Model-building with image segmentation and fast image updates

Adam Halpert and Gboyega Ayeni

ABSTRACT
An accurate salt interpretation is an essential component of velocity model-building in areas dominated by complicated salt geology. The Pairwise Region Comparison (PRC) image segmentation algorithm can automatically pick salt bodies on seismic images, and be used as part of an iterative sediment-flood and salt-flood model-building workflow. In areas where the salt interpretation is highly uncertain, however, human expertise is needed to judge the relative accuracy of two or more possible models. We demonstrate a fast image updating scheme based on shot-profile migration that can be used to investigate how different salt interpretations provided by the PRC algorithm affect the final image. With further efficiency improvements, this process could allow for an interactive interpretation, model-building, and imaging workflow that substantially reduces cycle time for large-scale iterative imaging projects.

BACKGROUND
The goal of any automated seismic image segmentation scheme is to automatically pick out or delineate regions within a seismic image. Salt interpretation is an especially useful application of this technology; large, subsurface salt bodies can be tedious and very time-consuming to interpret manually, but the sharp salt/sediment velocity contrast makes an accurate interpretation essential for building a satisfactory velocity model. This means that we should not rely solely on an automatic salt interpretation, but should instead draw on the expertise of experienced human interpreters to supplement the process. This can be accomplished in a variety of ways; for example, a manual 2D interpretation can be used to guide an automatic 3D segmentation (Halpert, 2011). A complementary option is to use human expertise to choose the best of several possible interpretations provided by an automatic algorithm. Here, we demonstrate one such strategy using fast image updates to examine differences between possible models.

The “Pairwise Region Comparison” (PRC) seismic image segmentation approach (Halpert et al., 2010; Halpert, 2010) relies on the graph-based segmentation method of Felzenszwalb and Huttenlocher (2004). This method is more efficient than eigenvector-based algorithms such as Normalized Cuts Image Segmentation (Shi and Malik, 2000; Lomask, 2007), and is capable of operating on full seismic images. Here, the PRC
方法是用于在来自Sigsbee 2A合成模型的图像上进行分割和模型建立，从而提供两种可能的顶部盐解释。然后，基于相位剖面迁移的快速图像更新方案用于检查图像如何因这两种解释而改变。

SEGMENTATION PROCESS

在理想情况下，使用PRC方法的自动分割可以快速准确地解释地震图像中的区域。例如，图1(a)中的地震图像是Sigsbee合成模型的完美速度迁移数据。在对应的分割结果（图1(b)）中，盐体被明确且准确地划分。不幸的是，完美的速度模型在现实世界中并不存在。相反，一种常见的方法是在复杂盐地质区建立速度模型是首先选择顶部盐后迁移，然后选择底部盐层后迁移（Mosher et al., 2007）。图2(a)显示了在左半部分的盐体被缩小的Sediment-Flood迁移，这表明Sediment-Flood速度模型可能不太可能被成像，就像图1(a)中的完美速度例子。结果分割图2(b)中的图像被分割成上盐和下盐区域，因此并不那么准确。

由于图2(b)结果的主要不准确性在于图中指示的盐峡谷区域，我们可以将分析限制到该区域。通过设置较小的最小分割尺寸，用户可以更选择性地选择哪些区域作为盐。图3(a)和3(b)显示了自动PRC算法生成的两种可能的盐解释，图3(b)中多了一个额外的段（用箭头指示）被解释为盐。通过用盐速度替换被解释为盐的段，可以创建两个不同的速度模型（图4(a)和4(b))。

IMAGE UPDATES

图像更新和比较将使用相位剖面迁移（见Biondi (2005))。在一般情况下，这种类型的迁移使用连续向下传播的源（P^s）和接收器（P^g）波场：

\[
P_z^s = P_{z=0}^s e^{-ik_z z}, \quad (1)
\]

\[
P_z^g = P_{z=0}^g e^{ik_z z}, \quad (2)
\]

其中z是深度，k_z是垂直波数，根据分裂步法（Stoffa et al., 1990）根据给定的频率ω计算：

\[
k_z = \sqrt{\frac{\omega^2}{v_{ref}^2} - |k|^2 + \left(\frac{\omega}{v(z, x)} - \frac{\omega}{v_{ref}} \right)^2}. \quad (3)
\]
Figure 1: Perfect-velocity image (a) and automatic segmentation result (b) from the Sigsbee synthetic model. In (b), the salt body has been interpreted nearly perfectly.
Figure 2: Sediment-flood migration (a), and corresponding segmentation result (b). The segmentation algorithm performs poorly within the area indicated on (b).
Figure 3: Two possible salt interpretations provided by the segmentation algorithm. In (b), an extra segment (indicated by the arrow) has been included in the salt.

