
Implementing implicit finite-difference in the

time-space domain using spectral factorization and

helical deconvolution

Ohad Barak

ABSTRACT

The method of modeling wavefield propagation with an implicit finite-difference
approximation to the two-way acoustic isotropic wave equation, using spectral
factorization and helical deconvolution, exhibits instability of the propagating
wavefield as the time step is increased. In this study, I test several potential
sources of the instability problem: the implicit finite-difference scheme itself, the
precision of the floating point representation of the filter coefficients, the number
of filter coefficients, and the spectral factorization method. None of these issues
is the cause for the apparent instability.

INTRODUCTION

Implicit finite-difference methods are inherently more stable than explicit ones. This
attribute enables us to increase the time step size (and consequently decrease com-
putation time) while retaining stability of the wavefield. In the previous SEP report
(Barak, 2010) I showed that by using spectral factorization and the helix transform,
the propagation of a wavefield using an implicit finite-difference approximation of the
two-way acoustic wave equation can be achieved by a set of deconvolution operations
of filter coefficients applied to the wavefield. Through testing, I have found that de-
spite the theoretical stability advantage of the implicit finite-difference scheme which
I used for propagation, the resulting wavefield becomes more dispersive as the time
step increases (to the point that the wavefield is no longer useful), and also that be-
yond a certain time step size - the wavefield diverges.

The increased dispersion of the implicit finite-difference scheme in comparison to
an explicit scheme is an attribute of the scheme itself. This is not a fundamental
problem, since some of this dispersion can be alleviated simply by using a higher
order approximation. However, the causes of the instability of the wavefield beyond
a certain time step size remained unclear. In order to understand the reasons behind
the instability, I tested several hypotheses for its causes. These were:

1. The implicit finite-difference approximation itself.

SEP–142



Barak 2 Implicit helical finite-difference

2. The precision of the floating point representation of the filter coefficients.

3. The number of filter coefficients.

4. The spectral factorization method.

First I will review the method by which wave propagation can be done by decon-
volutions with spectrally factorized filters of a finite-difference approximation, and
then I will go over the various tests I carried out to try and determine the causes for
the instability problem.

REVIEW OF METHODOLOGY

The two-way acoustic wave equation in one dimension reads:

∂2P

∂t2
= C2∂2P

∂x2
. (1)

The central implicit finite-difference approximation I used for the propagation tests
was 2nd order in time and 2nd order in space:

P t+1
x − 2P t

x + P t−1
x

∆t2
=

C2

4∆x2
[
(
P t+1

x+1 − 2P t+1
x + P t+1

x−1

)
+ 2

(
P t

x+1 − 2P t
x + P t

x−1

)
+

(
P t−1

x+1 − 2P t−1
x + P t−1

x−1

)
], (2)

where P is the pressure wavefield, t and x are the time and space coordinate indices,
and ∆t and ∆x are the temporal and spatial step sizes. Note that this approximation
is based on the Crank-Nicolson method, and so the spatial derivative is balanced
between the three time steps: t− 1, t, and t + 1, where the central time index t has
twice the weight of the other two time indices.
In order to propagate the wavefield, the pressure values at time t+1 must be equated
to the values at times t and t− 1. The linear system which must then be solved has
the form:


U0 U1 0 0
U1 U0 U1 0
0 U1 U0 U1

0 0 U1 U0




P t+1
1

P t+1
2

P t+1
3

P t+1
4

 =


V0 V1 0 0
V1 V0 V1 0
0 V1 V0 V1

0 0 V1 V0




P t
1

P t
2

P t
3

P t
4



+


W0 W1 0 0
W1 W0 W1 0
0 W1 W0 W1

0 0 W1 W0




P t−1
1

P t−1
2

P t−1
3

P t−1
4

 . (3)

SEP–142



Barak 3 Implicit helical finite-difference

For simplicity, we can combine all the constants into one: α = C2∆t2

4∆x2 . The matrix
coefficients in equation 3 (the finite-difference weights) are then:
U0 = 1 + 2α, U1 = −α;
V0 = 2− 4α, V1 = 2α;
W0 = −1− 2α, W1 = α.

