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Preface

The electronic version of this report1 makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library2. We assume you have
a UNIX workstation with Fortran, Fortran90, C, X-Windows system and the software
downloadable from our website (SEP makerules, SEPlib, and the SEP latex package),
or other free software such as SU. Before the publication of the electronic document,
someone other than the author tests the author’s claim by destroying and rebuilding
all ER figures. Some ER figures may not be reproducible by outsiders because they
depend on data sets that are too large to distribute, or data that we do not have
permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons for
the CR designation is that the processing requires 20 minutes or more, or commercial
packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel Fortran90 compiler), but the
code should be portable to other architectures. Reader’s suggestions are welcome. More
information on reproducing SEP’s electronic documents is available online3.

1http://sepwww.stanford.edu/private/docs/sep142
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html
3http://sepwww.stanford.edu/research/redoc/
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Target-oriented wavefield tomography: A field data example

Yaxun Tang and Biondo Biondi

ABSTRACT

We present a strategy for efficient migration velocity analysis in complex geological set-
tings. The proposed strategy contains two main steps: simulating a new data set using
an initial unfocused image and performing wavefield-based tomography using this data.
We show that the new data set can be synthesized for a specific target region where
velocities are inaccurate. We also show that the new data set can be much smaller than
the original one due to the target-oriented modeling strategy, but it contains necessary
velocity information for successful velocity analysis. These interesting features make
this new data set suitable for target-oriented, fast and interactive velocity modeling
building. We demonstrate the performance of our method on a selected 2-D line of a
3-D data set acquired from the Gulf of Mexico, where we update the subsalt velocity
in a target-oriented fashion and obtain a subsalt image with improved continuities and
signal to noise ratio.

INTRODUCTION

Velocity estimation is always a challenging task in exploration seismology. In the past
decade, ray-based tomography has been widely used in practice to derive velocity mod-
els. Although ray-based methods are efficient, the infinite-frequency approximation and
the caustics inherent in ray theory prevent them from accurately modeling complicated
wave phenomena (Hoffmann, 2001). As seismic exploration is moving towards structurally
complex areas, ray-based methods become less reliable. On the other hand, wave-equation-
based tomography (Tarantola, 1984; Mora, 1989; Woodward, 1992; Pratt, 1999; Sava, 2004;
Shen, 2004) uses wavefields as carriers of information. It more accurately describes the
bandlimited wave phenomena, and therefore more suitable for complex geologies.

Wavefield tomography can be implemented in either data domain or image domain. In
this paper, however, we mainly focus on the image-domain wavefield tomography, which is
also widely known as wave-equation migration velocity analysis (Sava, 2004; Shen, 2004).
It derives an optimum velocity model by driving an objective function defined in the image
domain to its minimum (or maximum). Despite its advantages in modeling bandlimited
wavefields, practical application of image-domain wavefield tomography is still rare and
small in scale due to its huge computational cost (Biondi and Sava, 1999; Shen et al., 2005;
Albertin et al., 2006). The high cost arises because of the use of more expensive wavefield
modeling engines. The other reason is that it lacks flexibility and the recorded whole data
set is usually used for velocity estimation.

Several methods have been proposed to make wavefield tomography more cost effective.
The main idea is to reduce the size of the data used for velocity estimation. One method
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is to assemble the originally recorded point-source gathers into a smaller number of areal-
source gathers. But this strategy lacks flexibility, and full-domain wavefield propagation is
still required at each velocity inversion iteration. Therefore, the cost reduction can not be
substantial.

Biondi (2006, 2007); Guerra et al. (2009); Guerra and Biondi (2010) approach this
problem in a completely different way. They synthesize a new data set based on the initial
image using the concept of prestack-exploding-reflector modeling. The new data set is then
used specifically for velocity analysis. The advantage of this strategy is that it can model
a new data set in a target-oriented fashion, therefore the wavefield propagation can be
restricted to regions with velocity inaccuracies, substantially reducing the computational
cost. However, the modeling generates crosstalk when multiple image events are modeled
simultaneously. This limits the number of reflectors to be modeled. Manual picking and
stochastic encoding methods, such as random-phase encoding, are required to minimize the
impact of the crosstalk (Guerra et al., 2009).

Another way to synthesize a target-oriented data set is through Born wavefield modeling,
or demigration (Tang and Biondi, 2010). This technique has been used by Wang et al.
(2005), who generate a post-stack data set and use it for efficient subsalt velocity scan.
In our method (Tang and Biondi, 2010), however, we generate a prestack Born data set
and use it for wavefield-based tomography. As shown by Tang and Biondi (2010), our
modeling strategy is very flexible. Except for windowing out the target image from the
initial image, no picking is necessary, but picking can also be introduced if it is desired.
Human intervention can also be incorporated by carefully conditioning the initial image to
be modeled.

Born wavefield modeling is based on the single-scattering approximation to the full wave
equation. The modeled data is obtained by convolving the incident source wavefield, com-
puted using any type of source function (e.g. plane-wave sources), with the initial image
and then propagating the convolved wavefields to receiver locations, which can be located
anywhere in the model. The target-oriented data set is obtained by only modeling image
points within a target zone or several key reflectors that carry important velocity infor-
mation. This target-oriented velocity analysis strategy is useful, because it allows us to
use the most powerful velocity estimation tool to focus on improving velocities in the most
challenging areas, e.g., subsalt regions, provided that velocities at other locations are suffi-
ciently accurate, e.g., regions above the salt, where the velocities are usually very accurately
determined even by ray-based tomography thanks to the relatively simple geologies.

In the next section, we briefly review the theory of Born modeling. In the subsequent
sections, we apply the proposed target-oriented velocity-estimation strategy to a field data
set acquired from the Gulf of Mexico.

THEORY

Our method can be formulated under the framework of seismic data mapping (SDM)
(Hubral et al., 1996; Bleistein and Jaramillo, 2000), where the idea is to transform the
original observed seismic data from one acquisition configuration to another with a de-
signed mapping operator. SDM can be summarized into two main steps as illustrated in
Figure 1: (1) apply the (pseudo) inverse of the designed mapping operator to the origi-
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nal data set to generate a model; (2) apply the forward mapping operator to the model
to generate a new data set with different acquisition configuration than the original one.
This idea has been widely used in the area of seismic data interpolation and regularization.
For example, in Radon-based interpolation methods (Sacchi and Ulrych, 1995; Trad et al.,
2002), Radon operator is used as the mapping operator to regularize the data; the azimuth
moveout (AMO) (Biondi et al., 1998) uses dip moveout (DMO) as the mapping operator
to transform the data from one azimuth to another.

Figure 1: Flow diagrams of seismic
data mapping. [NR] yaxun1/. sdm

New data

Observed data Inverse 
mapping

Forward
 

mapping

Model

In our method, we use wave-equation-based Born modeling or demigration as the map-
ping operator to peform data mapping. With an initial velocity model, seismic prestack
images can be obtained using the pseudo inverse of the Born modeling operator as follows:

m = H†
0L

∗
0dobs, (1)

where ∗ and † denote adjoint and pseudo inverse, respectively; m is the seismic image;
L0 is the Born modeling operator computed using initial velocity v0, whose adjoint L∗

0 is
the well-known depth migration operator; H0 is the Hessian operator (Plessix and Mulder,
2004; Valenciano, 2008; Tang, 2009); dobs is the observed surface data.

It is important to note that the seismic image m has to be parameterized as a function of
both spatial location and some prestack parameter, such as the subsurface offset, reflection
angle, etc., in order to preserve the velocity information for later velocity analysis (Tang
and Biondi, 2010). In this paper, we use the subsurface offset as our prestack parameter.
The significance of the Hessian operator in equation 1 is that its pseudo inverse removes the
influence of the original acquisition geometry in the least-squares sense and the resulting
image is independent from the original data. However, the full Hessian H0 is impossible to
obtain in practice due to its size and computational cost, we therefore approximate it by a
diagonal matrix as follows:

H0 ≈ diag{H0}. (2)

Substituting equation 2 into equation 1 yields

m = diag{H0}−1L∗
0dobs. (3)

Equation 3 is also widely known as normalized or amplitude-preserving migration (Plessix
and Mulder, 2004; Rickett, 2003; Tang, 2009).
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We obtain a target image mtarget by applying a selecting operator S to the initial image
as follows:

mtarget = Sm, (4)

where the selecting operator S can be simply a windowing operator. A new data set d̃obs

can then be simulated as follows:

d̃obs = L̃0mtarget, (5)

where L̃0 is the Born modeling operator computed using the same initial velocity v0, but
with different acquisition configuration. The wavefield propagation can be restricted to
regions with inaccurate velocities, and the modeled data can be collected at the top of the
target region. The target-oriented modeling strategy makes the new data set much smaller
than the original one. The new data set can be imaged using the migration operator, i.e.,
the adjoint of L̃, as follows:

m̃ = L̃∗d̃obs. (6)

We pose our velocity analysis problem as an optimization problem defined in the image
domain, where the objective function to minimize is defined as follows:

J = ||Dm̃||2, (7)

where D is the subsurface-offset-domain differential semblance operator (DSO) (Shen, 2004;
Shen and Symes, 2008), which is simply a multiplication of the subsurface offset. DSO
optimizes the velocity model by penalizing energy at non-zero subsurface offset, utilizing
the fact that subsurface-offset gathers should focus at zero subsurface offset if migrated
using an accurate velocity model. We evaluate the gradient of equation 7 using the adjoint-
state method (Shen and Symes, 2008; Sava and Vlad, 2008; Tang et al., 2008), and use
gradient-based methods to optimize the velocity model.

FIELD-DATA EXAMPLES

We test our method on a field data set acquired from the Gulf of Mexico. The data were
collected using a narrow azimuth towed streamer (NATS) acquisition system, and further
rotated using AMO (Biondi et al., 1998) into zero azimuth. We extracted one crossline from
the 3-D data set and performed a 2-D target-oriented wavefield tomography to estimate the
subsalt velocity. The extracted data contains 801 shots with the minimum and maximum
inline offset equal to 984 ft and 30839 ft. The frequency content ranges from 5 Hz to 35 Hz.

Figure 2 shows the initial velocity model for the extracted 2-D line. Velocities above the
target (outlined by a black box) and the salt interpretation are assumed to be accurate. The
goal is to invert for subsalt velocities inside the target region. The initial velocities inside
the box are set to be v(z). The initial image and subsurface-offset-domain common-image
gathers (SODCIGs) obtained using the original data and the initial velocity model is shown
in Figure 3. The amplitudes of the initial image have been balanced by the diagonal of the
Hessian (Figure 4) according to equation 3 to compensate for uneven subsalt illumination
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and remove the influence of the original data acquisition geometry. Note the unfocused
SODCIGs due to velocity errors.

Then we use the target image (Figure 3) and the Born modeling described in the previous
section to generate 31 plane-wave-source gathers at the top of the target region, where the
take-off angle is from −30◦ to 30◦. The same starting velocity model that was used for
migration (Figure 2) has been used for modeling, and the new data set is collected just
above the target region. We only model Born wavefields up to 25 Hz. Figure 5 shows the
image migrated using the new data set and the initial velocity (Figure 2). Note the same
kinematics shown in Figures 3 and 5. This suggests that the velocity information has been
successfully preserved using the new data set, which is substantially smaller compared to
the original one.

We minimize the objective function J (equation 7) using a nonlinear conjugate gradient
solver. Figure 6 shows the inverted velocity model after 30 iterations. We then migrate the
original data set using the inverted model and compare the result with that obtained using
the initial velocity model. Figures 7, 8 and 9 compare the stacked section (zero-subsurface-
offset image) using the initial and updated velocities. The image obtained using the inverted
velocity model shows improved continuities, better focusing and higher signal to noise ratio.
The angle domain common image gathers (ADCIGs) migrated using the inverted velocity
mode (Figure 10(b)) are also flatter comparing to those obtained using the initial velocity
model (Figure 10(a)).

Figure 2: The initial velocity model for the selected 2-D line. The black box outlined area
is the target region for velocity analysis. Velocities outside the region are assumed to be
accurate. [NR] yaxun1/. wemva-bpgom2d-bvel
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Figure 3: Initial target image and gathers obtained using the original data and the
initial velocity shown in Figure 2. Top panel shows the stacked image (zero subsur-
face offset); bottom panel shows the SODCIGs for different horizontal locations. [NR]
yaxun1/. wemva-bpgom2d-bimg-target-odcig
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Figure 4: The diagonal of Hessian for the target region. View descriptions are the same as
in Figure 3. [NR] yaxun1/. wemva-bpgom2d-bhes-target-odcig

Figure 5: Image and gathers obtained using the new data set and the initial
velocity (Figure 2). View descriptions are the same as in Figure 3. [NR]
yaxun1/. wemva-bpgom2d-bimg-odcig-born-planes
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Figure 6: The inverted velocity model after 30 nonlinear iterations. [NR]
yaxun1/. wemva-bpgom2d-invt-vmod

CONCLUSIONS

We have presented a cost-effective method for image-domain wavefield tomography. Instead
of using the original data set for velocity estimation, our method uses demigrated Born
data, which can be simulated in a target-oriented fashion and hence much smaller in size.
Field-data examples demonstrate that the simulated new data set can successfully preserve
velocity information that is useful for velocity analysis and can be used for velocity inversion
with low computational cost.
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Migration velocity analysis based on linearization of the
two-way wave equation

Ali Almomin and Yaxun Tang

ABSTRACT

Wave equation migration velocity analysis (WEMVA) is a family of techniques that
aims to improve the subsurface velocity model by minimizing the residual in image
space. This process is performed iteratively by linearizing the imaging operator in order
to relate image perturbations to model updates. This linearization is conventionally
based on the one-way wave equation, which has some pitfalls in terms of accuracy and
ability to image certain wavepaths in complex geology. We present a formulation of
WEMVA based on the two-way wave equation which can improve the accuracy of the
model estimate. There are two approximations used to linearize this operator. First is
the Born approximation and the second envolves dropping the second order slowness
perturbation term. In this paper, we show preliminary results of using the two-way
based WEMVA, as well as the resolution matrix of the operator.

