A new bidirectional deconvolution method that
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ABSTRACT

Traditionally blind deconvolution makes the assumption that the reflectivity spike
series is white. Earlier we dropped that assumption and adopted the assumption
that the output spike series is sparse under a hyperbolic penalty function. This
approach now here allows us to take a step further and drop the assumption
of minimum phase. In this new method (what we called Bidirectional Sparse
Deconvolution), We solve explicitly for the maximum phase part of the source.
Results on both synthetic data and field data show clear improvements.

INTRODUCTION

In the previous report (Zhang and Claerbout, 2010), we introduced the spiking de-
convolution problem using the hybrid norm solver (Claerbout, 2009a). Synthetic
examples (Zhang and Claerbout, 2010) showed that given a minimum-phase wavelet,
it retrieved the sparse reflectivity model almost perfectly even with a reflection series
that is far from white, while conventional 1.2 deconvolution did a poor job. However,
if the assumption of a minimum-phase wavelet was removed, the hybrid norm spiking
deconvolution failed quickly and gave a poor result similar to the conventional L2
deconvolution.

In this paper, we still rely on the hybrid norm solver to retrieve the sparse model,
but we use a slightly more complex formulation that avoids the minimum-phase
wavelet constraint.

We start by realizing that any (mixed-phase) wavelet C'(Z) can be decomposed
into a minimum-phase part A(Z) and a maximum-phase part B(1/Z) plus a certain
time shift:

C(2) = A(2)B(1/2)Z", (1)

where B(Z) is also a minimum-phase wavelet (therefore B(1/Z)Z* is a maximum-
phase wavelet) and the exponent k is the order of B(Z). This Z* term makes the
wavelet C'(Z) causal. In the time domain, (1) can be written as

c=axb *xd(n—k), (2)

where b" stands for the time reverse of series b.
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Our original spiking deconvolution can find only a minimum-phase wavelet which
has the same spectrum of real wavelet c. It can be defined as an inverse problem as
follows:

[d] fc =T, (3)
where [d] is the data convolution operator, and f. is the unknown filter. In this
formulation, the filter is the only unknown, the hybrid norm is applied on the residual
term 7 to enforce the sparseness constraint. In theory, the residual r itself is the
reflectivity model. Such a method requires the wavelet in the data to be minimum-
phase because only a minimum-phase wavelet has a causal stable inverse.

The following bidirectional deconvolution formulation utilizes a pair of conven-
tional deconvolutions, trying to invert components a and b separately:

[(d* f3)] fa=Ta,
[(d* fa)"] fo = 14, (4)

in which f, and f, are the corresponding filters that corresponds to the inverses of
a and b denoted above, the superscript » means time-reverse. The operator in each
equation is the convolution operator. Again the hybrid norm is applied to r, and
ry, and the reflectivity model is simply r, plus a time shift. Notice that this is a
non-linear inversion, since the operator itself depends on the unknown f, and f;,. In
practice we have to solve these two inversions alternately and therefore iteratively.

To understand the meaning of (4), let
d=mxc=mxaxb *d(n—k), (5)

where m is the reflectivity model and the ¢ term is just a time shift. Assume f, and
fp are perfectly known in the operators (which is not true in reality), i.e.

faxa=48(n), frxb=20(n)

Substituting (5) into (4), since

dxfi = mxd(n—k)xa, (6)
(dx*f)" = (mxb"x5(n—Fk))" =m"*xd(n+k)=*b, (7)

we have
[(m# 6(n — k)  a] fa = ra,
[(m" % 6(n +k)) %] fy = ro. (8)

From (8) it is easier to see what is behind the bidirectional deconvolution formulation
(4): Tt tries to separate the two parts of the wavelet, turning each one into a traditional
deconvolution problem in which the wavelet (a,b) is always minimum-phase.

