulated on two different models, one with only shale (sandy
shale), and the other with one layer of pure sand (isotropic). We compare the inversion
results using the unconstrained tomography, current constrained tomography and the
rock physics constrained tomography. Finally, we perform a-posteriori uncertainty
analysis (Osypov et al., 2008) for the shale example to evaluate the contribution of
rock physics prior knowledge to the reduction of the null-space.

THEORY

Here, we define a VTT tomography in using event traveltime as data. To the first order,
when we assume the ray path does not change with perturbation in the background
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velocity model, the traveltime misfit is related to the velocity perturbation as follows:

1
At :/r — Avdl. (1)

aypath v

For weak anisotropy, the angle dependent velocity in VTI media can be described

by vertical velocity vy and the Thomson anisotropic parameters € and 0 as follows
(Tsvankin and Thomsen, 1994):

v(0) = vo(1 + 26 sin? f cos? 6 + 2esin 6), (2)

where 6 is the angle between propagation direction and the vertical direction. The an-

gles are defined by the raypath in equation 1. Consequently, the velocity perturbation

can be expressed as follows:

ov(6 ov (6 ov(6
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Av(0) = Ao e a6

AS. (3)

Now we can see explicitly that the traveltime misfit has three contributions from vy,
e and J, respectively:

1 0v(h) 1 0v(h) 1 0v(h)

In practice, we usually formulate the seismic tomography problem as an inversion
problem with another model space regularization term. Then the objective function
reads:

S(Am) = ||TAm — At||3, + ||mo + Am — mpior| |31 (5)

where D denotes the data space whose covariance is Cp and M denotes the model
space whose covariance is Cyg. In the data space fitting goal, operator T is a row
operator vector [T,, T, Ts|, each element corresponding to one of the three terms
in equation 4 respectively; Am is a column model vector [Avy Ae Ad]’; At is the
traveltime misfit. In the model space fitting goal, mq is the background (initial)
model [vg,, €0, 0o]’; Mprior 1S the mean of the prior distribution in the model space
[Vop, €, 0p)'. We evaluate both fitting goals in L2 using an LSQR solver.

We can also obtain the normal equation representation of the objective function
by taking the derivative of equation 5 with respect to Am:

Ccg'/*T
—-1/2
A Cyp’

Cg' At

Am =
)\ Ci/[l/z(mprior - m0)7

(6)

where ) is the balancing factor between the data fitting equation and the model fitting
equation. For the synthetic study here, we may assume Cp = I, since there is no
noise in these data.
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To speed up the convergence, we turn this regularized problem into a precondi-
tioned problem by doing a variable substitution:

TCy?
B

= _ ) 7
>\ CMI/Z(mprior - m()) ( )

Now LSQR inverts the preconditioning variable Am/, and the real model updates are
obtained by Am = Cll\fAm’ after inversion.

For a multi-parameter model inversion, we assume the model covariance can be
fully decoupled into two different parts: spatial covariance for each parameter, and
the local cross-parameter covariance. Mathematically, that translates into:

Sy 0 0 Ovv  Ove Ous
Cllv/l2 = So = 0 Se 0 Ocv Oee Oe5 |, (8)
0 0 S5 Osv O8c 046

where S is a spatial smoothing matrix, and o is the square-root of the point-by-point
cross-parameter covariance matrix. Each element of S can be estimated according to
the user’s assumption for the smoothness of different parameters. For example, the
steering filters (Fomel, 1994; Clapp et al., 2004) provide a good choice to incorporate
the structural information of the subsurface. The local cross-parameter covariance
can be estimated from the rock physics modeling (Bachrach, 2010a).

The left panel on Figure 1 shows an example of the stochastic realizations of a
rock physics model for shale and sandy shale. The dots are scattered vy, € and 0
results of hundreds of realizations, while the nine ellipsoids are fitted locally with
vo the controlling variable to describe the multi-Gaussian relationship among the
parameters. With a statistical study of the laboratory measurements on the cores,
the range of the required input parameters for the rock physics model has been
limited to a relatively narrow range, which leads to tight ellipsoids in Figure 1. We
refer interested readers to details in Bachrach (2010a).