In shorter notation, equation 3 reads:

UP t+1 = V P t + WP t−1. (4)

The solution of this linear system is:

P t+1 = U−1
(
V P t + WP t−1

)
. (5)

To solve this system, we must perform polynomial division. The system is tridiagonal
(and easily solvable) only for one dimension. For multiple dimensions, matrix U is
block diagonal. Additional non-zero elements appear at a certain offset from the
diagonal, making the solution process more complicated. However, using spectral
factorization, the finite-difference weights of matrix U (which pertain to time t + 1)
can be factorized into a set of causal filter coefficients u and its time reverse u

′
. Using

the helical approach to deconvolution, equation 5 can be recast as:

P t+1 = (u
′
u)−1

(
V P t + WP t−1

)
; (6)

P t+1 = u−1(u
′
)−1

(
V P t + WP t−1

)
. (7)

Polynomial division is comparable to deconvolution. This means that the polynomial
division in equation 5 can be achieved by a set of two deconvolutions of the data by
the spectrally factorized coefficients u of matrix U . One deconvolution is done along
the data in the reverse direction (application of the adjoint of the filter):

yk = xk −
Nu∑
i=1

u′
iyk−i, (8)

where u′ is the time reversed filter coefficients of u. The other deconvolution is done
in the forward direction:

xk = yk −
Nu∑
i=1

uixk−i. (9)

SEP–142



Barak 4 Implicit helical finite-difference

I used the SEPlib module polydiv, which uses the helical coordinates to perform the
deconvolutions (the polynomial division) in equations 8 and 9.
The wavefield propogation is done by the following sequence:

1. Spectrally factorize the coefficients of matrix U .

2. Multiply the saved wavefield at time t− 1 by the coefficients of matrix W .

3. Multiply the saved wavefield at time t by the coefficients of matrix V .

4. Sum the results of the previous 2 steps into a result vector.

5. Deconvolve the result vector by the time-reversed factorized filter coefficients u
′

(eq. 8).

6. Deconvolve the result vector by the factorized filter coefficients u (eq. 9).

Steps 2 - 6 are repeated for each time step. The inputs of the spectral factorization are
the finite-difference weights of the matrix U (in Eq. 3), and the outputs are coefficients
of a minumum phase filter u. Since I used a constant velocity in all propagation tests,
the finite-difference weights are constant, and the filter is stationary.

IMPLEMENTATION OF METHODOLOGY WITH
INCREASING TIME STEP SIZE

Figures 1(a)-1(f) show how wave propagation in one dimension using the implicit
scheme from Eq. 2 and spectral factorization fails when the time step size is increased
beyond a certain limit. The horizontal axis is time, and the vertical is distance. On
the left the propagation is done using a linear equation system solver, and on the
right is the result of deconvolving the wavefield with the filter coefficients obtained
from spectral factorization. At smaller time steps, the two solutions are similar. The
increasing dispersion with increasing time step size is apparent in both solutions.
However, once the time step exceeds 5ms, the wavefield propagated by deconvolution
diverges, whereas the wavefield propagated by the ”standard“ linear system solver
exhibits additional dispersion, yet remains stable.

Figures 2(a)-2(f) show the same kind of comparison as Figures 1(a)-1(f), except
that here a small ε value was added to the central finite-difference weight (U0) which
was sent as an input to the spectral factorizer:

U0 = 1 + 2α + ε, U1 = −α.

This results in a filter with slightly different coefficients, and with this filter the
propagation is stable (with added dispersion). The value of ε required to maintain

SEP–142



Barak 5 Implicit helical finite-difference

stability increases as the time step size increases. So far I’ve been unable to determine
the relation between the value of the time step and the value of ε, but I know it is
not arbitrary. If ε is too large, the result is a low-frequency dispersion which seems to
initially precede the wavefield, as shown in Figure 3. Afterwards, the wavefield loses
amplitude until eventually it disappears altogether.

While the addition of some ε value does stabilize the wavefield, the flip side is
that it causes wrong propagation kinematics. This is a direct result of the artificial
increase of the central finite weight. The incorrect kinematics can be seen in Figure
2(d) when looking at the wavelet as it reaches the edge at the 4 second mark. The
arrival time of the wavelet is retarded as ε increases.

