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ABSTRACT

Anisotropic models are recognized as more realistic representations of the sub-
surface in complex geological environments. These models are widely needed by
many kinds of migration and interpretation schemes. However, anisotropic model
building is still a challenging problem in the industry. In this paper, we propose
an approach to building anisotropic models from surface seismic data based on
the theory of Wave-Equation Migration Velocity Analysis (WEMVA). Because
of the ambiguity between depth and Thomsen parameter J, we parametrize our
model space using only NMO velocity (V) and the anellipticity parameter
n. We tested the anisotropic WEMVA on a shallow part of the Hess synthetic
VTI model. The results show that anisotropic WEMVA is effective in resolving
some of the anisotropic perturbation. However, a unique solution to the inversion
requires additional constraining information.

INTRODUCTION

Since first reported in exploration seismology in the 1930s (McCollum and Snell,
1932), anisotropy has become increasingly important in seismic imaging and explo-
ration. Until now, the transverse isotropic (TT) model has been the most commonly
used model in seismic imaging. Postma (1955), Helbig (1956) and Backus (1962)
have shown that a sequence of isotropic layers on a scale much smaller than the wave-
length leads to an anisotropic medium. If the layers are horizontal, the medium is
defined as a vertical TT (VTI) medium. A VTI medium is commonly formed because
of thin bedding during deposition. If the layers become dipping due to deformation,
a tilted TI (TTI) medium is formed. Many authors (Shan, 2009; Fletcher et al.,
2009; Zhang and Zhang, 2009; Fei and Liner, 2008) have developed migration and
processing schemes for VI'T and TTI media; however, the challenge of estimating the
anisotropy model remains a bottleneck for the exploration workflow.

The existing anisotropic model-building schemes are mostly based on measuring
the non-hyperbolic moveout along the traveltime curve to flatten the common image
gathers (CIG) (Zhou et al., 2003, 2004; Yuan et al., 2006; Cai et al., 2009; Woodward
et al., 2008). However, traveltime ray-based methods are prone to errors and unre-
alistic results when multi-pathing exists in areas of complex overburden. Hence, we
propose to apply wave-equation tomography for anisotropic model building.
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Wave-equation tomography has been widely studied in isotropic velocity building
and can be implemented either in the data space, commonly known as Full-Waveform
Inversion (FWI) (Tarantola, 1984; Woodward, 1992) or in the image space, commonly
known as Wave-Equation Migration Velocity Analysis (WEMVA) (Sava and Biondi,
2004a,b; Shen, 2004; Shen and Symes, 2008; Guerra et al., 2009). Several advantages
drive us to use the image-space wave-equation tomography instead of data-space
wave-equation tomography: first, WEMVA does not require as accurate an initial
model to avoid the cycle-skipping problem as FWI requires. In fact, many studies
(Guerra et al., 2009; Guerra and Biondi, 2010; Tang and Biondi, 2010) show that the
resolution gap between ray-based tomography and FWI could be linked by the image-
space WEMVA method; second, the objective function is directly related to the final
image; third, the migrated image is often much cleaner than the recorded wavefields.
Therefore, we choose to extend image-space WEMVA from isotropic velocity building
to anisotropic model building.

In this paper, we first generalize the methodology of image-space WEMVA from
an isotropic medium to an anisotropic medium and explain our parameterization.
We show that the gradient of the tomographic objective functional for an isotropic
medium can be modified to describe an anisotropic medium by simply adding a term
for the additional parameter. Finally, we test our inversion scheme on a shallow part
of the Hess anisotropic synthetic dataset.