In this paper, we build the cross-parameter covariance matrix for each grid point in
the subsurface according to the velocity, and linearly interpolate between the ellipsoids
to which the velocity value belongs. Notice that additional non-linearity has been
introduced during this process. Better methods to utilize the stochastic realizations
could fit ellipsoids centered at every velocity value, which can be more precise but
outside the scope of this study.

NUMERICAL TESTS

We design a walkaway VSP survey on a 2D study area shown in Figure 2. There are
51 sources distributed evenly along a 5 km line on the surface with 2.5 km maximum
offset, and 10 receivers fixed every 1 km down the borehole. This acquisition geometry
is designed to be similar to the industry standard VSP surveys, which have good
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Figure 1: Left: Stochastic realizations of a rock physics modeling for shale and sandy
shale. The ellipsoids are fitted locally to describe the multi-Gaussian relationship
among the parameters. Right: Small dots in the background are the estimated prior
distribution by the operator using the ellipsoids on the left. Larger dots are the
null-space projection of the operator. [NR]
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Figure 2: Walkaway VSP acquisi-
tion geometry. [NR]
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constraints for vertical velocity and §, but fewer constraints for € in the deeper part
due to the limited propagation angles.

Two 1.5D models are evaluated using this method. One is a shale (sandy shale)
model which completely follows the covariance matrix we generated from the rock
physics modeling; the other is the same except for a layer of isotropic sand where the
prior information is “wrong”.

Now we are ready to test our method using different prior information. For dif-
ferent tests, we apply the same smoothing operator S, but different estimates of
point-by-point cross-parameter covariance o. In the notations below, “no prior”
means o = I; “column weighting” means ¢ has only diagonal elements which are
constant for every grid point in the subsurface; “diagonal covariance” means ¢ has
only diagonal elements which vary according to the rock physics modeling results;
“full covariance” means ¢ has all nine elements which vary according to the rock
physics prior for each grid point in the subsurface.
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Figure 3: Inversion results of the shale (sandy shale) model. Panels on the left
show the velocity perturbation, in the middle e perturbation, and on the right ¢
perturbation. The top row shows the inversion results without rock physics prior
knowledge: Solid line: No prior; Dashed dot line: Column weighting; Dashed line:
True model. The bottom row shows the inversion results with some rock physics
knowledge: Solid line: Diagonal covariance; Dashed dot line: Full covariance; Dashed

line: True model. [NR]
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Figure 3 shows the inversion results of the shale (sandy shale) model. It is obvious
that vertical velocity is the best constrained variable, therefore, all inversion schemes
yield good estimations for vertical velocity. However, instability is seen in the results
of € and 0 when no prior information is included. The oscillations in € and ¢ are out-
of-phase, which is the numerical proof for the theoretical predicted trade-off between
these two parameters. Inversion with column weighting yields more stable results for
0 and the shallow part of €. For the deeper part and also less constrained part of e,
column weighting gives a less satisfactory result. When rock physics prior knowledge
is introduced, the inversion is further stabilized. Both the diagonal and the full
covariance give good estimations for velocity and §, while superior result for € is
obtained by full covariance since correct prior knowledge adds information to the
inversion. The fact that a much closer estimation for ¢ was produced using full
covariance rather than the diagonal one suggests that large cross-terms exist in the

covariance matrix.

Vertical velocity Epsilon Delta

140 0.1
120 P =~
4 0.05 m 1
@ { I \
£ 100 f c ¥ \
~ ] 4 )
= / 2 T oA 1
S f{ Q [a)
© 80 w 1 1
o I/ J
= ] \ \‘\ !
60 +—— No prior \ -0.05 1
i it ~
J Column weighting K‘
ey~ ~ ~ True
40 -0.1
500 1000 500 1000 500 1000
Depth(m) Depth(m) Depth(m)
Vertical velocity Epsilon Delta
140 0.05 0.1
PaN I— e //\‘
-1
120 vl [ L —
f/"f N P 0.05 -f “\\ ]
= 1 \ 1 1 1
£ 100 b . -0.05 U + ] -
= ] \ o g 1 £ - \ ]
= \ ‘@ \ © 0 N
Q I 1 Q 1 o
S 80 \ { W o-o1 \ f
© I v I
> " \ 1 \ 1
i \ \ ~0.05 NN/
60 ! Diag. Covan'+| ~0415 u - \Y!
;‘ Full Covan. '
e = = = True
40 0.2 -0.1
0 500 1000 0 500 1000 0 500 1000
Depth(m) Depth(m) Depth(m)