INTRODUCTION

Seismic velocity analysis methods can be divided into two major groups. First, there are
techniques that aim at minimizing the misfit in the data domain such as full waveform
inversion (Tarantola, 1984; Luo and Schuster, 1990; Biondi, 2009). Second, there are other
techniques that aim at improving the quality in the image domain such as migration ve-
locity analysis (MVA)(Symes and Carazzone, 1991; Biondi and Sava, 1999; Shen, 2004).
These techniques try to measure the quality of the image several ways and then invert the
estimated image perturbation using a linearized wave equation operator. This tomographic
operator is based on a Taylor expansion of the image around a background slowness model.

There are several advantages to minimizing the residual in image-space, such as increas-
ing signal-to-noise ratio and decreasing the complexity of the data (Tang et al., 2008). The
linearization in WEMVA is conventionally done based on the one-way wave equation. This
approach has some advantages, such as the computational efficiency of one-way wave equa-
tion operators. However, it also suffers from disadvantages such as decreased accuracy or
the inability to model wide-angle propagations.

In this paper, we show the derivation of a linearized tomographic operator that is based
on the two-way wave equation. This operator is the essential part in constructing the
gradient of any two-way wave equation based MVA, such as WEMVA by residual moveout
fitting (Biondi, 2010). The two-way wave equation is linearized over slowness by dropping
the second order slowness perturbation term. Also, the Born approximation is used to

13
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derive this operator. We also show a few ways to interpret and implement this operator.
Finally, we show the resolution matrix of this operator.

THEORY

First, we start with the imaging condition as the following:

I(x,h) =
∑

ω,xs,xr

G∗(x− h,xs, ω)G∗(x + h,xr, ω)d(xr,xs, ω), (1)

where I is the image, G is the Green’s function, d is the surface data, xs and xr are
the source and receiver coordinates, h is the subsurface offset, x is the Green’s functions’
coordinate and ω is frequency. Next, we define the Green’s functions based on the two-way
wave equation as follows:(

∇2 + ω2s2(x)
)
G(x,xs, ω) = −δ(x− xs), (2)(

∇2 + ω2s2(x)
)
G(x,xr, ω) = −δ(x− xr), (3)

where s is slowness. Then, we can obtain the derivative of I with respect to the slowness
as follows;

∂I(x,h)
∂s(y)

=
∑

ω,xs,xr

(
∂G(x− h,xs, ω)

∂s(y)

)∗
G∗(x + h,xr, ω)d(xr,xs, ω)

+
∑

ω,xs,xr

G∗(x− h,xs, ω)
(

∂G(x + h,xr, ω)
∂s(y)

)∗
d(xr,xs, ω), (4)

where y is the slowness coordinate. Now, we can perturb the slowness:

s(x) = s0(x) + ∆s(x), (5)

where s0 is the background slowness. Then, we apply a first order approximation by squaring
the slowness and ignoring the second order perturbation term as follows:

s2(x) ≈ s2
0(x) + 2s0(x)∆s(x). (6)

We define a background Green’s function that corresponds to the background slowness:(
∇2 + ω2s2

0(x
)
G0(x,xs, ω) = −δ(x− xs). (7)

By substituting this into the original wave equation, we arrive at the following:(
∇2 + ω2s2

0(x)
)
G(x,xs, ω) = −2ω2s0(x)∆s(x)G(x,xs, ω)− δ(x− xs). (8)

Now, we apply Born’s approximation to simplify the previous equation to the following
expression: (

∇2 + ω2s2
0(x

)
∆G(x,xs, ω) = −2ω2s0(x)∆s(x)G0(x,xs, ω), (9)

where ∆G is the perturbed Green’s function. Then, we solve for the perturbed Green’s
function as follows:

∆G(x,xs, ω) = −2ω2
∑
y

s0(y)G0(y,xs, ω)∆s(y)G0(x,y, ω), (10)
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which enables us to find the derivative of the Green’s function with respect to slowness as
shown in the following:

∂G(x,xs, ω)
∂s(y)

= −2ω2s0(y)G0(y,xs, ω)G0(x,y, ω). (11)

We can follow the same steps for the receiver Green’s function to get:

∂G(x,xr, ω)
∂s(y)

= −2ω2s0(y)G0(y,xr, ω)G0(x,y, ω), (12)

Then, we substitute equations (11) and (12) in the image derivative to get the result:

∂I(x,h)
∂s(y)

|s0 =∑
ω,xs,xr

{
−2ω2s0(y)G∗

0(y,xs, ω)G∗
0(x− h,y, ω)

}
G∗

0(x + h,xr, ω)d(xr,xs, ω)

+
∑

ω,xs,xr

{
−2ω2s0(y)G∗

0(x− h,xs, ω)G∗
0(x + h,y, ω)

}
G∗

0(y,xr, ω)d(xr,xs, ω). (13)

Finally, we can express the image perturbation as the following:

∆I(x,h) =
∑
y

∂I(x,h)
∂s(y)

∆s(y)

=
∑

ω,xs,xr,y

{
−2ω2s0(y)G∗

0(y,xs, ω)G∗
0(x− h,y, ω)

}
G∗

0(x + h,xr, ω)d(xr,xs, ω)∆s(y)

+
∑

ω,xs,xr,y

{
−2ω2s0(y)G∗

0(x− h,xs, ω)G∗
0(x + h,y, ω)

}
G∗

0(y,xr, ω)d(xr,xs, ω)∆s(y),

(14)

Similarly, we can now compute the gradient, as given by:

∆s(y) =
∑
x,h

(
∂I(x,h)
∂s(y)

|s0

)∗
∆I(x,h)

=
∑

ω,xs,xr,x,h

{
−2ω2s0(y)G0(y,xs, ω)G0(x− h,y, ω)

}
G0(x + h,xr, ω)d∗(xr,xs, ω)∆I(x,h)

+
∑

ω,xs,xr,x,h

{
−2ω2s0(y)G0(x− h,xs, ω)G0(x + h,y, ω)

}
G0(y,xr, ω)d∗(xr,xs, ω)∆I(x,h)

= −2ω2s0(y)
∑

ω,xs,xr

G0(y,xs, ω)d∗(xr,xs, ω)
∑
x,h

G0(x− h,y, ω)G0(x + h,xr, ω)∆I(x,h)

− 2ω2s0(y)
∑

ω,xs,xr

G0(y,xr, ω)d∗(xr,xs, ω)
∑
x,h

G0(x + h,y, ω)G0(x− h,xs, ω)∆I(x,h).

(15)

INTERPRETATION

There are several ways to interpret equations (14) and (15). For simplicity, let us first break
each perturbation into two components, one from the source side and one from the receiver
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side. So, for equation (14), the first component will be as following:

∆IS(x,h) =
∑
ω,xs

{∑
y

−2ω2s0(y)G∗
0(y,xs, ω)∆s(y)G∗

0(x− h,y, ω)

}
{∑

xr

G∗
0(x + h,xr, ω)d(xr,xs, ω)

}
. (16)

Now, we can further break equation (16) into two components that we define as follows:

∆S(x− h,xs, ω) = −2ω2
∑
y

s0(y)G0(y,xs, ω)∆s(y)G0(x− h,y, ω), (17)

and
R0(x + h,xs, ω) =

∑
xr

G∗
0(x + h,xr, ω)d(xr,xs, ω). (18)

We can see that equation (17) represents the Born-modeled-wavefield due to the slowness
perturbation and equation (18) represents the background receiver wavefield. So, we can
now present the source side of the image perturbation as the following:

∆IS(x,h) =
∑
ω,xs

∆S∗0(x− h,xs, ω)R0(x + h,xs, ω). (19)

Now, we can perform a similar analysis on the other component of equation (14), which is:

∆IR(x,h) =
∑
ω,xs

G∗
0(x− h,xs, ω){

∑
y

−2ω2s0(y)G∗
0(x + h,y, ω)∆s(y)}

{
∑
xr

G∗
0(y,xr, ω)d(xr,xs, ω)}. (20)

Again, let us define a perturbed receiver wavefield and a background source wavefield as
the following:

R0(y,xs, ω) =
∑
xr

G∗
0(y,xr, ω)d(xr,xs, ω), (21)

∆R(x + h,xs, ω) = −2ω2
∑
y

s0(y)G∗
0(x + h,y, ω)∆s(y)R0(y,xs, ω), (22)

S0(x− h,xs, ω) = G0(x− h,xs, ω). (23)

This enables us to represent the receiver side of the image perturbation as the following:

∆IR(x,h) =
∑
ω,xs

S∗0(x− h,xs, ω)∆R(x + h,xs, ω). (24)

As for equation (15), we do the same analysis to arrive at the following gradient formulae:

∆sR(y) =
∑
ω,xs

S0(y,xs, ω)∆R∗(y,xs, ω), (25)

∆sS(y) =
∑
ω,xs

∆S(y,xs, ω)R∗
0(y,xs, ω), (26)
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where the residual wavefields are defined as the following:

∆R(y,xs, ω) = −2ω2
∑
x,h

s0(y)G∗
0(x− h,y, ω)∆I(x,h)R0(x + h,xs, ω), (27)

∆S(y,xs, ω) = −2ω2
∑
x,h

s0(y)G0(x + h,y, ω)G0(x− h,xs, ω)∆I(x,h). (28)

In summary, the tomographic operator computes the image perturbation or slowness per-
turbation by correlating background and residual wavefields of both source and receiver
sides.

SYNTHETIC EXAMPLES

Although the derivation was performed in the frequency-domain, we will apply the tomo-
graphic operator in the time-domain. First, we will start with a simple example with a
constant background velocity of 2500 m/s. The spatial sampling is 10 m and the temporal
sampling is 2 ms. A Ricker wavelet with a fundamental frequency of 20 Hz is used to model
the data. There is one reflector at the bottom of the model at a depth of 900 m. Now,
we will input a slowness perturbation to the forward operator to generate a corresponding
image perturbation. Three slowness perturbations are supplied. First, a spike located at
a depth of 400 m. Second, a vertical line extending from a depth of 300 m to 500 m.
Third, a horizonal line at a depth of 400 m. The three slowness perturbations are shown
in Figure 1. We apply the forward tomographic operator on these slowness perturbations
to get the corresponding image perturbations. Figure 2 shows the image perturbation (at
zero subsurface offset only). Then, we apply the adjoint tomographic operator to these
image perturbations to recreate the slowness perturbations. The results of applying the
adjoint scattering operator are shown in Figure 3. As expected, the reconstructed slowness
perturbations have higher horizontal resolution than vertical resolution. Figure 4 shows the
amplitude spectrum of the recreated slowness perturbation in Figure 3(a).

For a second test, we will repeat a similar experiment but with a different background
velocity model. As shown in Figure 5, the velocity model includes areas of low velocity to
the top, and areas of high velocity in the middle, representing a salt body. There is one
reflector at the bottom of the model at a depth of 3500 m. The spatial sampling is 25 m and
the temporal sampling is 4 ms. A Ricker wavelet with a fundamental frequency of 10 Hz
is used to model the data. The slowness perturbation is a spike located at a depth of 2600
m, which is located in between the reflector and the salt body. The corresponding image
perturbation resulted from applying the forward tomographic operator is shown in Figure
6(a) and the reconstructed slowness perturbation is shown in Figure 6(b). Figure 6(c)
shows the amplitude spectrum of the reconstructed slowness perturbation. The change in
the background velocity affected the reconstructed slowness perturbation, both in physical
space and in Fourier space.
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Figure 1: Three slowness perturbations that will be used in the forward operator. [ER]
ali1/. deltaS
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Figure 2: The three image perturbations corresponding to slowness perturbations in Figure
1, produced by the forward scattering operator. [ER] ali1/. deltaI
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Figure 3: The reconstructed slowness perturbations by the adjoint scattering operator.
[ER] ali1/. deltaS2
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Figure 4: The Fourier transform of spike response in Figure 3(a). [ER] ali1/. spect

Figure 5: The background velocity model for the second test. [ER] ali1/. velbg3
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Figure 6: Using the background velocity in Figure 5, (a) the image perturbation, (b) recon-
structed slowness perturbation, and (c) the Fourier transform for the reconstructed slowness
perturbation. [ER] ali1/. results3
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CONCLUSIONS

In this paper, we derived the tomographic operator for wave equation migration velocity
analysis tools based on the two-way wave equation. Only two approximations were used to
derive the tomographic operator. Then, we tested the operator using two synthetic velocity
models: first with constant velocity, and second with a more complex model that includes
a high velocity salt body. The operator seems to give satisfactory results in both physical
and Fourier spaces.