[CR]
Figure 4: Salt-flood velocity models corresponding to the interpretations in Figures 3(a) and 3(b). The models were created from a sediment-flood velocity model by assigning salt velocities below the interpreted salt boundary. [CR]
where \(\mathbf{k} \) is a vector containing the horizontal wavenumbers. Here, \(v_{\text{ref}} \) is a reference velocity that is constant at each depth step, while \(v(z, x) \) is the actual estimated velocity. An image is formed by correlating the two wavefields:

\[
I(z, x) = \sum_i \sum_\omega P^g_x(\omega, x; s_i)P^a_x(\omega, x; s_i).
\]

Performing full migrations is impractical for our stated purpose of allowing interpreters to quickly judge the relative accuracy of two or more possible velocity models. One way to speed up the process is to re-datum the wavefields to a depth just above the region of interest – in this case, just above the salt canyon near \(z = 7500 \). If we only wish to investigate changes in a specific area of the image, we can downward continue both wavefields to this level, and inject areal source and receiver gathers. This allows us to obtain comparison images like those in Figure 5(a) and 5(b), at a computational cost an order of magnitude less than performing full migrations like the one in Figure 1(a). In this case, it is clear that the salt canyon flanks in Figure 5(a) are more sharply focused, so the salt interpretation and velocity model in Figures 3(a) and 4(a), respectively, are more accurate.

GENERALIZED WAVEFIELDS AND PHASE ENCODING

While restricting the domain and datuming the wavefields as described above significantly lessened the computational expense of updating the image, the process still occurs over a matter of minutes, rather than the seconds required to approach the level of interactivity we seek. One possibility to improve the performance of shot-profile migration is to use phase encoding (Romero et al., 2000), in which data from \(N \) shots are combined into a generalized source gather:

\[
\hat{P}(\omega, x; j) = \sum_{i=1}^{N} \epsilon_{i,j}(\omega)P(\omega, x; s_i).
\]

Here, the \(\epsilon \) term is a complex weight value assigned to each shot.

A simple experiment combines all shots into a single generalized source gather, and uses a single generalized plane-wave source function for migration. Figure 6 is the perfect-velocity image resulting from this procedure. While information from unwanted crosstalk terms have significantly degraded the image, the salt body and its boundaries are still visible. When the two possible salt-flood velocity models in Figures 4(a) and 4(b) are used, we obtain the zoomed-in images in Figures 7(a) and 7(b), respectively. While the differences between these two images is not as apparent as for Figures 5(a) and 5(b), the salt canyon walls appear more continuous for the first model, especially near the location indicated by the arrow. These migrations were completed in less than five seconds; although this is only a 2D example, this is approaching a level at which interactive imaging becomes feasible.
Figure 5: Images resulting from the velocity models in Figures 4(a) and 4(b). The salt canyon walls are more focused in (a), indicating the salt interpretation in Figure 3(a) is more accurate. [CR]
Figure 6: A perfect-velocity migration in which all shots have been combined into a single generalized source gather, and a single plane-wave is used as the generalized source function. Crosstalk artifacts have significantly degraded the image, but the salt body is still clearly visible. [CR]
Figure 7: Generalized wavefield migrations corresponding to the velocity models in Figures 5(a) and 5(b). While crosstalk artifacts obscure the differences between the two images to a much greater extent than in Figures 5(a) and 5(b), the salt canyon wall is still noticeably more continuous near the indicated location in (a). [CR]
Further improvements are necessary to obtain cleaner images than in Figures 6, 7(a) and 7(b). One option is to define the weighting coefficients from equation 5 as having only imaginary (phase) components:

$$\epsilon_{i,j}(\omega) = \frac{e^{i\phi_{i,j}(\omega)}}{\sqrt{M}},$$

where M is the number of generalized sources. By making ϕ a random phase function, it is possible to attenuate the crosstalk terms that arise from combining information from different shots (Morton and Ober, 1998). The implementation of a scheme combining image segmentation, re-datumed wavefields and phase-encoding could allow interpreters to interactively view high-quality images of several salt-interpretation scenarios.

CONCLUSIONS

The Pairwise Region Comparison (PRC) image segmentation algorithm can function effectively as part of an iterative salt interpretation and model-building workflow. However, segmentation results have a higher degree of uncertainty when a boundary is faint or discontinuous (for example, on a sediment-flood image). In such cases, a targeted shot-profile migration scheme using datumed wavefields can test two or more possible models relatively quickly, allowing an interpreter to judge each model’s accuracy either qualitatively or quantitatively (e.g., flatness of angle gathers). The use of generalized wavefields further reduces the computational expense of testing multiple salt-interpretation scenarios. With additional improvements, such as the inclusion of phase-encoding migration to improve the quality of images, this scheme could form the basis of an interactive interpretation and model-building workflow.

ACKNOWLEDGMENTS

We thank SMAART JV for providing the Sigsbee 2A model used for examples, and the sponsors of the Stanford Exploration Project for their support.

REFERENCES

Biondi, B., 2005, 3-D seismic imaging: Stanford University.

SEP-143