As with all non-linear estimation, iteration is required. Convergence is assured if
the starting solution is close enough. We expect the traditional PEF for a and an
impulse function for b to be a pretty good first guess. The following section shows
several examples (complexity varies from low to high) illustrating the effectiveness
and limitations of the method.
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DATA EXAMPLES
Inverting a single wavelet

To verify the bidirectional deconvolution’s ability to handle mixed-phase wavelets,
we first set the input data to be a single wavelet, to see whether the data can be
compressed to a single spike. We choose three types of wavelets as inputs:

1. a minimum-phase wavelet used in the previous report (Zhang and Claerbout,
2010), referred to as wavelet 1.

2. a wavelet that deviates slightly from minimum-phase: it models a simple ma-
rine ghost — a low frequency function passing through a time derivative at the
source and another at the receiver. The low frequency function chosen is the
convolution of two one-sided triangles.

3. a zero-phase wavelet created by convolving the minimum-phase with its own
time-reverse wavelet. Such wavelet has identical a and b components, referred
to as wavelet 3.

N\ o—

0 002 004 0068 008 0.1 012 0.14 0186 0.18 02 0.22 0.24 L] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tima(s) tima(s)
(a) (b)
o -
]
e
o
1
o
1
5 o
[ 0.02 0.04 0.08 0.08 0.1 0.12 0.14 o.16 0.18 L] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tima(s) tima(s)
(¢) (d)
§ -
e
o
°
o
[ 0.05 0.1 0.16 02 0.25 08 0.35 0.4 0.45 05 L] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tima(s) tima(s)

(e) (f)

Figure 1: (a) Input wavelet 1 and (b) its deconvolution result. (c) Input wavelet 2
and (b) its deconvolution result. (e) Input wavelet 3 and (f) its deconvolution result.

[ER]
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Figure 2: For the wavelet 3 inversion, (a) filter f,; (b) filter f,. [ER]

Figure 1(a) 1(b), figure 1(c) 1(d) and figure 1(e) 1(f) show wavelets 1,2,3, and the
results of reflectivity models respectively. In all 3 cases, our bidirectional deconvolu-
tion method is able to compress the wavelet into a spike.

Figure 2 shows the retrieved filters f, and f, from wavelet 3’s inversion. Notice
that f, and f;, given by the inversion are different from each other, while ideally they
should be the same, since a and b are the same when we create wavelet 3. This
observation indicates that the solutions f, and f, of this method do not necessarily
converge to the inverse of the initial a and b.

Inverting a synthetic trace

Next we try a more complex example where the data is generated by convolving each
type of wavelet with a sparse reflectivity series. Figure 3 shows the reflectivity series.

Figure 4(a) 4(b), figure 4(c) 4(d) and figure 4(e) 4(f) show the data created using
wavelets 1,2,3, and the recovered reflectivity models respectively. In all 3 cases, the
reflectivity model is well recovered; however the polarity of the reflectivity model
from wavelet 3 case is opposite to that of the real reflectivity model; this unexpected
change of polarity shows the uncertainty of the convergence point in our non-linear
formulation. We think this polarity change is not an issue in our blind deconvolution
scenario.
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Figure 3: reflectivity model trace. [ER]
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Figure 4: (a) The data trace generated using wavelet 1; (b) the recovered reflectivity
model of (a). (c) The data trace generated using wavelet 2; (d) the recovered reflec-
tivity model of (c). (e) The data trace generated using wavelet 3; (f) the recovered
reflectivity model of (e). [ER]
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Inverting a 2D synthetic section

As in the previous report (Zhang and Claerbout, 2010), we use a 2D synthetic re-
flectivity model from Claerbout (2009b). Figure 5(a) shows the starting reflectivity
model. Figure 5(b) shows the data generated by convolving the reflectivity model
with wavelet 3. All traces use the same wavelet when generating the data, and all
traces share the same wavelet when we are doing the deconvolution.