FUTURE WORK

The tomographic operator we derive can potentially produce superior results to the opera-
tors based on one-way wave equation since it can capture wave paths with more accuracy.
So, the next step is to test the migration velocity estimation results on a complex synthetic
model, where one-way propagation operators fail and measure the amount of improvement.
Then, the velocity estimation process should be tested on a real dataset.

Finally, since this method is very computationally intensive, it is crucial to adapt it on
accelerated and parallel processing units such as GPUs. This is especially attractive since
GPUs are particularly efficient for finite-difference-based convolution algorithms such as
propagation in time domain.
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Wave-equation migration velocity analysis by residual
moveout fitting

Biondo Biondi

ABSTRACT

Flatness in migrated angle-domain common image gathers is an effective criterion for
measuring migration-velocity accuracy. An objective function that measures the power
of the stack as a function of residual-moveout parameters directly, and indirectly as a
function of migration velocity, can be robustly maximized by using a gradient-based
method. This paper presents a method to compute the gradient of this objective func-
tion by wave-equation operators. The proposed algorithm has the additional advantage
of not requiring the picking of the residual-moveout parameters.

INTRODUCTION

In this paper I build on the framework I presented in Biondi (2010). In that report I
presented a tomographic velocity estimation that aims to maximize image focusing using
wave-equation operators. In SEP 140 I developed the theory and showed the results of
numerical tests for a transmission tomography problem, because transmission tomography
is simpler than reflection tomography. In this paper I extend that theory to the broader
application of migration velocity analysis (MVA).

Conventional MVA methods are often based on the maximization of the stack power of
migrated angle-domain common image gathers. However, direct maximization of the stack
power as a function of velocity by wave-equation operators has well-known convergence
problems (Chavent and Jacewitz, 1995; Biondi, 2006; Symes, 2008). To overcome these
challenges, I propose to maximize stack power as a function of residual-moveout parameters,
instead of directly as a function of velocity. In turn, the residual-moveout parameters are
defined as solutions of fitting problems that maximize the correlation between the moved-
out gathers and the gathers obtained by migrating the recorded data with the given velocity.
These fitting problems can be quickly solved by using one-parameter gradient methods and
thus do not require the explicit picking of residual-moveout parameters. The avoidance of
parameter picking is an important advantage with respect to conventional wave-equation
MVA methods (Biondi and Sava, 1999; Sava and Biondi, 2004a,b; Sava, 2004).

This paper presents just the theoretical development without any numerical examples
illustrating the proposed method. I plan to present the application and the testing of this
theory in upcoming reports.

THEORY

In wave-equation migration, as for example reverse-time migration, the image is computed
from the back-propagated receiver wavefield, Pg (t, ~x, xs; s), and the forward-propagated

25
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source wavefield, Ps (t, ~x, xs; s), where t is the recording time, ~x = z~z0 + x~x0 is the model-
coordinate vector, xs is the source position at the surface, and s (~x) is the slowness model.

The prestack image, Ih (~x, xh), is computed as the zero lag of the temporal cross-
correlation between the spatially-shifted back-propagated receiver wavefield and forward-
propagated source wavefield as (Rickett and Sava, 2002):

Ih (~x, ~xh) [Ps (t, ~x) , Pg (t, ~x)] =
∑

t

∑
xs

Pg (t, ~x− ~xh, xs) Ps (t, ~x + ~xh, xs) , (1)

where ~xh = xh~x0 is the half subsurface offset, which in this paper I will assume to be
horizontal, but it does not need to be in the general case (Biondi and Symes, 2004).

The prestack image as a function of subsurface offset can be transformed to an image
as a function of reflection aperture angle, Iγ (~x, γ) by using a linear operator Γ (Sava and
Fomel, 2003). In matrix notation, if Ih is a N~xNh × 1 matrix and Iγ is a N~xNγ × 1 matrix,
the image transformation from subsurface offset into the angle domain can be expressed as:

Iγ = ΓIh. (2)

I introduce an objective function that maximizes the flatness of the angle-domain image
along the aperture-angle axis at all spatial locations ~x. This objective function aims at
maximizing image flatness not directly as a function of the slowness, but indirectly through
the application of an angle-domain moveout operator Mγ , which depends on the column
vector of Nµ = N~x moveout parameters µ~x.

I define the application of the moveout operatorsMγ to a prestack image computed by
equations 1 and 2 with a background slowness s̄, as

Iγ

(
~x + ~ζ (µ~x) , γ; s̄

)
=Mγ [µ~x] Iγ (~x, γ; s̄) , (3)

where ~ζ (µ~x) = ζ (µ~x)~z0 are the moveout shifts, assumed here to be simple depth shifts.
The operatorMγ is linear with respect to the input image, but it is nonlinear with respect
to the vector of moveout parameters µ~x. In matrix notation, the application of the moveout
operator to the background image Īγ can be expressed as Mγ [µ~x] Īγ .

I further define the stacking operator Sγ that sums the image along the aperture-angle
axis γ. I can now introduce the objective function that measures the flatness of the image
as:

J (µ~x (s)) =
1
2

∥∥SγMγ [µ~x (s)] Īγ

∥∥2

2
, (4)

where s is the slowness vector. This objective function is not a direct function of s, but
it depends on it indirectly through the moveout parameters µ~x. The dependency of the
moveout parameters from the slowness function is not defined explicitly; these parameters
are defined as the solutions of N~x independent fitting problems, one for each spatial location
in the image.

The fitting problems maximize the zero lag of the cross-correlation between the prestack
image computed for a realization of the slowness vector s and the moved-out image computed
with the background slowness s̄. For the sake of keeping the notation as compact as possible,
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I combine the N~x independent fitting problems into one by defining the following objective
function:

JF (µ~x (s)) = S~x

〈
Mγ [µ~x] Īγ , Iγ (s)

〉
γ
, (5)

where with the notation 〈x,y〉γ I indicate the ensemble of inner products between the
image vectors x and y which spans only the aperture-angle axis γ; the result of these inner
products is a vector of length N~x. The stacking operator S~x sums the elements of this vector
to combine the objective functions into one.

The vector of moveout parameters is therefore the solutions of the following maximiza-
tion problem:

max
µ~x

JF (µ~x (s)) . (6)

For velocity estimation in the angle domain, an effective parametrization of the moveout
is the ”curvature” µ~x, that defines the following moveout equation

ζ (µx) = µ~x tan2 γ. (7)

Notice that when the slowness s is equal to the background slowness s̄, the corresponding
best-fitting moveout parameters µ̄~x are obviously the ones corresponding to no moveout;
that is, ζ (µ̄~x) = 0, and consequently µ̄~x = 0.

Gradient of the objective function

I plan to solve the optimization problem defined in 4 by a gradient-based optimization
algorithm. Therefore, the development of an algorithm for efficiently computing the gradient
of the objective function with respect to slowness is an essential step to make the method
practical. In this section I outline the methodology to compute the gradient, and I leave
some of the details to Appendix A.

The gradient is computed using the chain rule. The first term of the chain is the
derivative of the objective function in equation 4 with respect the moveout parameters.
The second term is the derivatives of the moveout parameters with respect to slowness that
are computed from the objective function 5.

Derivatives of objective function (J) with respect to moveout parameters (µ~x)

The derivatives of 4 with respect to the vector of moveout parameters is easily evaluated
using the following expression:

∂J

µ~x

′
=

∂Mγ

∂µ~x

′
S′γSγMγ [µ̄~x] Īγ . (8)

The linear operator ∂Mγ

∂µ~x
can be represented as a N~xNγ×Nµx matrix. The elements of this

matrix are given by:

∂Mγ

∂µ~x

(~x, γ, µ~x) =Mγ [µ~x]
.

Iγ (~x, γ; s̄)︸ ︷︷ ︸
I

∂ζ

∂µ~x︸︷︷︸
II

. (9)
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The first term (I) is given by the depth-derivative of the image ∂Iγ (~x, γ; s̄) /∂z after move-
out. This term can be numerically evaluated by applying to the moved-out image a finite-
difference approximation of the first-derivative operator. The second term (II) is different
from zero only when the spatial coordinate ~x of the image element Iγ (~x, γ) is the same as
the coordinate corresponding to the moveout parameter µ~x. When they do, and for the
choice of moveout parameters expressed in equation 7, we have ∂ζ/∂µ~x = tan2 γ.

The preceding expression simplifies when the gradient is evaluated for µ~x = 0. This
simplifying condition is actually always fulfilled unless the optimization algorithm includes
inner iterations for fitting the moveout parameters using a linearized approach. Under this
condition, equation 8 becomes

∂J

µ~x

∣∣∣∣′
µ~x=0

=
∂Mγ

∂µ~x

∣∣∣∣′
µ~x=0

S′γSγ Īγ , (10)

and equation 9 becomes

∂Mγ

∂µ~x

(~x, γ, µ~x = 0) =
.

Iγ (~x, γ; s̄)
∂ζ

∂µ~x

. (11)

Derivatives of moveout parameters (µ~x) with respect to slowness (s)

The evaluation of the derivatives of the moveout parameters with respect to slowness takes
advantage of the fact that we need to evaluate the derivatives only at maxima for the
objective function in equation 5. At the maxima, the objective function is stationary and
thus its derivatives with respect to the moveout parameters are zero, and we can write:

∂JF (µ~x)
∂µ~x

∣∣∣∣
µ~x=µ̄~x

=
.

JF (µ̄~x) = S~x

〈
∂Mγ

∂µ~x

∣∣∣∣
µ~x=µ̄~x

, Iγ

〉
γ

= 0. (12)

As discussed above, the derivatives in the second term (II) of equation 9 are different from
zero only when the moveout coefficient µ~x and the image element share the same spatial
coordinate. Consequently, for each µx there is only one ~x for which the inner products
above are different from zero. Equation 12 can thus be simplified into:

.
JF (µ̄~x) =

〈
∂Mγ

∂µ~x

∣∣∣∣
µ~x=µ̄~x

, Iγ

〉
γ

= 0. (13)

Using the rule for differentiating implicit functions, and taking advantage of the fact
that the fitting problems are all independent from each other (i.e. the cross derivatives
with respect to the moveout parameters are all zero), we can formally write:

∂µ~x

∂s

∣∣∣∣
µx=µ̄~x

= −
∂

.
JF(µ~x)

∂s

∂
.

JF(µ~x)
∂µ~x

. (14)

From equation 13 and 14, the derivative of the local moveout parameters with respect
to slowness is:



SEP-142 Wave-equation MVA 29

∂µ~x

∂s

∣∣∣∣
µx=µ̄~x

= −

〈
∂Mγ

∂µ~x

∣∣∣
µ~x=µ̄~x

,
∂Iγ

∂s

〉
γ〈

∂2Mγ

∂µ2
~x

∣∣∣
µ~x=µ̄~x

, Iγ

〉
γ

. (15)

Appendix A presents the development for the expressions to compute the terms ∂2Mγ/∂µ2
~x

(A-3), and ∂Iγ/∂s (A-5).

Combining the derivatives in equation 15 with the derivatives in equations 10-11 we can
easily compute the gradient of the objective function 4 with respect to slowness that can
be written, when µ̄~x = 0, as:

∇J = −
(

∂Ps

∂s

′
P̄′

g +
∂Pg

∂s

′
P̄′

s

)
Γ′︸ ︷︷ ︸

I

∂Mγ

∂µ~x︸ ︷︷ ︸
II

∂Mγ

∂µ~x

′
S′γSγ Īγ

∂2Mγ

∂µ2
~x

′
Īγ

.

︸ ︷︷ ︸
III

(16)

I will now examine the effects of each of the terms in equation 16 starting from the rightmost
one. The third term (III) produces a scalar for each local curvature parameter µ~x. This
scalar multiplies the image for each physical location after it has been differentiated in depth
and scaled by ∂ζ/∂µx, as described by the second term (II). Notice that the phase introduced
by the depth derivative of the image in (II) is crucial for the successful backprojection
into the slowness model that is accomplished by the first term (I). In this term, first Γ′

transforms the image from the aperture-angle domain into the subsurface-offset domain.
The transformed image is scaled, horizontally shifted, and spread across the shot axis by
the application of P̄′

s and P̄′
g. Finally, the adjoint of operators ∂Ps

∂s

′
and ∂Pg

∂s

′
backproject the

image perturbations into the slowness model along the source wavepaths and the receiver
wavepaths, respectively.