A similar phenomena occurs in 2D. In Figure 4 the effect of increasing the time step
size from ∆t = 5ms to 10ms is shown. The increase causes the wavefield to diverge.
Adding ε = 0.005 to the central finite-difference weight, as in Figure 5, alters the filter
coefficients obtained by spectral factorization, and enables stable propagation, with a
slight time retardation of the wavefront. If ε is too large, then an unusual dispersion
pattern appears. As the time step is increased further (Figure 6), the value of ε
required for stable propagation increases as well, as does the time retardation of the
wavefront. With too large an ε value the unusual dispersion pattern appears.

Summary of current implementation

An increase in the time step size causes the wavefield to diverge after a certain number
of propagation steps. This divergence can be avoided - by artificially increasing the
value of the central finite-difference weight. This correspondingly increases the zero-
lag coefficient of the factorized filter, making it more dominant in comparison to the
other filter coefficients. The result is stable propagation, albeit with much dispersion
owing to the finite-difference approximation itself. The exact minimum value required
for ε which ensures stable propagation is difficult to ascertain. Too large a value and
an odd dispersion pattern unlike that of standard numerical dispersion begins to
appear. The addition of ε to the central finite-difference weight also has the rather
unfortunate effect of ruining the propagation kinematics.

EFFECT OF FLOATING POINT PRECISION

As a result of the tests shown in the previous section, I concluded that the reason
for the unstable propagation at large time step sizes had to do with the spectral
factorization, and not with the finite-difference approximation. One of the charac-
teristics of the filter coefficients produced by the spectral factorization algorithm I
used (SEPlib module wilson) is that they are very small. The smaller ones can reach
10−20. Biondi and Clapp (pers. comm., 2010) suggested that I attempt to use double
precision variables instead of single precision, in order to see whether the precision of
the representation of the filter coefficients is indeed an issue. Ronen (pers. comm.,

SEP–142



Barak 6 Implicit helical finite-difference

(a) (b)

(c) (d)

(e) (f)

Figure 1: 1D Implicit (left) vs. Helical Implicit (right) finite-difference with constant
velocity = 1000m/s. Horizontal axis is time, and the vertical axis is distance. Source
is a Ricker wavelet with central frequency = 12.5Hz. The time step size is ∆t = 1ms
for the top Figures, 5ms for the center Figures, and 10ms for the bottom Figures.
∆x = 10m.[ER]

SEP–142



Barak 7 Implicit helical finite-difference

(a) (b)

(c) (d)

(e) (f)

Figure 2: 1D Implicit (left) vs. Helical Implicit (right) finite-difference with constant
velocity = 1000m/s. Horizontal axis is time, and the vertical axis is distance. Source
is a Ricker wavelet with central frequency = 12.5Hz. The time step size is ∆t = 10ms
for the top Figures, 15ms for the center Figures, and 20ms for the bottom Figures.
Top right ε = 0.001; center right ε = 0.01; bottom right ε = 0.02. ∆x = 10m.[ER]

SEP–142



Barak 8 Implicit helical finite-difference

Figure 3: 1D Helical implicit
finite-difference propagation with
constant velocity = 1000m/s. The
time step size is ∆t = 10ms. ε =
0.001 for the top Figure, ε = 0.009
for the bottom Figure.[ER]

Figure 4: 2D helical implicit finite-difference with constant velocity = 1000m/s.
Wavefields are after 2 seconds of propagation. Source is a Ricker wavelet with central
frequency = 12.5Hz. The time step size is ∆t = 5ms for the left Figure, and 10ms
for the right Figure. ∆x = ∆z = 10m.[ER]

SEP–142



Barak 9 Implicit helical finite-difference

Figure 5: 2D helical implicit finite-difference with constant velocity = 1000m/s.
Wavefields are after 2 seconds of propagation. Source is a Ricker wavelet with central
frequency = 12.5Hz. The time step size is ∆t = 10ms. ε = 0.005 for the left Figure,
and ε = 0.02 for the right Figure. ∆x = ∆z = 10m.[ER]

Figure 6: 2D helical implicit finite-difference with constant velocity = 1000m/s.
Wavefields are after 2 seconds of propagation. Source is a Ricker wavelet with central
frequency = 12.5Hz. The time step size is ∆t = 20ms. ε = 0.04 for the left Figure,
and ε = 0.08 for the right Figure. ∆x = ∆z = 10m.[ER]

SEP–142



Barak 10 Implicit helical finite-difference

2010) also suggested trying to do the opposite - reduce the precision and see whether
that would have a degrading effect on the propagation.