MIGRATION VELOCITY ANALYSIS FOR
ANISOTROPIC PARAMETERS

Anisotropic MVA is a non-linear inversion process that aims to find the background
anisotropic model that minimizes the residual image AI. The residual image is derived
from the background image I, which is computed with the current background model.
To form the image, both the source and receiver wavefields are downward continued
using the one-way wave equations. Assuming that the shear velocity is much smaller
than the P-wave velocity, one way of formulating up-going and down-going one-way
acoustic wave equations for VTT is shown as follows (Shan, 2009):

(% T z'A) P =0, (1)

where P = P(z,y, z,w) is the wavefield in the space-frequency domain and A describes
the dispersion relationship in terms of P-wave vertical slowness s, and Thomsen
parameters € and § (Thomsen, 1986):

w2s3 — (1 + 2¢)k|?
A= 0 2
”SO\/wzsg “ (e — o)k’ 2)

where k = (k,, k) is the spatial wavenumber vector.
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Many authors (Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995)
have shown that P-wave traveltime can be characterized by the NMO slowness, s,,,
and the anellipticity parameter 1. Therefore, the one-way wave-equation in terms of
Sn, n and 0 is:

R

where

N = wsyf1- 5L @
w?s?2 — 2n|k|?

Notice that in the dispersion relationship in Equation 3, § and the derivative in depth
%, are coupled with each other. This is a theoretical proof of the well-accepted
observation that § cannot be determined by the surface seismic data. To constrain
this parameter, we need well information (e.g. checkshots) to add the depth dimension

into the inversion. Now, if we apply the change of variables
dz =1+ 20dz (5)

and neglect the derivatives of §, Equation 3 becomes

(% ¥ z’A’) P =0. (6)

We can therefore formulate the image-space migration velocity analysis problem with
NMO slowness s,, and anisotropic parameters n and 9, but we invert only for s, and
7 assuming 0 model is known from other source of information.

Notice that when n = 0, the dispersion relationship ( equation 4) is the same as
the isotropic dispersion relationship, and the corresponding one-way wave equation (
equation 6) is almost the same as for the isotropic case, except for a depth stretch
caused by 0. In other words, an elliptic anisotropic wavefield inversion is almost
equivalent to an isotropic wavefield inversion. Plessix and Rynja (2010) reached the
same conclusions for full-waveform inversion (FWI). Figure 1 compares the original
NMO velocity to the stretched NMO velocity. Notice that the geological features are
stretched downward for positive 9. Because we ignore ¢ in the inversion, we expect
the inverted NMO velocity to have more similarity to the stretched NMO velocity
than to the original one.

In general, the residual image is defined as (Biondi, 2008)
AL =1-F(I), (7)

where F is a focusing operator. In the least-square sense, the tomographic objective
function can be written as follows:

1 1
7 = SIIAT]l, = ST FO|P. )
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Figure 1: (a) Original NMO velocity for the anisotropic Hess model; (b) Stretched
NMO velocity according to 6. The overlaid box denotes the part of model that we
work on in the numerical test. [CR]
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To perform MVA for anisotropic parameters, we first need to extend the tomo-
graphic operator from the isotropic medium (Shen, 2004; Sava, 2004; Guerra et al.,
2009) to the anisotropic medium. We define the wave-equation tomographic operator
T for anisotropic models as follows:

ol
R -
ol ol
= — — 9
O8n |g _g on = )

where m is the anisotropy model, which in this case includes NMO slowness s, and
anellipticity parameter 7; m is the background anisotropy model, consisting of the
background NMO slowness s, and background anellipticity 7; and I is the image.
This wave equation tomographic operator T is a linear operator that relates the
model perturbation Am to the image perturbation AI as follows:

AI = TAm. (10)

In the shot-profile domain, both source and receiver wavefields are downward contin-
ued using the one-way wave equation (6):

(£ +iN) D(x,x,) =0
{ Da(x,y,z =0,%,) = fod(x — x;) (11)

and

{ (£ +iN)U(x,%x,) =0 (12)

U<x7y7 = 07 XS) = Q(.’IZ,:{/,Z = O? XS) ’

where D(x, X;) is the source wavefield at the image point x = (z, y, z) with the source
located at x5 = (x5, ys, 0); U(X, Xs) is the receiver wavefield at the image point x with
the source located at xs; f is the source signature, and f;0(x —x;) defines the point-
source function at xg, which serves as the boundary condition of equation 11; and
Q(z,y,z = 0,x5) is the recorded shot gather for the shot located at x,, which serves
as the boundary condition of equation 12.