Figure 4: Inversion results of the shale model with an isotropic sand layer. Panels
are arranged in the same order as Figure 3. [NR]

Figure 4 shows the inversion results of the shale (sandy shale) model with an
isotropic layer in the middle. Similar stability conclusions can be drawn as for the
shale (sandy shale) case. Notice that for the well-constrained variable §, inversion is
able to resolve the isotropic layer even though “wrong” prior information is provided.
However, the inversion result is highly biased towards the prior information for e
where it is not so well constrained.
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POSTERIOR UNCERTAINTY ANALYSIS

For a regularized problem, an L-curve analysis is often useful to determine the damp-
ing parameter \ in equation 7 and investigate the posterior distribution of the in-
version (Hansen and O’Leary, 1993). Typical L-curve has two distinct parts: one
vertical part where the solution is dominated by the data fitting and one horizontal
part where the solution is dominated by the model styling. The corner of the L-curve
corresponds to a good balance between minimization of both fitting goals. In Figure
5, we obtain the L-curve for each inversion scheme for the shale (sandy shale) model
in log-log scale by varying A from le — 11 to 0.1. The model residual is defined in
the preconditioning space. Therefore, the shape of the L-curve also depends on the
covariance matrix. A good estimation of the covariance and a proper A\ will place
the solution right at the corner of the L-curve, as in the case of using the full covari-
ance. The ”7-curve” shape in the log-log scale (which is still an ”L-curve” in absolute
scale) shows a relatively poor estimation of the covariance matrix, hence indicating
difficulties in finding a proper damping parameter \.

Finally, to move beyond the deterministic inversion which produces only one solu-
tion, we perform the null-space analysis following the work flow proposed by Osypov
et al. (2008). The effective null-space of an operator can be sampled by an iterative
Lanczos eigen-decomposition method. The right panel on Figure 1 shows the null-
space projection (darker dots) overlaid on the approximate prior distribution (smaller
dots) when the full covariance scheme is used. It is obvious that the full covariance
matrix representation produces a good estimation to the true prior (by the similarity
of the cloud shape on the left panel and the right panel). Also, the null-space projec-
tion suggests that higher uncertainty in anisotropic parameters for higher velocities,
which often means greater depth, is embedded in rock physics knowledge. The re-
duced volume of the cloud shows the value of information that the data bring into
the inversion.

CONCLUSIONS

In this paper, we have proposed a new formulation to incorporate rock physics prior
information with the anisotropic tomography. Two models were analyzed using this
method, and the inversion results demonstrate the trade-off among the parameters
and the instability due to the huge null-space when no prior information is included.
Any estimation of the local cross-parameter distribution (column weighting, diagonal
covariance and full covariance) is helpful to stabilize the inversion and leads to a
better representation of the subsurface. However, we should be careful in using too
tight of a prior distribution when the lithology is uncertain, especially for areas where
parameters are not well-constrained by the data. The posterior distribution analysis
shows that by adding the rock physics prior information, we will obtain a better
estimation of the true prior statistics in the inversion and a smaller uncertainty in
the posterior statistics.
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Figure 5: L-curve for the shale (sandy shale) model inversion. [NR]

The experiment of rock physics constrained tomography suggests to us a new
workflow in anisotropic model building.

e First, Build an initial model using the deterministic rock physics modeling and
obtain the initial image.

e Second, Build the point-by-point cross-parameter covariance according to the
stochastic rock physics modeling. Build the spatial covariance using geology
information and/or the initial image.

e Third, run the rock physics constrained joint tomography with surface seismic
data and borehole data.

Repeat the workflow if necessary. Up to now, it is possible to use all the information:
surface reflection seismic, borehole data, geological estimation and the rock physics
covariance in the tomography to produce a unique earth model that explains the
seismic data and satisfies the geological and rock physics theory at the same time.
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