To achieve double precision, both the spectral factorization algorithm and the
helical deconvolution module had to be rewritten to include double precision variables.
The wavefield itself was also composed of double precision variables. Furthermore,
I used a 4th order in space, 2nd order in time approximation for this test. Figures
7(a)-7(d) show the comparison between propagation with single precision (left) and
double precision (right). For the top Figures I used ε = 0, and for the bottom ones
ε = 0.01. The time step ∆t was 10ms for all Figures. The results for single and double
precision are identical for this time step, and from other tests with many different
time step sizes I can say that the behaviour is always identical, and so is the response
to varying value of ε. The similarity in the wavefield values extends to the statistics
of the wavefields - the mean, average, RMS and min/max values are nearly identical
as well. In summary - I could not find a set of parameters for which propagation with
double precision variables is better (or at all different) than propagation with single
precision.

The next step was to attempt to reduce the precision of the spectrally factorized
coefficients one decimal point at a time, and see when propagation with a certain
set of parameters is destroyed as a result of this loss of precision. This should give
an indication as to how important the floating point precision actually is for stable
propagation. The precision reduction was done by running the regular wilson spec-
tral factorization subroutine, and then reducing precision by the following two lines
of code:
noindent IntFilter = CutFactor * FloatFilter

FloatFilter = IntFilter / CutFactor

CutFactor is a power of 10. Multiplying by this factor and then casting to integer
effectiveley removes decimal precision from the filter coefficients. Example:
10000 * 1.23456 = 12345

12345 / 10000 = 1.2345

The purpose of this test was to see how many decimal precision digits can be
removed from the filter coefficients before wavefield propagation using those coeffi-
cients is altered, in comparison to propagation with standard floating point preci-
sion. Results can be seen in Figures 8(a)-8(c). On the left is the result of propa-
gation with single precision coefficients, with parameters which have shown stability
(∆t = 5ms, ε = 0). The center Figure shows propagation with coefficients which
have had their precision truncated to 3 decimal points only. The wavefield exhibits a
phase shift in comparison to the single precision wavefield, and yet it remains stable.
Only when precision is truncated to 2 decimal points (right) is propagation severely
affected.
The wavefields in Figures 7(a)-7(d) and 8(a)-8(c) were generated using factorization
of the finite-difference weights of the 4th spatial order approximation (A-1). The
values of these weights when using the specific set of propagation parameters were:
U0 = 1.3125, U1 = −8.3333343E − 02, U2 = 5.2083340E − 03.

SEP–142



Barak 11 Implicit helical finite-difference

Since ∆x = ∆z, the weights are identical for both dimensions. These weights are
fed to the spectral factorization routine, which is supposed to produce a causal set of
filter coefficients, such that their cross-correlation will reproduce the finite-difference
weights (Claerbout, 1997). This suggests that one way of testing the sensitivity of
propagation to the floating point precision of the filter coefficients is to correlate the
filter coefficients and compare the result to the finite-difference weights.

I used 21 filter coefficients to produce Figures 8(a)-8(c). For single precision propa-
gation, the values of the correlation of the filter coefficients were (Only the first four
values of the correlation are displayed. The rest are in A-2 to A-4):

1.312500 −8.3333343E − 02 5.2083335E − 03 2.9154580E − 12

For the propagation where precision was reduced to 3 decimal points only, the corre-
lation was:

1.312500 −8.3329208E − 02 5.2077500E − 03 0.0000000E + 00

For the propagation where precision was reduced to 2 decimal points only, the corre-
lation was:

1.312500 −7.8187048E − 02 0.0000000E + 00 0.0000000E + 00

Note that the correlation products are arranged in order of lags, so that the first
coefficient corresponds to the central finite-difference weight U0, the second to U1,
and the third to U2. Note also that only after reducing precision to the 2nd decimal
point, the weight U2 is effectively erased, and the weight U1 is considerably altered.

This comparison proves that the wavefield divergence shown in the previous sec-
tions is not the result of inadequate representation of the filter coefficient’s floating
point values when using single precision. If it were, then propagation with reduced
precision would not have been possible. However, this result raises another question:
If propagation is stable with so little precision, how come a small value of ε added to
the central finite-difference weight (and by that also to the zero-lag filter coefficient)
causes the wavefield to stabilize, when the effect that this slight addition has on the
filter’s correlation is so much less pronounced than the precision reduction?