Computational cost

The computational cost and storage overheads for evaluating terms II and III in the gradient
expression 16 are limited because only operations on the prestack image are required. On
the contrary, the computation of term I is computationally more demanding. It requires
the forward propagation and backward propagation of wavefields. The application of P̄′

s

and P̄′
g requires the storage, and retrieval, of the source wavefield and receiver wavefield.

Furthermore, to apply ∂Ps
∂s

′
and ∂Pg

∂s

′
we need to correlate the source and receiver wavefields

with the wavefields generated by the image derivatives. In summary, the computational cost
of one gradient computation of the proposed method can be roughly estimated to be twice
the computational cost of one gradient computation of a full-waveform inversion algorithm.
The factor of two occurs because two propagations are needed to backproject the image
perturbations into the slowness model along both the source wavepaths and the receiver
wavepaths.

The data-handling task could be simplified if the frequency-domain downward-continuation
migration is used instead of reverse-time migration, because computations can be performed
independently for each frequency. The adaptation of the theory presented in this paper to
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downward-continuation migration is fairly straightforward. It would only require to ex-
change expressions 1 and A-4 with the corresponding frequency-domain expressions.

CONCLUSIONS

The theoretical framework I presented in Biondi (2010) can be extended from transmission-
tomography problems to MVA problems. The computational cost of the proposed method
can be high, though the cost of one iteration is comparable with the cost of one iteration
of full waveform inversion. Numerical tests of the gradient operator and of the complete
velocity-estimation method are needed.
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APPENDIX A

DETAILS OF GRADIENT COMPUTATION

In this appendix I present the analytical development needed to compute all the terms in
equation 16. Equations 14 and 15 provide the expression for computing the derivatives of
the moveout parameters with respect to slowness as:

∂µ~x

∂s

∣∣∣∣
µx=µ̄~x

= −
∂

.
JF(µ~x)

∂s

∂
.

JF(µ~x)
∂µ~x

= −

〈
∂Mγ

∂µ~x

∣∣∣
µ~x=µ̄~x

,
∂Iγ

∂s

〉
γ〈

∂2Mγ

∂µ2
~x

∣∣∣
µ~x=µ̄~x

, Iγ

〉
γ

, (A-1)

where the elements of the matrix ∂Mγ

∂µ~x
are computed using either equation 9 or equation 11,

and the elements of the matrix ∂2Mγ

∂µ2
~x

are given by

∂2Mγ

∂µ2
~x

(~x, γ, µ~x) =Mγ [µ~x]
.

Iγ (~x, γ; s̄)
∂2ζ

∂µ2
x

+Mγ [µ~x]
..
Iγ (~x, γ; s̄)

∂ζ

∂µx
.

In this last expression
..
Iγ (~x, γ; s̄) = ∂2Iγ (~x, γ; s̄) /∂z2. Given the moveout parametrization

expressed in 7, ∂2ζ/∂µ2
x = 0 and the previous expression simplifies into the following:

∂2Mγ

∂µ2
~x

=Mγ [µ~x]
..
Iγ (~x, γ; s̄)

∂ζ

∂µx
. (A-2)

Furthermore, when µ̄~x = 0, equation A-2 further simplifies into:

∂2Mγ

∂µ2
~x

=
..
Iγ (~x, γ; s̄)

∂ζ

∂µx
. (A-3)

The derivative of the image vector with respect to slowness, ∂Iγ/∂s are evaluated by
applying the conventional wave-equation tomography operator that links perturbations in
the slowness model to perturbations in the propagated wavefields by a first-order Born
linearization of the wave equation.

Applying the chain rule to equation 1, and taking into account the offset-to-angle trans-
formation 2, we can write

∂Iγ (~x, γ; s)
∂s

=

Γ
∑

t

∑
xs

[
P̄g (t, ~x− ~xh, xs)

∂Ps (t, ~x + ~xh, xs)
∂s

+ P̄s (t, ~x− ~xh, xs)
∂Pg (t, ~x− ~xh, xs)

∂s

]
,

(A-4)

where the wavefields P̄s and P̄g are computed with the background slowness, and the wave-
field derivatives ∂Ps/∂s and ∂Pg/∂s are computed by the conventional adjoint-state method-
ology that is at the basis of full waveform inversion and wave-equation tomography.
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In more compact matrix notation the previous expression can be written as

∂Iγ

∂s
= Γ

(
P̄g

∂Ps

∂s
+ P̄s

∂Pg

∂s

)
, (A-5)

where the matrices P̄s and P̄g are composed of the wavefields for every source and depth
level, and properly shifted in space by the subsurface offset. For the computation of the
gradient, we need to apply the adjoint operator that is:

∂Iγ

∂s

′
=

(
∂Ps

∂s

′
P̄′

g +
∂Pg

∂s

′
P̄′

s

)
Γ′. (A-6)

Almomin and Tang (2010) present an equivalent, but different, derivation of an algo-
rithm to compute the application of the operator ∂Iγ

∂s , (or its adjoint) to a vector of slowness
perturbations (or image perturbations).
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Seismic reservoir monitoring with encoded permanent
seismic arrays

Gboyega Ayeni

ABSTRACT

Hydrocarbon reservoirs can be efficiently monitored with encoded data recorded by
permanent seismic arrays. Permanent seismic sources and receivers can yield a vast
amount of data that may enable near–real-time monitoring. I propose an encoding ap-
proach that may overcome some of the operational, storage and processing challenges
posed by these vast data volumes. Although data encoding introduces cross-talk arti-
facts, permanent arrays allow for good repeatability of such artifacts, thereby aiding
time-lapse seismic cross-equalization. Because the proposed method utilize low-energy
intermittent seismic sweeps, data must be recorded for longer durations compared to
conventional data recording. Direct migration of these long-duration data is efficient
and gives good-quality time-lapse images. Using a 2D numerical model, I show that
this method can produce reliable time-lapse images of comparable quality to those from
conventional seismic sources.

INTRODUCTION

Time-lapse seismic reservoir monitoring is an established technology. By repeating the seis-
mic experiment over an evolving reservoir, changes in reservoir properties can be estimated
from seismic amplitude and travel-time changes. Many successful case studies demonstrate
the technical considerations and business impact of time-lapse seismic (Rickett and Lumley,
2001; Whitcombe et al., 2004; Ebaid et al., 2009).

By enabling seismic recordings at small time intervals, permanent seismic arrays can
make near–real-time reservoir monitoring possible. Lumley (2001, 2004) discusses important
business and technical drivers for permanent seismic arrays. Several field experiments have
been published (Meunier et al., 2001; Smit et al., 2005; Forgues et al., 2006). Because
permanent arrays do not suffer from positioning errors, seismic experiments can be repeated
with high accuracy. However, in addition to the high operation and storage costs of the
recorded data volumes, conventional processing cost of the recorded data can be high.
Although, under certain conditions, simple (e.g. NMO) processing can give satisfactory
results (Forgues et al., 2006), such methods are inadequate in many geological environments.
In this paper, I show that direct wave-equation migration of encoded data sets from such
permanent recording systems can provide high-quality time-lapse images at relatively low
cost.

Encoded seismic data recording with permanent seismic arrays straddles conventional
and passive data recording. Although our understanding of passive data imaging has im-
proved over the past decade, several limitations still exist. Direct imaging of passive data
suffers several pitfalls (Artman, 2006), and interferometric Green’s function retrieval is
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computationally expensive (de Ridder, 2009). In many scenarios, seismic reservoir moni-
toring with interferometric Green’s function from surface passive seismic arrays is difficult
(Lu et al., 2009). However, reservoir monitoring with active (virtual) source and ambient-
noise interferometric Green’s functions have been shown for borehole sensors (Bakulin and
Calvert, 2004; Lu et al., 2009). Furthermore, it has been demonstrated that interferometric
Green’s functions from borehole systems may give satisfactory time-lapse responses in the
well vicinity (Bakulin and Calvert, 2004; Lu et al., 2009). The proposed recording approach
may overcome some of the current limitations in reservoir monitoring with pure passive
data or well-bore virtual source methods.

Although encoded seismic recording is not new (Womack et al., 1990), recent advances
in acquisition and processing technology have increased interest in the subject (Hampson
et al., 2008; Beasley, 2008; Berkhout et al., 2008; Howe et al., 2009). Direct imaging of
such encoded data is possible but suffers from cross-talk between data sets from different
shots (Romero et al., 2000; Artman, 2006). To directly image field-encoded time-lapse
data sets from non-permanent seismic arrays, a linearized inversion method can be used to
attenuate artifacts caused by non-repeatable geometry and relative shot delays (Ayeni et al.,
2009). Because permanent seismic arrays enable excellent repeatability of the geometry
and encoding function, cross-term artifacts are similar between consecutive surveys, and
linearized inversion is unnecessary.

To ensure good repeatability over the monitoring period, to limit operational cost, and
to limit environmental impact, low-energy, low-footprint seismic sources are desirable. Each
source waveform may be a long-duration sweep (Forgues et al., 2006), or intermittent sweeps
from an idealized source. By stacking data from several low-energy sources, the signal-to-
noise (S/N) ratio is increased and sufficiently high-quality data and images can be obtained.
Encoding is important, because it reduces the total recording time for several shots, each
requiring a long recording duration. In this paper, it is assumed that these conceptual
low-energy sources are randomly and intermittently ignited over a long time period.

Using a phase-encoding migration operator and the relative time-delays between sources,
the encoded data are migrated without any separation or interferometric Green’s function
retrieval. Because all the data are migrated with a baseline velocity model, images from
different vintages are not aligned and must be cross-equalized. In this paper, the data are
cross-equalized using a cyclic 1D correlation algorithm and an optimized local-matching
method (?).

First, we give a conceptual description of the proposed data recording and imaging
methods. Next, we summarize the cross-equalization methodology that is applied. Finally,
using five data sets from a 2D numerical model, we show that the proposed method gives
good-quality time-lapse images.

DATA RECORDING AND IMAGING

From the linearized Born approximation of the acoustic wave equation, the seismic data d
recorded by a receiver at xr due to a shot at xs is given by

d(xs,xr, ω) = ω2
∑
x

fs(ω)G(xs,x, ω)G(x,xr, ω)m(x), (1)
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where ω is frequency, m(x) is the reflectivity at image points x, fs(ω) is the source wavelet,
and G(xs,x, ω) and G(x,xr, ω) are the Green’s functions from xs to x and from x to xr,
respectively. When there are multiple seismic sources, the recorded seismic data is due
to a concatenation of phase-shifted sources. For example, the recorded data due to shots
starting from s = q to s = p, is given by

d(xspq ,xr, ω) =
q∑

s=p

a(γs)ω2
∑
x

fs(ω)G(xs,x, ω)G(x,xr, ω)m(x), (2)

where a(γs) is given by
a(γs) = eiγs = eiωts , (3)

and γs, the phase-shift function, depends on the delay time ts.

Randomized intermittent shooting of several shots is equivalent to repetition of equa-
tion 2 with a spatially and temporally varying encoding function. The recorded data are
similar to passive data, except that all shot positions and timings are known. Therefore, the
recording experiment can be regarded as a controlled-source continuous-recording experi-
ment. Figures 1 and 2 show examples of idealized source waveforms at six shot positions.
It is assumed that these sources are orders of magnitude weaker than conventional seismic
sources and that data from a single sweep is insufficient to create a good-quality image.

Direct imaging of the recorded data, the adjoint to equation 2, is a linear phase-encoding
migration operator (Romero et al., 2000). This is equivalent to a single shot-profile migra-
tion of the recorded data with an areal source-function derived by concatenating delayed
source waveforms from all shot positions.

CROSS-EQUALIZATION

Cross-equalization processing removes unwanted differences between the imaged data sets.
Such differences may be caused by uncorrelated noise or geomechanical changes. The post-
imaging procedure can be divided into two steps. First, because direct velocity analysis
with the recorded data is difficult, we assume that a baseline velocity model built from
conventional seismic data will be used to image all data sets. This leads to image mis-
alignment due to reservoir compaction and velocity changes between surveys. To align the
monitor and baseline images, a cyclic 1D correlation method is used to estimate vertical and
horizontal displacement components (Hale, 2009). The aligned images are then matched
using an optimized matching procedure. Match filters estimated in non-reservoir regions
are applied to the monitor data on a trace-by-trace basis. These cross-equalization steps
are discussed in detail by ?.