The dispersion relationship in equation (4) can be approximated with a rational
function by Taylor series and Padé expansion analysis (Shan, 2009):

alk|?
AN = WSy, (1 — m) s (13)

where, to the second order of the expansion, a = 0.5,b = 0.25 + 2. Equation (13)
using binomial expansion can be further expanded to polynomials:

a
242
w?s?

kP — -2t (14)

/
N =ws, —

44
wisy

Now it is straightforward to take the derivative of A’ with respect to s, and 7.
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The background image is computed by applying the cross-correlation imaging
condition:

I(x,h) =) > D(x—h,x,)U(x+h,x,), (15)

where the overline stands for complex conjugate, and h = (hy, hy, h,) is the subsurface
half-offset. Perturbing the wavefields in equation (15) and ignoring the higher-order
term, we can get the perturbed image as follows:

Al(x,h) = ZZ(AD(x—h,xs)ﬁ(erh,xs)wL

D(x —h, XS)AU(X+h,x8)>, (16)

where ﬁ(x— h, x,) and U (x+h, x;) are the background source and receiver wavefields
computed with the background model m(x); and AD(x — h,x,) and AU(x + h, xy)
are the perturbed source wavefield and perturbed receiver wavefield, which are the
results of the model perturbation Am(x).

To evaluate the adjoint tomographic operator T*, which maps from the image
perturbation to the model perturbation, we first compute the wavefield perturbation
from the image perturbation using the adjoint imaging condition:

AD(x,x,) = > AI(x,h)U(x+h,x,)
AU(x,x,) = Y AI(x,h)D(x—h,x,). (17)
h

The perturbed source and receiver wavefields satisfy the following one-way wave equa-
tions, linearized with respect to NMO slowness and 7:

K SA _ _~8_A’A *
(az —|—ZA) AD(x,x;) ( ZamD(X7Xs)) Am*(x) ’ (18)
AD(z,y,z=0,%x5) =0
and
9 S o _va_A’A *
(3 + i) AU x.) = (<ig0(xx,) ) Am(x) (19)
AU(z,y,2=0,%x5) =0

where m is the row vector [s, 7].

During the inversion, the model perturbation is unknown, and in fact must be
estimated. Therefore, we obtain the image perturbation by applying a focusing op-
erator (equation 7) to the current background image. Then the perturbed image is
convolved with the background wavefields to get the perturbed wavefields (equation
17). The scattered wavefields are obtained by applying the adjoint of the one-way
wave-equations (18) and (19). Finally, the model-space gradient is obtained by cross-
correlating the upward propagated scattered wavefields with the modified background
wavefields [the terms in the parentheses on the right-hand sides of equations (18) and

(19)].
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OBJECTIVE FUNCTION

As mentioned in the previous section, we estimate the optimum earth model by min-
imizing a user-defined image perturbation. There are many ways to define the objec-
tive function. Here we use the Differential Semblance Optimization (DSO) method
(Symes and Carazzone, 1991; Shen, 2004) as the criterion:

F(I) = (1-0O)I, (20)

where 1 is the identity operator and O is the differential operator along the angle axes
in the ADCIGs I. In the subsurface-offset domain, the objective function (Equation
8) reads:

1
J = §||hI(X7 h)||27 (21)

where h is the absolute value of subsurface-offset, and I(x,h) is the image gather in
the subsurface-offset domain. This operator is preferred by many researchers since
it is a fully automated procedure, with no picking required. However, for isotropic
migration velocity analysis, many authors (Vyas and Tang, 2010; Fei and Williamson,
2010) observe undesired artifacts generated by the DSO operator and suggest that a
differential operator along h can help compensate for the phase shift caused by the
velocity perturbation. Therefore, we use the modified DSO operator as follows:

1
J = S|IADI(x )]l (22

where D is a differential operator in h. Taking the derivative in the subsurface
offset domain is equivalent to an o weighting in the angle domain. Therefore, the
objective function (Equation 22) also emphasizes the contribution of the large angle
information, which is crucial for velocity analysis.