SEP–142



Barak 12 Implicit helical finite-difference

(a) (b)

(c) (d)

Figure 7: 2D helical implicit finite-difference using single (left) and double (right)
precision. Velocity = 1000m/s. Wavefields are after 2 seconds of propagation. Source
is a Ricker wavelet with central frequency = 12.5Hz. The time step size is ∆t = 10ms.
ε = 0 for the top Figures, and ε = 0.01 for the bottom Figures. ∆x = ∆z = 10m.[ER]

(a) (b) (c)

Figure 8: 2D helical implicit finite-difference using single precision (left), precision
reduced to 3 decimal points (center), and precision reduced to 2 decimal points (right).
Velocity = 1000m/s, ∆t = 5ms, ε = 0, ∆x = ∆z = 10m.[ER]

SEP–142



Barak 13 Implicit helical finite-difference

EFFECT OF NUMBER OF SPECTRALLY FACTORIZED
COEFFICIENTS

I had initially assumed that the number of filter coefficients would be the most domi-
nant factor in determining the accuracy of the propagation. I had supposed that the
more filter coefficients used in the spectral factorization, the closer would be the value
of their correlation to the finite-difference weights. Indeed, the instinctive response
I had to the divergence problem was to increase the number of coefficients in the
spectral factorization parameters. This, unfortunately, had no effect. Furthermore,
the correlation of the filter coefficients created by the spectral factorizer (the Wilson-
Burg algorithm) produced accurate finite-difference weights even when very few filter
coefficients were present.

An example of the lack of the effect of number of coefficients on the propagation
is shown in Figure 9. This 1D example shows how propagation using 2 spectrally
factorized filter coefficients is basically identical to propagation when using 50 filter
coefficients. Another indication comes from observing the filter coefficients them-
selves. This example was produced by a 2nd order scheme, which means that there
are only 2 finite-difference weights. When factorizing using only 2 filter coefficients,
the Wilson-Burg algorithm (for the propagation parameters used in Figure 9) yielded:

1.000000 −5.5728100E − 02.

The coefficients are displayed in order of lags, so the 1.0 is the zero-lag filter coefficient.
Correlating these coefficients, we get:

1.125 −6.2500007E − 02

at lag 0 and lag 1, which are equal to the floating point representations of the finite-
difference weights for Figure 9.

Factorizing using 50 filter coefficients produced (only the first four coefficients are
shown, the rest are in A-5 and A-6):

1.000000 −5.5728100E − 02 −2.7755576E − 17 1.7347235E − 18.

After lag 20, the coefficients are all zeros. Note that the first two coefficients are iden-
tical to the ones produced by the factorizer when requesting only two coefficients.The
correlation of this filter is:

1.125000 −6.2500007E − 02 −3.1236769E − 17 1.9455218E − 18

SEP–142



Barak 14 Implicit helical finite-difference

This correlation again shows the accurate representation of the finite-difference coef-
ficients at lag 0 and lag 1. In addition, the correlation produces a set of other values
at later lags, which are much smaller than the weights themselves.

The fact that two filter coefficients were sufficient to produce the finite-difference
weights by correlation was interesting, but what is more important is to test what
effect the change in the number of coefficients might have on the deconvolution pro-
cess. Correlating the coefficients is like convolving them over a spike, once in the
forward direction and once in reverse order. In order to test the exact effect that a
change in the number of coefficients had on the deconvolution, I tested the result of
deconvolving the coefficients over a spike. Here as well, the result was identical. I
shall spare displaying the numbers themselves for this case.

In summary, I could not a find a combination of parameters (of propagation or of fac-
torization) for which wavefield propagation was more stable if more filter coefficients
were used.

Figure 9: 1D helical implicit
finite-difference with 2 spectrally
factorized filter coefficients (top),
and 50 coefficients (bottom). Ve-
locity = 1000m/s, ∆t = 5ms,
ε = 0, ∆x = 10m.[ER]

WILSON-BURG VS. KOLMOGOROFF SPECTRAL
FACTORIZATION

Last on the checklist was the spectral factorization algorithm itself. In Rickett (2001)
the Kolmogoroff spectral factorization method is shown to be successful for modeling
seismic activity on the surface of the Sun. I used the SEPlib ccrosskolmog module,
and compared wavefield propagation when the spectral factorization was done by
the Kolmogoroff method vs. the Wilson-Burg method. The comparison is shown
in Figure 10. On the left are wavefields propagated with Wilson factorization, and
on the right - Kolmogoroff. The time step is ∆t = .5ms in the top Figures. When

SEP–142



Barak 15 Implicit helical finite-difference

the time step is increased to 1ms, the propagation with Kolmogoroff coefficients
diverges. However, if ε = 10−4 is added to the central finite-difference coefficient
prior to factorization (bottom right), propagation is successful and appears similar to
propagation by Wilson factorized coefficients.