NUMERICAL EXAMPLE

Five data sets were modeled over a modified section of the 2D Marmousi model (Figure 3).
The objective is to image seismic amplitude and geomechanical changes around the reservoir
using encoded data sets from permanent arrays. Non-linear, discontinuous changes in the
reservoir were modeled by velocity changes within the reservoir. Geomechanical changes
due to reservoir compaction were modeled by a morphed expanding gaussian anomaly above
the reservoir.
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Figure 1: First 150 seconds of the 320 seconds long source waveforms at six source posi-
tions. Note that the relative delays between intermittent sweeps from different sources are
determined by the encoding function in equation 3. [ER]. gayeni1/. perm-src
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Figure 2: First 12 seconds of the source waveforms shown in Figure 1. Note that there
are temporal and spatial differences in the starting times of the seismic sweep at all shot
positions. [ER]. gayeni1/. perm-src-
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Figure 3: 2D Marmousi velocity model.[ER]. gayeni1/. vel-1
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Each surface seismic source generates an intermittent sweep within a six-second window
with unique random zero- to three-second delays between sources. 320 seconds of data from
388 seismic sources were recorded by surface receivers (Figure 4). Although it was not
essential, because this method allows for perfect repeatability, the same encoding function
was used for all surveys. However, different amounts of ambient noise (coherent plane-wave
and uniform-distribution random noise) were introduced for each survey to produce data
at S/N of 4:1. For each survey, using a strongly smoothed version of the baseline modeling
velocity, all data were imaged directly with a phase-encoding one-way wave equation algo-
rithm. For comparison, images from noise-free conventional data and processing are shown
in Figure 5, those from only 6 seconds of data are shown in Figure 6, and those from the
full 320 seconds of data are shown in Figure 7. Note that the longer data records (Figure 7)
produce cleaner images than the shorter data records (Figure 6). Note that in the encoded
data examples, only a single phase encoded shot-profile migration was required for each
survey.

Time-lapse images computed from the migrated images show significant misalignments
(Figure 8). Results obtained after alignment and after match filtering are shown in Fig-
ures 9 and 10. Note that time-lapse images obtained after matching are comparable to
those obtained from the conventional example (Figure 11). In addition, note that appar-
ent displacements—which carry geomechanical information—estimated from the proposed
method (Figure 12) and from conventional methods (Figure 13) are similar.

DISCUSSION

Data from permanent encoded low-energy seismic sources have the form of passive data
recording (Figure 4). However, because the shot locations and timings are known and
can be perfectly repeated, a strong limitation of passive data is eliminated. Furthermore,
because the seismic array is permanent, data recording can be repeated perfectly. If these
data sets are recorded for long enough, direct imaging of these randomly encoded data can
give images of comparable quality to conventional data recording and processing (Figures 5
to 7). The poor resolution of these images in Figure 7 is due to the fact that these data were
imaged with the original seismic sweeps without any source designature. These results and
it’s derivatives can be imporved significantly by first deconvolving the source wavelet before
migration. Even then, during imaging wavefield correlations, ambient noise and cross-talk
artifacts from different seismic sweeps destructively interfere, whereas the true reflections
constructively interfere. Whereas, the images from the short-duration data (Figure 6) are
not clean enough to generate reliable time-lapse images, those from the long-duration data
(Figure 7) are clean enough to generate interpretable time-lapse images.

It is important that the time-lapse images obtained from this type of recording can pro-
vide information similar to that provided by conventional recordings. The time-lapse images
computed prior to cross-equalization (Figure 8) are similar to those from conventional data
recording and processing (not shown). After cross-equalization, time-lapse images from the
proposed method and from conventional methods are similar (Figures 10 and 11). Even
when all the data recorded using the proposed method are imaged with a strongly smoothed
baseline velocity model, interpretable geomechanical information can still be obtained (Fig-
ure 12). These apparent displacement components are similar to those from conventional
time-lapse seismic data (Figure 13).
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Figure 4: Five seismic data sets from intermittent seismic sweeps over the model in Figure 3.
The intersecting lines indicate positions of the three panels within the data volume. [CR]
gayeni1/. pdatn288
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With this approach, there can be significant cost-savings in both data acquisition and
processing. Encoding eliminates the need for long waiting periods that would be otherwise
required for low-energy seismic sources that require data stacking. In addition, encoding
reduces the data storage requirements. Furthermore, independent of the number of encoded
sources, direct imaging can be posed as a single phase-encoding shot-profile migration.

CONCLUSIONS

A method for reservoir monitoring with encoded data from permanent seismic arrays has
been proposed. Encoding randomly delayed intermittent sweeps from low-energy sources
reduces the total recording time for each seismic experiment. Direct imaging of such data
give good-quality images that can be used for near-continuous reservoir monitoring. The
numerical experiment shows that seismic amplitude and geomechanical changes from the
proposed method are similar to those from conventional seismic data.
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(a)
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(d)
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Figure 5: Images from shot-profile imaging of noise-free conventional data over five models
modified from Figure 3. [CR] gayeni1/. pmigN1,pmigN2,pmigN3,pmigN4,pmigN5
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(a)
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(d)
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Figure 6: Images from direct imaging of 6 seconds encoded intermittent source data
(Figure 4). Note the presence of numerous crosstalk and ambient noise artifacts. [CR]
gayeni1/. pmig0n-6-1,pmig2n-6-2,pmig2n-6-3,pmig2n-6-4,pmig2n-6-5
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Figure 7: Images from direct imaging of 320 seconds of encoded intermittent sweep
data (Figure 4). Note that the crosstalk and ambient noise artifacts in Figure 6 have
been attenuated. Note that these images are comparable to those in Figure 5. [CR]
gayeni1/. pmig0n-288-1,pmig2n-288-2,pmig2n-288-3,pmig2n-288-4,pmig2n-288-5
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(a)

(b)

(c)

(d)

Figure 8: Time-lapse images from direct imaging of encoded intermittent source data
(Figure 4). Note that the seismic amplitude changes at the reservoir are masked
by the strong misalignment of the images which result from migration with a wrong
baseline velocity. Reservoir change increases non-linearly from top to bottom. [CR]
gayeni1/. pmig0n-288-4d-2,pmig0n-288-4d-3,pmig0n-288-4d-4,pmig0n-288-4d-5
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(a)

(b)

(c)

(d)

Figure 9: Time-lapse images from direct imaging of encoded intermittent source data
(Figure 4) after cyclic 1D warping to remove image misalignments. Note that the
seismic amplitude changes at the reservoir are better clearly defined than in Fig-
ure 8. However some artifacts (e.g. from the over-hanging salt wedge) persist. [CR]
gayeni1/. pmig1n-288-4d-2,pmig1n-288-4d-3,pmig1n-288-4d-4,pmig1n-288-4d-5
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(a)

(b)

(c)

(d)

Figure 10: Time-lapse images from direct imaging of encoded intermittent
source data (Figure 8) after match-filtering to remove residual artifacts. Com-
pare this to Figures 8 and 9. Note that the seismic amplitude change
(and discontinuities) are accurately imaged by the proposed method. [CR]
gayeni1/. pmig2n-288-4d-2,pmig2n-288-4d-3,pmig2n-288-4d-4,pmig2n-288-4d-5
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(a)

(b)

(c)

(d)

Figure 11: Time-lapse images from from conventional (single-source, high-energy,
shot-period) seismic data after warping and match-filtering. These results were
obtained using the same models as in the intermittent-source case. Note that
these results are similar to those from the proposed method (Figure 10). [CR]
gayeni1/. pmigN-4d-2,pmigN-4d-3,pmigN-4d-4,pmigN-4d-5
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(a)

(b)

(c)

(d)

Figure 12: Vertical components of the apparent displacement vectors computed by warp-
ing the monitor images in Figure 7 to the Baseline (Figure 7(a)). Note that these
are similar to those from conventional data recording/processing (Figure 13). [CR]
gayeni1/. ptsn-288-2,ptsn-288-3,ptsn-288-4,ptsn-288-5
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(a)

(b)

(c)

(d)

Figure 13: Vertical components of the apparent displacement vectors computed by
warping the monitor images in Figure 5 to the Baseline (Figure 5(a)). Note that,
in general, these are similar to those from the proposed method (Figure 12). [CR]
gayeni1/. ptsn2,ptsn3,ptsn4,ptsn5
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On the separation of simultaneous-source data by inversion

Gboyega Ayeni, Ali Almomin, and Dave Nichols

ABSTRACT

Simultaneous-source data can be adequately separated using an inversion formulation.
To recover component shot records, we formulate the data-separation problem as a
simultaneous Radon inversion problem. By minimizing the resulting objective function
with a robust hybrid solver, we obtain high-quality estimates of the component shot
records. Furthermore, regularization with directional Laplacians improves the data
quality. In our approach, we estimate a single model that predicts all recorded data,
and we treat all components of the recorded data as signal. Within limits of operational
possibilities, our method can be applied to any number of sources within a single
survey and can be easily extended to multiple (time-lapse) surveys. Using 2D sections
extracted from the 3D SEAM geophysical model, we show that our method can give
results of comparable quality to the original independent shot records.

INTRODUCTION

Conventionally, seismic data acquisition involves a single seismic source and an array of
receivers. However, recent advances in acquisition technology enable seismic acquisition
with multiple sources (Womack et al., 1990; Hampson et al., 2008; Beasley, 2008). By
using simultaneous sources, it is possible to achieve longer offsets, better shot-sampling,
and improved time and cost efficiency (van Mastrigt et al., 2002; Berkhout et al., 2008;
Howe et al., 2009).

Although direct imaging of simultaneous-source data has several desirable properties,
it also suffers from several pitfalls. The most important limitation of direct imaging is
the introduction of crosstalk artifacts from incongruous sources. Under certain conditions,
crosstalk artifacts may be sufficiently attenuated by stacking (Beasley, 2008; Hampson et al.,
2008). Linearized inversion can attenuate crosstalk artifacts significantly (Ayeni et al., 2009;
Dai and Schuster, 2009; Tang and Biondi, 2009). However, linearized inversion assumes that
the true seismic velocities are known, which is not the case in any practical application.
Therefore, most practitioners opt to separate simultaneous-source data sets into indepen-
dent shot records followed by conventional processing.

Data separation may be treated as a filtering (Moore et al., 2008; Huo et al., 2009) or
an inversion (Akerberg et al., 2008; Abma et al., 2010) problem. In this paper, we take an
inversion approach, in which components of the simultaneous-source data are predictable
from a single model. In our formulation, the simultaneous-source data are modeled by a
composite Radon operator based on the recording geometries and relative shot times of the
simultaneous sources. We solve the resulting regression using a robust hybrid-norm solver
(Li et al., 2010). Model sparsity, introduced by the hybrid-norm, significantly improves the
quality of the recovered data sets relative to those from an l2 solver.
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The quality of the separated data is further improved by introducing model regular-
ization, which may be implemented in either the Radon or the shot space. In this paper,
for the single-survey problem, we consider regularization by damping and by directional
Laplacians (Hale, 2007). In our problem, non-stationary directional Laplacians are used to
enforce smoothness along local dips. First, we solve the inversion problem using a damping
regularization. Then, using the estimated independent data, we compute dip-components
along constant-offset panels. From these dip estimates, regularization operators for the
next inversion step are generated. These operators are used to regularize the inversion and
generate new results that serve as inputs to the next inversion step. This procedure can be
repeated as many times as necessary.

One potential application of simultaneous-source acquisition is in time-lapse seismic
reservoir monitoring (Ayeni et al., 2009). For example, because this method reduces seis-
mic acquisition cost, monitoring data sets can be acquired at shorter time intervals. How-
ever, because time-lapse monitoring requires high-quality data, amplitudes of separated
data must be reliable. For the time-lapse seismic problem, we consider a spatio-temporal
regularization scheme that utilizes a combination of directional Laplacians and temporal
smoothness constraints.

In this paper, we first describe the inversion formulation of our separation approach.
Next, we briefly discuss possible regularization schemes for this inversion problem. Finally,
using data sets from 2D sections extracted from the SEAM geophysical model, we show
that our method can produce high-quality results for both single and time-lapse surveys.

METHOD

We can represent the simultaneous-source acquisition process for n sources as follows:

n∑
i=1

Sdi = d, (1)

where S is a shifting operator built from the relative time-delays between sources, di is the
data due to source i, and d is the simultaneous-source data. We can rewrite this equation
in the form

>Him ≈ d, (2)

where > is the summation operator, and Hi is an operator that models data di from model
m. Note here, that all component shots of the encoded data d are modeled from a single,
consistent model m. In this paper, Hi is a modified hyperbolic Radon operator that maps
data from the the velocity-CMP space to shot-offset space, honoring the time delays at
source i relative to a reference shot. Adding a regularization operator A, we have

>Him ≈ d,
εAm ≈ 0,

(3)

where ε, regularization parameter determines the regularization strength.

There are many possible choices for the regularization operator A. Taking A to be
an identity matrix and minimizing the regressions in equation 3 with a hybrid solver leads
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to a sparse Radon inversion problem. Alternatively, we can regularize the problem with a
shot-space operator Bi by re-writing equation 3 as follows:

>Him ≈ d,
εBiHim ≈ 0,

(4)

which in matrix form can written as[
>

εBi

]
Him ≈

[
d
0

]
. (5)

In this paper, we define B as a system of non-stationary dip-filters. First, we compute
local event dips using the plane-wave destruction method (Fomel, 2002), then we compute
dip-filters using factorized directional Laplacians (Hale, 2007). Because of the random delays
between simultaneous sources, for any given source, events from other sources are random
in its corresponding common-offset gathers. By destroying predictable events corresponding
to source i, operator Bi ensures that only these events are allowed in the final separated
data sets, whereas unpredictable events are not. Events that are not predictable by Bi

are passed on to other sources, where they are predictable by the corresponding operator
Bj . We call this inversion method dip-constrained sparse inversion (DCSI). In this paper,
we refer to solution of equation 5, with Bi as an identity matrix, as unconstrained sparse
inversion.