Previously the traditional sparse deconvolution failed on this example because
of the symmetric wavelet; therefore, here we compare the old method and the bidi-
rectional deconvolution method. Figure 6(a) shows the result using the old method
(equation (3)). Figure 6(b) shows the result using the bidrectional deconvolution
method (equation (4)). Comparing to the given model, the bidirectional deconvolu-
tion result is a spectacular improvement over the old one. Bidirectional deconvolution
is a big improvement.
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Figure 5: (a) The 2D synthetic reflectivity model; (b) the synthetic data generated
using wavelet 3. [ER]
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Figure 6: (a) reflectivity model retrieved from the original method; (b) reflectivity
model retrieved from the bidirectional deconvolution method. [ER]
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Inverting a 2D field section

cmp_x(ft)
. 8000 12000 16000 20000
o
o’
v 2
5
®
=
N
N
N
(e)]
v |
(04}

Figure 7: Input Common Offset data. [ER]

The second example is a common-offset section of marine field data. Figure 7
shows the input data. Figure 8(a) shows the result using the old method. Figure 8(b)
shows the result using the bidirectional deconvolution method.

The raw data in Figure 7 shows strong events like a double ghost (black, white,
black). The traditional PEF result in Figure 8(a) shows strong events like doublets
(black, white). The bidirectional deconvolution result in Figure 8(b) shows strong
events like singlets (white). Examining Figure 8(b) we notice events at about 1.85s
(black), 1.95s (black), 2.3s (white), 2.4s(black), 2.5s (mixed), and 2.8s (white). The
unipolarity of individual suggests that a causal integration would produce the step
functions we associate with impedence in a blocky model. Figure 9 is a first attempt to
compute the impedence from the reflectivity in Figure 8(b). This was done by causal
integration and some horizontal smoothing. Ideally, Figure 8(b) has only isolated
white events and black events defining geologic boundaries. Time integrating these
impulsive events should yield positive rectangle functions. Actually, the result we see
in Figure 9 looks more like leaky integration of Figure 8(b). The small events present
in Figure 8(b) apparently contains low frequency energy at the opposite polarity of
that of the isolated impulses. We could thus regard Figure 9 as a failure. Instead we
regard it as an inverse problem that we have not yet correctly posed. The failure arises
because the raw data fails to contain the required low frequencies. Were we to replace
small values in Figure 8(b) by zeros, we might have obtained a result more to our
liking. We need to formalize the inverse problem and reduce it to the usual situation
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Figure 8: Given the common offset data in Figure 7, (a): reflectivity model retrieved
from the original method; (b): reflectivity model retrieved from the bidirectional
deconvolution method. [ER]
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Figure 9: Causal time integration of the reflectivity in figure 8(b). This should be
the impedence. [ER]

which is how much to regard the data as perfect, and how to allow imperfection to
be overcome by methodology that tends us to blocky models.

CONCLUSION

We demonstrate what we anticipated theoretically that we can overcome the minimum
phase assumption in blind deconvolution. Our process is non-linear, but (we claim)
not extremely so. To be successful it does require a non-Gaussian distribution of
impulses. Likewise, the iteration has a few adjustable parameters which makes its
use a little more difficult, but we do not anticipate serious difficulties in practice. One
interesting phenomenon about the bidirectional deconvolution (Figure 1(e) 1(f) and
figure 2) is that it was able to compress a mixed-phase wavelet to a spike but without
obtaining the correct causal and anti-causal parts. We do not yet understand this.
In addition, it is more costly because it requires multiple iterations.

FUTURE WORK

Having had good fortune here introducing the anti-causal PEF and earlier explicitly
estimating a portion of the data not fitting the convolutional model (Zhang and
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Claerbout, 2010) , it is natural to try introducing both at the same time. That takes
into account the fact that a part of the input data does not fit the convolution model:

e T E =] =], o

{l (d *Ofa)r ZII] {T]:fb] N { rab } | 0

T'mb
in both matrices on the upper left is the data convolution operator, f, and f, are
the filters, and m, and m, are the reflectivity models. The parameter € indicates the
strength of the regularization. We apply the hybrid norm on model residuals r,,, and
Tmp to enforce sparseness. Although the extra parameter tuning (€) is undesirable,
we expect to get more successful result using this more advanced formulation.
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