This result indicates that the Kolmogoroff factorization method is even less suit-
able than the Wilson method for this finite-difference scheme, since the addition of
a small value to the central FD coefficient when using Wilson is necessary only at
greater time step sizes.

The ten Wilson filter coefficients used to create the center panels in Figure 10 were:

1.0 −2.4875777E − 03 0.0000000E + 00 −6.7762636E − 21
−2.6469780E − 23 5.1698788E − 26 0.0000000E + 00 −3.9443045E − 31
0.0000000E + 00 −1.5046328E − 36 .

The Kolmogoroff coefficients were:

1.002494 −2.4938183E − 03 4.7695384E − 08 1.3291222E − 08
−3.6223135E − 08 4.7327675E − 09 8.5023713E − 09 8.8970848E − 09
−9.8089106E − 12 4.9380566E − 09 .

Other than the zero-lag coefficient not being equal to 1, a striking difference is that
the Kolmogoroff coefficients do not drop off quickly as do the Wilson coefficients.
This has a degrading effect on the filter correlation. The Wilson filter’s correlation
is:

1.005 −2.5000004E − 03 1.6940662E − 23 −6.8100374E − 21
−2.6602097E − 23 5.1956968E − 26 9.8607629E − 34 −3.9640020E − 31
0.0000000E + 00 −1.5121468E − 36

The Kolmogoroff’s filter correlation is:

1.005 −2.4999434E − 03 8.8091141E − 08 7.9071558E − 09
−2.9466412E − 08 −1.4710333E − 10 3.0997090E − 11 3.9199342E − 09
−6.6459863E − 12 −2.8234270E − 09

The finite-difference coefficients for the parameter set of the wavefields in Figure 10 are
U0 = 1.005, U1 = −2.5E − 03. The Wilson filter’s correlation recreates these weights
precisely, while the Kolmogoroff filter’s correlation does not. Also, the drop-off in
the magnitude of the filter correlation at lags which do not represent finite-difference
weights (i.e. not lag 0 or lag 1) is much better for the Wilson filter.

SEP–142



Barak 16 Implicit helical finite-difference

Figure 10: 1D helical implicit finite-difference with Wilson-Burg spectral factorization
(left), and Kolmogoroff spectral factorization (right). ∆t = .5ms (top), 1ms (center
and bottom). ε = 1e−4 only on the bottom right Figure, otherwise ε = 0. Velocity =
1000m/s, ∆x = 10m.[ER]

SEP–142



Barak 17 Implicit helical finite-difference

CONCLUSION AND FUTURE WORK

After conducting the aforementioned tests, I still cannot say why wavefield propaga-
tion by the proposed methodology does not function beyond a certain time step size.
I can only conclude that for some reason the spectral factorization fails when the
finite-difference weights, which I wish to factorize, are not dominated by the central
finite-difference weight. Since the entire purpose of attempting to use the combi-
nation of implicit finite-difference and spectral factorization for propagation was to
increase the time step size (thereby decreasing the total computation time, but also
decreasing dominance of the central finite-difference weight), this failure makes the
method unuseful. At the time step sizes for which this method does work, explicit
methods will function better and faster.

There is one possible avenue in which to continue research of this method. The
central weight of the finite-difference scheme which I used does decrease in dominance
as the time step size is increased, but I am not bound to use this scheme only. It is
possible that an alternate implicit finite-difference scheme will not have this attribute,
and will thus be more amenable to factorization when the time step size is increased.

One source of such a scheme could be the pseudo-Laplacian discussed in Etgen
and Bransdsberg-Dahl (2009).

REFERENCES

Barak, O., 2010, Implicit finite difference in time-space domain with the helix trans-
form: Stanford Exploration Project, Report 140, 103–118.