However, because the operator Bi is a function of the separated data, the problem
becomes non-linear. To linearize this problem, we start by solving the equation 3 to get an
initial estimate for di. Then, using di, we obtain an estimate of the operator Bi, which is
used to regularize the problem starting from initial model estimate m. Results from this
new step can then serve as inputs into the next inversion step. This process can be repeated
as as many times as necessary.

Following the approach of Abma et al. (2010), instead of using Bi as a regularization
operator, we can use B−1

i as a smoothing operator by re-writing equation 4 as follows:

>B−1
i Him ≈ d,
εIm ≈ 0.

(6)

In this paper, we implement B−1
i as polynomial division (Claerbout and Fomel, 2008) with

non-stationary directional Laplacians.

Equation 5 can be directly extended to multiple surveys. For example, for two surveys,
we can minimize the regressions[

>1

εBi1

]
Hi1m1 ≈

[
d1

0

]
,

[
>2

εBi2

]
Hi2m2 ≈

[
d2

0

]
,

[
λZ1m1 −λZ2S1,2m2

]
≈ 0,

(7)

where for survey k, Hik and Bik are the modeling and shot-space regularization operators,
respectively, for source i; mk and dk are the Radon model and simultaneous-source data;
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Zk is a temporal regularization operator; and Sk,k+1 is a shifting operator that aligns
the models mk and mk+1. Note that Hik incorporates both geometry and relative shot
timing for survey k. Because of differences in geometry and relative shot timing between
surveys, operator Hi1 is different from Hi2. The last regression in equation 7 minimizes the
difference between models m1 and m2. Because we are interested only in production-related
differences between m1 and m2, the difference between the two models is also very sparse.
We can generalize equation 7 to an arbitrary number of surveys as follows:[

>k

εBik

]
Hikmk ≈

[
dk

0

]
,

[
λZkmk −λZk+1Sk,k+1mk+1

]
≈ 0.

(8)

In this paper, we refer to the method of solving the joint-inversion problem represented by
equation 8 as spatio-temporal constrained sparse inversion (STCSI).

EXAMPLES

Using 2D models extracted from the 3D SEAM geophysical model (Figure 1), we con-
sider data separation for three possible simultaneous-source applications. The grids in both
models have been modified. All data were modeled with a 2D Acoustic finite-difference
algorithm. In each example, we use the different formulations to solve the separation prob-
lem described above. All sparse inversion examples are generated using a hybrid solver (Li
et al., 2010).

Example 1: Separation of complex data sets

In this example, we consider data from a complex 2D salt model (Figure 1(a)). The
simultaneous-source data comprise 330 shot gathers from two sources separated by 2400
m (Figure 2). This example represents the case where a front seismic vessel is pulling the
streamer, and a second boat shoots from the end of the streamer cable— with both sources
moving from left to right over the model in Figure 1(a). Note the randomness of data corre-
sponding to the unaligned source in the common-offset plane. The single-source records are
shown in Figure 3. The separated data sets recovered by l2 (conjugate-gradient) inversion
are shown in Figure 4. Comparing these results to the single-source data (Figure 3), we see
that there are numerous crosstalk artifacts in each of the two sources. Separation results
obtained by sparse inversion of the data without and with regularization by directional
Laplacians are shown in Figures 5 and 6, respectively. Note that in both inversion results,
the data are well separated into the component shot records. The residual artifacts present
in the unconstrained sparse-inversion results (Figure 5) have been attenuated by regular-
ization (Figure 6). Dips estimated from the unconstrained results (Figure 5) and used to
obtain the dip-constrained results (Figure 6) are shown in Figure 7.

Example 2: Separation of multiple sources

In this example, we consider data from the model in Figure 1(b). The simultaneous-source
data comprise of data from four sources with 800 m separation (Figure 8). The individual
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(a)

(b)

Figure 1: 2D velocity models extracted from the 3D SEAM geophysical model. [ER]
gayeni2/. vel-seam2,vel-seam3
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Figure 2: Simultaneous-source data comprising shot-records from two end-on sources (S1
and S2) over the model in Figure 1(a). In this and subsequent figures, the second dimension
is offset, and the third dimension is shot position. Note that along the common-offset axis,
because the shot times have been referenced to source S1, data corresponding to this source
are aligned, whereas those corresponding to S2 are not aligned. [ER] gayeni2/. 2s5-or-1
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(a)

(b)

Figure 3: Single-source data that would have been recorded by (a) source 1 and (b) source
2 over the model in Figure 1(a). These two shot records are the components of the data
shown in Figure 2. [CR] gayeni2/. 2s5-1,2s5-2
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(a)

(b)

Figure 4: Shot gathers recovered by unconstrained l2 inversion for (a) source 1 and (b)
source 2. Note that the two data sets are not well separated, as several events which do not
exist in the single-source data (Figure 3) are present. [CR] gayeni2/. 2s5-l2-1,2s5-l2-2
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(a)

(b)

Figure 5: Shot gathers recovered by unconstrained sparse inversion for (a) source 1 and (b)
source 2. Note that the two data sets are well separated and are comparable to the original
data (Figure 3). [CR] gayeni2/. 2s5-hb-1,2s5-hb-2
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(a)

(b)

Figure 6: Shot gathers recovered by dip-constrained sparse inversion for (a) source 1 and (b)
source 2. Note that with regularization the residual artifacts present in the unconstrained
example (Figure 5) have been attenuated. [CR] gayeni2/. 2s5-reg-1,2s5-reg-2
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(a)

(b)

Figure 7: Local dips (common-offset components) for (a) source 1 and (b) source 2, obtained
from the unconstrained sparse inversion (Figure 5) and used in the dip-constrained sparse
inversion to obtain the results in Figure 6. [CR] gayeni2/. 2s5-dip-1,2s5-dip-2
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source records are shown in Figure 9. Separation results obtained by inverting the data
without dip constraint are shown in Figure 10. Results obtained using the reformulated
regressions in equation 6 are shown in Figure 11. Note that residual artifacts seen in the
unconstrained results (Figure 10) have been attenuated. Dips estimated from the uncon-
strained results and used to obtain the constrained results are shown in Figure 12.

Figure 8: Simultaneous-source data comprising shot-records from four sources (S1, S2, S3
and S4) over the model in Figure 1(b). [CR] gayeni2/. 4s4-or-1
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(a) (b)

(c) (d)

Figure 9: Single-source data that would have been recorded by (a) source 1, (b) source 2,
(c) source 3, and (d) source 4 over the model in Figure 1(b). These shot records are the
components of the data shown in Figure 8. [CR] gayeni2/. 4s4-1,4s4-2,4s4-3,4s4-4
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(a) (b)

(c) (d)

Figure 10: Shot gathers recovered by unconstrained sparse inversion for (a) source 1,
(b) source 2, (c) source 3, and (d) source 4. Note that these results contain sev-
eral residual artifacts compared to the reference single-source records (Figure 9). [CR]
gayeni2/. 4s4-hb-1,4s4-hb-2,4s4-hb-3,4s4-hb-4
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(a) (b)

(c) (d)

Figure 11: Shot gathers recovered by dip-constrained sparse inversion for (a) source
1, (b) source 2, (c) source 3, and (d) source 4. Residual artifacts present
in the unconstrained example (Figure 10) have been attenuated by DCSI. [CR]
gayeni2/. 4s4-prc-1,4s4-prc-2,4s4-prc-3,4s4-prc-4
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(a) (b)

(c) (d)

Figure 12: Local dips (common-offset components) for (a) source 1, (b) source
2, (c) source 3, and (d) source 4, obtained from the unconstrained sparse inver-
sion (Figure 10) and used in DCSI to obtain the results in Figure 11. [CR]
gayeni2/. 4s4-dip-1,4s4-dip-2,4s4-dip-3,4s4-dip-4
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Example 3: Joint inversion of simultaneous-source time-lapse data

In this example, we consider conduct a repeatability test on two different data sets from
the same model (Figure1(b)). This represents a repeatability test for a time-lapse seismic
monitoring case, where only amplitude differences from production-related changes are of
interest. We modeled two sets of simultaneous-source data, each comprised of two sources
with 2400 m separation (Figure 13). Because it is impractical to repeat both the geometry
and relative shooting times between surveys, time-lapse data acquired with simultaneous
sources will have high non-repeatability. Therefore, our data separation procedure serves
the dual purpose of separating each simultaneous-source data into component shot records
and cross-equalizing the time-lapse data sets. The individual source records for each survey
are shown in Figure 14.

In this example, because we assume no change in the reservoir between surveys, the
difference between the two sets of data is zero (Figures 14(e) and 14(f)). Separation results
obtained by inverting the data sets separately without spatio-temporal constraints are shown
in Figure 15. Note the presence of several artifacts in the difference data computed from
the retrieved data sets (Figures 15(e) and 15(f)). Separation results obtained by joint-
inversion with spatio-temporal regularization (equation 7) are shown in Figure 16. Note
that the STCSI results are cleaner than the unconstrained results. Also, note that residual
artifacts present in the unconstrained difference data sets (Figures 15(e) and 15(f)) have
been attenuated in the dip-constrained results (Figures 16(e) and 16(f)). Dips estimated
from the unconstrained results and used to obtain the constrained results are shown in
Figure 17.

DISCUSSION

Any reliable separation method for simultaneous-source data sets must be applicable to
any kind of seismic data, must be independent of the number of seismic sources, and must
retain important amplitude information. In the first example, we showed that our inversion
formulation (DCSI) can be used to separate data from complex (sub-salt) geological envi-
ronments. The separation results in Figure 4 show that l2 inversion is inadequate for data
separation. Significant improvement is obtained in the quality of these results by using a
hybrid instead of the l2 norm (Figure 5). In addition, the separation results can be further
improved by dip-constrained inversion (Figure 6) to produce results of comparable quality
to the original single-source data (Figure 3). In the second example, we showed that with
our approach, we can separate any number of seismic sources. Whereas the unconstrained
results (Figure 10) contain several residual artifacts, the dip-constrained results (Figure 11)
are comparable to the reference single-source data (Figure 9). In the last example, we
showed that this method can be applied to amplitude-sensitive studies such as time-lapse
seismic reservoir monitoring. This repeatability test, shows that our method can be used
to regularize and cross-equalize time-lapse simultaneous-source data sets. By incorporating
both spatial and temporal constraints into the inversion, we are able to attenuate differ-
ences caused by non-repeatable acquisition parameters during the separation problem. The
residual artifacts present in separately inverted data sets (Figure 15) are removed by our
STCSI formulation (Figure 16).
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(a)

(b)

Figure 13: Simultaneous-source data sets comprising shot-records from two sources (S1
and S2) over a segment of the model in Figure 1(b). Note that the survey parameters in
(a) survey 1 are different from those of (b) survey two. If not taken into account, this
discrepancy (non-repeatability) will affect the quality of the time-lapse (difference) data
and the resulting estimate of reservoir property change. [CR] gayeni2/. 4d-or-1,4d-or-2
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Single-source data that would have been recorded for (a & b) survey 1, and (c
& d) survey 2 over a segment of the model in Figure 1(a); and the difference between the
two surveys (e & f). The left panel represents data from source 1, whereas the right panel
represents source 2. These shot records (a - d) are the components of the two data sets shown
in Figure 13. Note that because there is no production-related change between the surveys,
the bottom panels are blank. [CR] gayeni2/. 4d-1,4d-2,4d-3,4d-4,4d-1-diff,4d-2-diff
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Shot gathers recovered by independent sparse inversion for (a & b) sur-
vey 1, and (c & d) survey 2; and the difference between the two surveys (e &
f). The left panel represents data from source 1, whereas the right panel repre-
sents source 2. Note that the recovered data from the two surveys (top and mid-
dle panels) contain several artifacts. Also, note that due to the non-repeatability of
the two surveys, the difference data (bottom panels) contain several artifacts. [CR]
gayeni2/. 4d-hb-1,4d-hb-3,4d-hb-2,4d-hb-4,4d-hb-1-diff,4d-hb-2-diff
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Shot gathers recovered by spatio-temporal constrained sparse inversion for (a
& b) survey 1, and (c & d) survey 2; and the difference between the two surveys (e
& f). The left panel represents data from source 1, whereas the right panel represents
source 2. Note that the residual artifacts present in the unconstrained inversion results, in
both the separated and difference data (Figure 15), have been attenuated by STCSI. [CR]
gayeni2/. 4d-reg-1,4d-reg-3,4d-reg-2,4d-reg-4,4d-reg-1-diff,4d-reg-2-diff
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(a) (b)

Figure 17: Local dips (common-offset components) for (a) source 1 and (b) source 2 obtained
from unconstrained inversion results (Figure 15), and used to obtain the STCSI results
(Figure 16). Because there was no change between surveys, each panel was computed as
the average of the local dip estimates for the two surveys. [CR] gayeni2/. 4d-dip-1,4d-dip-2

CONCLUSIONS

We have demonstrated that simultaneous-source data sets can be separated using an in-
version formulation. As shown in the numerical examples from realistic 2D models, our
method can be applied in very complex geological environments, to data from multiple
seismic sources and to simultaneous-source time-lapse seismic data sets. Incorporating dip
information in the inversion procedure through non-stationary directional Laplacians (and
in the time-lapse case, temporal constraints) helps to attenuate residual artifacts from the
separation process.
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A preconditioning scheme for full waveform inversion

Antoine Guitton and Gboyega Ayeni

ABSTRACT

The waveform inversion problem is inherently ill-posed. Traditionally, regularization
terms are used to address this issue. For waveform inversion where the model is ex-
pected to have many details reflecting the physical properties of the Earth, regular-
ization and data fitting can work in opposite directions: the former smoothing and
the later adding details to the model. In this paper, we constrain the velocity model
with a model-space preconditioning scheme based on directional Laplacian filters. This
preconditioning strategy preserves the details of the velocity model while smoothing
the solution along known geological dips. The Laplacian filters have the property to
smooth or kill local planar events according to a local dip field. By construction, these
filters can be inverted and used in a preconditioned waveform-inversion scheme to yield
geologically meaningful models. We illustrate on a 2-D synthetic example how pre-
conditioning with non-stationary directional Laplacian filters outperforms traditional
waveform inversion when sparse data are inverted for. We think that preconditioning
could benefit waveform inversion of real data where (for instance) irregular geometry,
coherent noise and lack of low frequencies are present.