To guarantee a smooth inversion, we choose a B-spline representation of the model
space. The smoothed gradient in the original space is then represented as:

g = BBg, (23)

where g and g are the original and the smoothed gradient on the original model
grid; B is the B-spline projection operator. Then the number and spacing of the B-
spline nodes control the smoothness of the model update. Practically, we can choose
different B-spline parameters for velocity and 7.

NUMERICAL TEST

We test our inversion scheme on the shallow part of the Hess synthetic anisotropic
model, as denoted by the gray square in Figure 1. The initial model is a 1D gradient
isotropic model from the seabed. Figure 2 compares the inversion results with the
true models. The ratio of intial velocity and inverted velocity over the true stretched
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NMO velocity are shown in Figure 2(a) and 2(b), respectively. The error in the
initial NMO velocity is up to 25%, which is far beyond the tolerance of FWI. The
anisotropic WEMVA successfully reduces the error in velocity down to less than 5%.
Notice that the error in velocity generally follows the dip in the image. This suggests
that we should use better smoothing operators such as dip (steering) filters (Hale,
2007; Clapp, 2000) to regularize the inversion.

On the other hand, the n update [Figure 2(d)] is in general larger than the true
n model [Figure 2(c)]. A trade-off is observed below 1,600 m, where the inverted
velocity is smaller but 7 is much larger than the true values. This result illustrates
the null space of our inversion problem, since the reflector around 2,200 m is well-
focused (although not perfectly focused) in the final image obtained with the inverted
model [Figure 3(b)]. This problem can presumably be resolved by increasing the angle
coverage at depth and allowing more iterations in the inversion.

Figure 3 compares the subsurface-offset images using the initial model (a), the
updated model (b), and the true model (c). After the inversion, the reflectors are
focused at zero subsurface-offset, and the depths of the reflectors are closer to the true
depths. The focused image shows that we are dealing with a non-linear problem with
a large null space. To reduce the size of the null space, and hence the uncertainty
in the inverted model, other information such as checkshots or rock-physics prior
knowledge is needed (Li et al., 2011a,b).

CONCLUSION AND DISCUSSION

We have presented a new methodology for performing image-domain migration veloc-
ity analysis in anisotropic media. Our method is a natural extension of isotropic MVA
theory and retains the same properties as isotropic MVA. We demostrate our method
on a 2-D synthetic data set. After inversion, we obtain better-focused subsurface-
offset images and better-defined depths. By including the geological information and
the wider-offset data, we should be able to eliminate the model error at depth.

Experience shows that the DSO operator has a layer-stripping effect during the
iterations. One cause of this effect is the unbalanced amplitude for the reflectors in
depth. Therefore, an illumination-corrected image is preferred to compensate for this
effect. On the other hand, a residual-moveout-based objective function (Sava, 2004;
Sava and Biondi, 2004a,b; Almomin, 2011; Zhang and Biondi, 2011) could avoid the
problem.

Compared with ray-based image-space model-building methods, our wavefield-
based image-space method is computationally more intensive. However, the wavefield
method better approximates wave propagation in complex areas. We can also utilize
the phase-encoded target-oriented image-space wavefield tomography (Guerra et al.,
2009; Guerra and Biondi, 2010) technique to reduce the computational cost.

Finally, by introducing another parameter n into the MVA inversion, we now have
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Figure 2: (a) Ratio of initial velocity over true velocity; (b) ratio of inverted velocity
over true velocity; (c) true n model; (d) inverted n model. [CR]
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Figure 3: Subsurface offset images using the initial model (a), the updated model (b),
and the true model (c¢). [CR]
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a larger model space and hence a larger null space with respect to the same data.
Therefore, the surface reflection seismic data is inadequate for resolving a unique earth
model. Other information, such as borehole measurement, geological interpretation
(Bakulin et al., 2010), or rock-physics prior knowledge (Li et al., 2011a,b), is necessary
to obtain a consistent, unique and reliable earth model.
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