Claerbout, J. F., 1997, Multidimensional recursive filters via a helix: Stanford Explo-
ration Project, Report 95, 1–13.

Etgen, J. T. and S. Bransdsberg-Dahl, 2009, The pseudo-analytical method: appli-
cation of pseudo-laplacians to acoustic and acoustic anisotropic wave propagation:
SEG Expanded Abstracts, 2552–2556.

Rickett, J., 2001, Spectral factorization of wavefields and wave operators: PhD thesis,
Stanford University.

APPENDIX A

The 4th order in space and 2nd order in time implicit finite difference scheme used
to create Figures 7(a) and 8(a) was:

SEP–142



Barak 18 Implicit helical finite-difference

P t+1
x − 2P t

x + P t−1
x

∆t2
=

C2

4∆x2
[

(
−1

12
(P t+1

x+2 + P t+1
x−2)−

16

12
(P t+1

x+1 + P t+1
x−1)−

30

12
P t+1

x

)
+ 2

(
−1

12
(P t

x+2 + P t
x−2)−

16

12
(P t

x+1 + P t
x−1)−

30

12
P t

x

)
+

(
−1

12
(P t−1

x+2 + P t−1
x−2)−

16

12
(P t−1

x+1 + P t−1
x−1)−

30

12
P t−1

x

)
]. (A-1)

The correlation of the 21 filter coefficients used to create Figure 8(a) for single
precision propagation was (I apologize for having the temerity to show raw numbers,
but I couldn’t find a suitable graphic representation):

1.312500 −8.3333343E − 02 5.2083335E − 03 2.9154580E − 12
5.4817577E − 09 −4.2199644E − 09 −2.5573333E − 12 2.8602476E − 13
3.4990573E − 11 −4.1297177E − 10 −8.3333343E − 02 −2.3679786E − 12
2.3124791E − 15 −1.7574841E − 13 −3.4801828E − 10 3.0937783E − 10
5.6366680E − 15 −1.0001472E − 13 0.0000000E + 00 −3.7887658E − 11
5.2083340E − 03 .

(A-2)

For propagation where precision was reduced to 3 decimal points only, the correlation
was:

1.312500 −8.3329208E − 02 5.2077500E − 03 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 −2.0831001E − 05
5.2077517E − 06 4.1662315E − 05 −8.2350150E − 02 −2.0831001E − 05
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 2.0831001E − 05 −3.3329602E − 04
5.2077500E − 03 .

(A-3)

For propagation where precision was reduced to 2 decimal points only, the correlation
was:

1.312500 −7.8187048E − 02 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 4.6912231E − 03 −7.8187048E − 02 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 .

(A-4)

The correlation products are arranged in order of lags. Since the finite-difference
operator is two dimensional, the weights for U1 and U2 reappear at lags correspond-
ing to the wrap-around of the 1D filter around the edges of the 2D grid (in helical

SEP–142



Barak 19 Implicit helical finite-difference

coordinates). Therefore the 11th coefficient is equal to the 2nd coefficient, and the
21st is equal to the 3rd.

The 50 filter coefficients used to produce Figure 9:

1.000000 −5.5728100E − 02 −2.7755576E − 17 1.7347235E − 18
0.0000000E + 00 −6.7497938E − 21 8.2718061E − 25 7.7548182E − 26
8.2718061E − 25 2.6315262E − 28 1.4603365E − 29 2.0273725E − 28
6.7288147E − 32 3.7618776E − 33 −2.4442825E − 32 1.1651518E − 35
6.4931696E − 37 3.5264831E − 38 0.0000000E + 00 −2.3509887E − 38
0.0000000E + 00 .. .. ..

(A-5)

After lag 20, the coefficients were all zeros. The correlation of these coefficients was:

1.125000 −6.2500007E − 02 −3.1236769E − 17 1.9455218E − 18
4.2186216E − 22 −7.5700597E − 21 9.2285031E − 25 3.5272806E − 26
9.2768060E − 25 2.9421741E − 28 3.7068419E − 30 2.2736905E − 28
7.5229681E − 32 5.7466863E − 33 −2.7413771E − 32 1.3026792E − 35
7.2821997E − 37 3.9550105E − 38 0.0000000E + 00 −2.6366737E − 38
0.0000000E + 00 .. .. ..

(A-6)

SEP–142