INTRODUCTION

The goal of waveform inversion is to derive physical properties of the Earth, such as P-wave
velocity, S-wave velocity, or density. These properties can be related to the presence of
hydrocarbons in the subsurface and their estimation is one of the most important goal in
seismic processing. In practice, we try to minimize the function

f(m) = ‖uobs − umod‖norm (1)

where m is a vector of physical properties (what we are looking for), uobs the observed and
umod the modeled data. Note that f is a 1-D function defined by the choice of a norm.
In practice, the `2 norm is often chosen, but the `1 norm seems to have more practical
needs for its robustness to non-Gaussian noise present in the data (Crase et al., 1990). The
minimization of f(m) can be achieved using iterative methods. Tarantola (1984) establishes
that the model can be updated as follows:

mn+1 = mn − αn.∇f(mn) (2)

where ∇f(m) is the gradient of f(m) and αn a step-length that needs to be estimated. It
turns out that the computation of the gradient is equivalent to a reverse-time migration
(Lailly, 1984).

Unfortunately, although a promising approach, waveform inversion is hampered by many
issues. The main one is the presence of local minima in f . To circumvent this problem, the
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data can be inverted in a multi-scale fashion in the time (Bunks et al., 1995) or frequency
domain (Sirgue and Pratt, 2004). Furthermore, time damping of the input data offers
opportunities to focus the inversion on different parts of the data, thus reducing the effects
of local minima (Brenders et al., 2009).

Traditionally, ill-posed problems can be solved by adding a regularization term to the
objective function. Very often, a regularization term that can penalize differences between
neighboring points is selected. However, whereas waveform inversion tends to add details
to a velocity model, regularization tends to smooth them out, thus working against our
primary goal: fitting the data. One way to address these somewhat conflicting goals is to
use preconditioning. Here, we show how we can geologically constrain the velocity model
by using a non-stationary preconditioning approach. This method requires two ingredients:
a dip estimation method and a local dip filtering technique. We use the method of Fomel
(2002) for the former and of Hale (2007) for the later.

In this paper we first introduce the waveform inversion approach, with and without
preconditioning. We show that preconditioning amounts to a simple change of variable
which, in effect, changes the gradient direction. Then, we present our method of local dip
filtering, which follows Hale’s. Finally, we present synthetic results on a modified version
of the Marmousi model. These results demonstrate that non-stationary, preconditioned
inversion yields geologically plausible models.

METHOD

In this paper, we use a time domain approach for solving the scalar acoustic wave equation
(parametrized in terms of P-wave velocity vp):

∂2u(x, t)
∂t2

− vp(x)2∇2u(x, t) = vp(x)2s(x, t). (3)

with the source term s(x, t) = δ(x − xs)S(t) where S(t) is the source function at xs and
u(x, t) the pressure field. Tarantola (1984) derives the expression of the gradient for the
acoustic equation (3) for each component of m (equal to vp only in this case).

∇f(mn) =
2

vpn
3

∑
shots

∑
t

∂2−→un

∂t2
·
←−−
δun (4)

where
←−−
δun is the backward propagated residual at iteration n such that δun = uobs − un

and −→un is the forward propagated synthetic source. For our iterative method, we opted
for the L-BFGS approach of Nocedal (1980). This quasi-Newton approach computes an
estimate of the inverse Hessian iteratively by using a user-defined number of solution and
gradient vectors. One of the main benefits of this technique is that because the Hessian is
never explicitely formed, there is significant computational and memory savings. W ith the
L-BFGS solver, the model is updated as follows:

mn+1 = mn − αnH−1
n ∇f(mn), (5)

where mn+1 is the updated solution, αn the step length computed by a line search that
ensures a sufficient decrease of f(m) and Hn ≈ ∇2f(mn) the approximate Hessian. To
improve chances of not falling into a local minimum, we follow a multi-scale approach
(Bunks et al., 1995) where the source and data are bandpassed prior to inversion. We
introduce our preconditioning scheme in the following section.



SEP–142 Preconditioned waveform inversion 77

Figure 1: Illustration of the preconditioning operator S. We first migrate the synthetic
Marmousi dataset to obtain (a). Then, suing the migrated image, we compute the dip
field (b). In this example, faults are picked by hand and smoothed horizontally to preserve
discontinuities in the velocity model. Applying S built from (b) to a random field shows in
(c) the texture of the migrated section in (a). Note how the water-column is not smoothed
and how the fault locations are clearly visible. [ER] antoine1/. MarmLapSEG
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Figure 2: (a) True velocity model used to generate the synthetic dataset. (b) Initial guess
obtained by smoothing the true model in (a). (c) Estimated model after waveform inversion.
No preconditioning is applied in this case. Four frequency bands were used to bandpass both
the source and the data prior to inversion (0-4Hz, 0-8Hz, 0-12Hz, 0-16Hz). The velocity
model is recovered very well. [NR] antoine1/. MarmWVISEG
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PRECONDITIONING

Preconditioning amounts to a change of variable m = Sp where p is a new variable used
for the inversion and S the preconditioning operator. In this paper, we define this operator
as non-stationary deconvolution with local dip-filters. Having introduced the new variable
p, the iterative scheme in equation (5) becomes:

pn+1 = pn − αnH̃−1
n ∇f̃(pn), (6)

where
∇f̃(pn) = S′∇f(mn) = S′∇f(Spn) (7)

and S′ is the transpose of S. Therefore, with preconditioning, we obtain a new gradient
direction. In our scheme, we will opt for a preconditioning operator that steers the gradient
toward a geologically constrained solution. Note that in Equation (6) the approximate
Hessian in equation (5) is blind to this change of variable as it is built from gradient and
solution step vectors only. Assuming that we can estimate S and compute its adjoint and
inverse (to accommodate any starting guess p0 = S−1m0), preconditioning can be easily
introduced in any waveform inversion scheme. Once a solution vector psol has been found,
the final model is obtained by computing

msol = Spsol. (8)

Now we present our choice of preconditioning operator S.

DEFINING THE PRECONDITIONING OPERATOR S

Preconditioning amounts to a change of the gradient direction. For waveform inversion, a
gradient that embeds some geological information could result in more meaningful velocity
models. To this end, we follow the approach of Hale (2007) for the construction of the
operator S. Doing so, this operator becomes a non-stationary deconvolution with directional
Laplacian filters.

Directional Laplacian filters are built from small wavekill filters A, similar to those of
Claerbout (1995). Wavekill filters have the ability to anihilate local planar-events with a
given dip. From these filters, new operators A′A are formed by autocorrelation. These
new operators are then factorized into minimum-phase filters Ã such that Ã′Ã ≈ A′A.
Having minimum-phase filters, we can build a stable non-stationary deconvolution operator
S = Ã−1Ã′−1 and its inverse S−1 = Ã′Ã. Because the wavekill filter A is dip dependent,
the operator S has the ability to smooth along a given direction as well. Therefore, if we can
estimate a dip field that contains some desired geological features, the directional Laplacian
filters can make the solution of an inverse problem resemble such features.

In practice, we estimate and use the directional Laplacian filters as follows: first, we
estimate a dip field following the approach of Fomel (2002); then we estimate a bank of
directional Laplacian filters for a range of angles; finally we apply the appropriate inverse
Laplacian filter on each sample according to the local dip. One added feature of our precon-
ditioning scheme is that the strength of the smoothing can be controlled spatially: different
areas with similar dips can be smoothed across different distances. These areas are iden-
tified by a weighting function which varies from high values (i.e., little smoothing) to low
values (i.e., strong smoothing).
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To illustrate the preconditioning operator S, we show in Figure 1a the migration result
of a synthetic dataset based on the 2-D Marmousi model. This result is obtained with
Reverse Time Migration (RTM). In real data cases, the dip field could be re-estimated
iteratively from a migrated image estimated with the updated velocity field, adding a third
outside loop to our waveform inversion algorithm (one for frequency band and one for the
muting/masking operator). This possibility is not investigated in this paper.

From the RTM image, we can estimate the local dip field (Figure 1b). This dip field is
obtained iteratively with some smoothing using the method of Fomel (2002). We also picked
by hand the location of three faults. From these picks, we estimated the dip on the fault and
smoothed the local dip horizontally. These three faults were picked to get sharper velocity
contrasts. Now, we apply the operator S to a random field the size of the migrated image
in Figure 1a to obtain Figure 1c. We notice that the ”texture” of the original migrated
image is recovered and that no smoothing is applied in the water layer: for this example,
our weigthing function had only two values separated by the water bottom. Finally, we can
clearly identify the fault locations. In the next section, we demonstrate that this operator
can be used to constrain the solution of waveform inversion.

EXAMPLES

We illustrate the geologically-constrained waveform inversion method on a synthetic dataset.
We modified the Marmousi 2-D velocity model by adding a 250 m. thick water layer (Figure
2a). We created 184 shots 50 m. apart with a fixed receiver array (369 in total) at the
surface using the scalar wave equation (no density). The source is a Ricker-2 wavelet
with a fundamental frequency of 8Hz. To illustrate that our inversion works (without
preconditioning), we show in Figure 2c the result of waveform inversion with four frequency
scales (0-4Hz, 0-8Hz, 0-12Hz, and 0-16Hz) using the starting guess in Figure 2b (obtained
by smoothing the true model in Figure 2a) and using all the shots. There is a very good
match between the inverted and true model. Because all the data was used, little would be
gained by using preconditioning.

To make a compelling case, we kept only four shots, 2.5 Km. apart. First, we show
in Figure 3 a comparison between the gradient without preconditioning ∇f(mn) and the
gradient with preconditioning back in the velocity space S∇f̃(pn). Because only 4 shots
are present, the unpreconditioned gradient looks noisy and resemble geology in very few
locations only. Some authors suggest attenuating the high wavenumbers in the gradient
by smoothing it after each iteration (Ravaut et al., 2004), where the size of the smoothing
operator in the horizontal and vertical directions is a function of an average wavelength at
a given frequency. This bears a resemblance with our proposed scheme but doesn’t allow
for directional smoothing. On the contrary, thanks to the preconditioning with directional
Laplacian filters, the reprojected gradient in Figure 3b shows the geology captured in the
dip field of Figure 1b very well.

Now, we show in Figure 4 the inversion results for the unpreconditioned (Figure 4a) and
preconditioned inversion (Figure 4b). Although quite noisy, the unpreconditioned result
shows the geology very well: the presence of low frequencies in the data, along with the
multi-scale approach, act as regularization operators. This effect will be less pronounced
with real data where low frequencies are often missing. The preconditioned inversion result
in Figure 4b is much cleaner: the geology at the reservoir level is recovered very well.
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Figure 3: (a) Gradient ∇f(mn) of the unpreconditioned inversion after 4 iterations of the
0-8Hz scale (4 shots, 2.5 Km. apart). (b) Reprojected gradient S∇f̃(pn) of the precon-
ditioned inversion after 4 iterations of the 0-8Hz scale (4 shots, 2.5 Km. apart). With
preconditioning, the gradient follows the information captured in the dip field and looks
more geologically appealing than in (a). [NR] antoine1/. MarmGRADSPARSESEG
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Figure 4: (a) Inversion result for the unpreconditioned inversion. (b) Inversion result for
the preconditioned inversion with directional Laplacian filters. The geology at the reservoir
level is recovered very well in (b). [NR] antoine1/. MarmSPARSESEG



SEP–142 Preconditioned waveform inversion 83

CONCLUSIONS

Preconditioning waveform inversion with non-stationary directional Laplacian filters can
yield geologically meaningful velocity models. It can help decrease artifacts due to acqui-
sition geometry or inconsistencies in the data (not shown here). We anticipate that pre-
conditioning can play a bigger role with real data where low frequencies are often lacking,
where data are noisy and where the acquisition geometry is irregular.
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Hybrid-norm and Fortran 2003: Separating the physics from
the solver

Robert G. Clapp

ABSTRACT

Object-oriented approaches allow a separation between solvers and operators. An ab-
stract vector class is created with a limited set of methods. Solvers are written in
terms of this abstract vector class and operators act on vectors inherited from the
abstract class. Ideally, this separation allows the geophysicist to leverage the work of
the mathematician without needing to understand the implementation details of the
optimization method. The minimal set of object-oriented features of Fortran95 and
its predecessors limited the potential separation between the physics and the solver.
New inversion approaches, such as the hybrid norm, further hampered this separation
when using conventional vector class descriptions. By using the object-oriented fea-
tures of Fortran 2003, a more complete separation between solvers and operators can
be achieved. By expanding the vector class definition, approaches such as the hybrid
norm can be implemented.

INTRODUCTION

A geophysicist understands and/or approximates how a given set of earth properties (model)
would create a given set of measurements (data). Geophysics is often an attempt to do the
inverse: from a set of recorded data, estimate a model. When the set of measurements
and/or the number of model points is large, matrix-based approaches become impractical.
Iterative approaches are often the method of choice for large-scale estimating problems.
Iterative solvers can become quite complex, quite quickly, and are generally more the do-
main of the mathematician than the geophysicist. Ideally we would like to leverage the
mathematician’s expertise without having to understand all of the details of the implemen-
tation. Nichols et al. (1993); Gockenbach (1994) all viewed model estimation through an
object-oriented framework, allowing this separation using C++. Schwab (1998) described a
java-based approach to this problem, and Clapp (2005) described a python-based approach
for large, out-of-core solvers. SEP chose instead to use Fortran 90. Unfortunately, Fortran
90 is far from a complete object-oriented language, and as a result complicated inversion
problems are cumbersome to describe given its limitations. The recent introduction of the
hybrid norm (Claerbout, 2009; Zhang and Claerbout, 2010) is but one example of the limita-
tions of Fortran 90 for solving inverse problems. Recently, Fortran compilers have begun to
support Fortran’s latest incarnation, Fortran 2003, which is more complete object-oriented
language.

In this paper, I show how to implement an abstract solver class in Fortran 2003. I
begin by describing one method to implement an abstract operator-based iterative solver. I
describe how the definition of a vector needs to be extended to support the hybrid norm. I
then show how the abstract operator and vector classes can be implemented in Fortran2003.
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OPERATOR-BASED OBJECT-ORIENTED SOLVERS

There are at least two different approaches one can take to solving the typical geophysical
inversion problem. Harlan (1996), among others, takes a Bayesian approach to inversion.
The Bayesian approach allows a natural inclusion of a priori statistical properties of the
model. SEP (Claerbout, 1999) has traditionally taken an approach which is described as
either classical, traditional, or deterministic. The classical approach attempts to find the
model m that minimizes the data misfit. Given a recorded dataset d, and a linear operator
L, we attempt to minimize the residual vector r which is defined as

0 ≈ r = d− Lm. (1)

In the simplest case where we are using steepest descent to solve the linear least squares
inversion, we estimate m by mapping the initial residual (in this simple case −d) back into
the same space as the model to form a gradient vector g by applying the adjoint of L. We
then map the gradient vector back into data-space by applying L to form rr. Finally, we
find the scaling factor of rr that will make r + rr as small as possible. We then repeat this
procedure until r is suitably small. More complex inversion approaches are normally built
on this basic concept.

Vector class

The solver writer doesn’t need to know anything about L other than how to apply it and it’s
adjoint. In fact, the solver writer doesn’t need to know much about m or d. The steepest
descent approach described above involves only three mathematical operations. In order to
find the best scaling factor rr, we need to calculate a dot product. In order to update the
model and the residual, we will need to scale rr and add it to r. We can define the interface
for calling the forward of L as

call lop (logical add, vec m, vec d)

If the class vec has the ability to perform the add, scale, and dot product functions, we can
begin to write a generic solver. Two more initialization functions are needed in the class
vec. We need to be able to create the gradient vector before we can apply the adjoint. As
a result, we need to be able to create a vector with the same number of elements as the
model. Put another way, we need to clone the model. We also need to be able to zero this
vector, or set the vector to some value.

There are several other functions that can be useful in a generic vector class. The ability
to check that two vectors are from the same vector space can avoid many bugs. The ability
to fill the vector with random numbers makes it easy to test whether or not an operator
passes the dot product. Scaling and adding are often done together by defining a scale-add
feature,

v = av + bw, (2)

that updates a vector v by scaling it with a scaled version of a second vector w we can
often improve performance. Finally, having the ability to make a copy of only the space a
vector sits in rather than making copy of all elements can often improve performance and
reduce storage requirements.
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Operators

The base operator class contains the ability to perform a mapping from the vector-space of
m, its domain, to the vector space of d, the operator’s range (the forward), and vice versa.
It is beneficial for an operator to store a description of these two spaces (the reason for the
clone-space function described above). This performs two functions. First, the operator
can perform a sanity check to make sure that the spaces of model and data passed into the
forward adjoint function call match the space of initialized domain and range. The second
reason is that inversion problems are often more complicated then the generic problem
described by equation 1. For example, if L is actually the cascade of two operator A and
B,

L = AB (3)

we need the ability to check that the domain of is A is equivalent to the range of B and
we need to create a vector of that size to hold the intermediate result of applying B in the
forward case (and A in the case of the adjoint).

Combining operators

The number of different ways that operator might need to be combined to solve a given
inversion problem is infinite. Fortunately, all possible combinations can be built from four
building blocks. The first is the row operation described above. A second applies two
different operators to the same vector (a column vector),[

d1

d2

]
=

[
L1

L2

]
m. (4)

Its corollary, a row operator, which forms a single data d from to models,

d =
[

L1 L2

] [
m1

m2

]
. (5)

Finally, a diagonal operator that applies different operators to different models[
d1

d2

]
=

[
L1

L2

] [
m1

m2

]
. (6)

The final three all imply the creation of a new vector class that is the combination of two or
more vectors. This super vector class is a storage object that calls the appropriate vector
class function sequentially (except for the dot product function that must add the result of
each call). As described in the next section inversion problems are often combinations of
several of these combo-operator/vectors and these functions are often called recursively.

Solvers

An iterative solver operates a problem that can be described as simply as equation 1.
Achieving this simple form is often a more complex problem. The problem is broken up
into three steps: obtaining an initial residual, finding the vector that best solves the con-
structed inverse problem, and updating the model according to this vector. Each one of
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these steps involve several different potential user inputs. For simplicity, I am going to de-
scribe all potential inversion problems in terms of a regularized inversion problem with two
fitting goals (each goal could be actually multiple fitting goals combined using the functions
described above).

The first step involves finding the initial residual vectors, rd and rm. The user might
begin by specifying some initial values for these two vectors. These values then need to be
updated according to the data d associated with the problem, a potential initial model m0,
the operators being used L1,L2, and weights applied to the residual W0,W1.[

rd

rm

]
=

[
rd

rm

]
+

[
W1 0
0 W2

]([
d
0

]
−

[
L1

L2
m0

])
. (7)

Once the initial residual is calculated, we iterate to find x through,[
rd

rm

]
=

[
W1L1

W2L2

]
Sx, (8)

where S is a preconditioning operator. Finally we need update our model,

m = m0Sx. (9)

This procedure allows a single solver to be written for a myriad of different inverse problems.
It also demonstrates one of the biggest weaknesses of Fortran 90. Fortran 90 does not
support function pointers. As a result, SEP has traditionally written different solvers for
regularized and preconditioned problems. Combination operators could only be created by
writing a function that specifically named the two operators that were to be combined. As
a result, creating complex inversion problems quickly became cumbersome and prone to
errors.

SUPPORTING THE HYBRID NORM

The L2-norm is often a non-optimal choice both because of the non-Gaussian nature of
noise in data and it’s tendency to create smooth models with traditional regularization
schemes. To improve model estimation, authors have suggested using either direct L1-norm
approaches, or more commonly, Iteratively Reweighed Least-Squares (IRLS) to approximate
different norms. IRLS attempts to find the best model at a non-L2 norm by a series of
linearization s. Each non-linear iteration updates the weighting W of the residual. For
example we can achieve L1 like behavior by updating the weighting operator through,

w(i) =
1
|r(i)|

. (10)

IRLS methods tend to be difficult to use because the user must choose carefully the number
of relinearizations and the numbers of steps between relinearizations carefully. (Claerbout,
2009) suggested an alternate approach that dynamically changes the weighting function
every iteration and uses a Taylor expansion of the standard conjugate direction algorithm
to update the solution. Further he suggests a different norm, the hybrid norm, that creates
a smooth transition between the standard L2 problem and a L1 problem. Given an error
function E and a residual vector r(i) the hybrid norm is defined

E =
∑

i

R2(
√

1 + r2(i)/R2 − 1), (11)
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where R is a user supplied bad-data percentile.

Creating an inversion framework that supports a Taylor expansion approach to conjugate
directions requires adding two additional features to our vector class description. First, we
need to associate a norm to each vector. Second we need to be able to multiply a vector
by another vector, element by element. Adding support for the hybrid norm requires more
changes. A vector must now have a bad-data percentage associated with it, it must be able
to find its ith percentile value, and create a vector with this value.

IMPLEMENTATION IN FORTRAN 2003

The Fortran 2003 standard makes Fortran a nearly complete object-oriented language. For-
tunately (because it improves the compilers ability to optimize) and unfortunately, the
object-oriented language components are not described in a very compact manner. The
basic object-oriented construct ia a type. In Fortran 90, types could not contain function
pointers and there was no inheritance concept. In Fortran 2003, a type can contain a ref-
erence to a function pointer. A type now is broken into two parts separated by contains
statement. Above the contains statement variables are defined, below procedure pointers.
For example, we can create a type vec which contains a function that can add one vector
to another. The type is declared by:

type vec
real, allocatable :: vals(:)
contains
procedure, pass :: add=>add_me

end type

The => keyword indicates that to access the function we should use the name on the left
but the name of the procedure is found on the right. The pass keyword will be described
later. Within the module that contains the vec definition, we need to define the add me
function:

subroutine add_me(vec1,vec2)
class(vec) :: vec1
type(vec) :: vec2
vec2%vals=vec2%vals+vec1%vals

end subroutine

Note that vec1 is declared using the class keyword rather than the type keyword. The
class keyword indicates that anything of type vec or anything that inherits from vec can
call this function. We can access the add function through the standard Fortran call
keyword:

type(vec) :: vec1,vec2
call vec1%add(vec2)
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Note how the function definition has two arguments while the call description has a single
argument. The pass keyword is the reason for the discrepancy. The pass keyword indicates
that the type itself should be passed as the first argument.

An abstract type can also be constructed. An abstract type contains one or more
function pointers that haven’t been assigned. The abstract type can never be declared.
Only types that inherit from it can be declared in a functional unit and only if all function
pointers have been assigned. An abstract type is declared with the abstract keyword.
The keyword deferred is used for all functions that will be assigned by inherited objects.
In addition, you can define the interface of each function using the abstract interface
construct. Below is an example of using these features:

type,abstract :: vector
contains
procedure(add_dec), pass, deferred :: add

end type

abstract interface
subroutine add_dec(v1,v2)
class(vector) :: v1,v2

end subroutine
end abstract interface

We can declare a type that inherits from this vector class using the extends construct:

type, extends(vector) :: vec_real
real :: vals(:)
contains
procedure, pass :: add=>add_real
end type

The function vec real must have the same interface as the type it extends from with the
exception of the first argument which now must be of type vec real. Note how the abstract
interface for the add function defines v2 as a class object. To add two vectors we need
them to be the same type. We can check the type of a class object using the select type
construct:

subroutine add_real(v1,v2)
class(vector) :: v2
class(vector_real) ::v1
select type(v2)
type is(vector_real)

v1%vals=v1%vals+v2%vals
end select

end subroutine

Within the type is code block, v2 is assumed to be of type vector real and all components
of vector real can be accessed.
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Fortran 2003 also provides a cleanup feature. The finalize keyword is called when
an object is no longer needed (for example, when leaving a subroutine where it has been
declared). In the example below, the deleteit function is used remove any memory asso-
ciated with an object.

type, extends(vector) :: vec_real
real :: vals(:)
contains
procedure, pass :: add=>add_real
final :: deleteit
end type

Finally, we need the ability to clone an abstract type. The allocate function now takes a
keyword argument source. For example, we can create an object v2 of the same type as
v1 even though v1 is of an abstract rather than concrete type.

subroutine cloneit(v1,v2)
class(vector),pointer :: v1,v2
allocate (v2,source=v1)

end subroutine

With these extensions to the Fortran language, it is possible to completely separate operator
writing from solver writing.

Current compiler limitations

Unfortunately, most Fortran compilers are still not Fortran 2003 compliant. Specifically,
they lack the ability to copy from source (needed for cloning) and have yet to implement
the final construct. By the end of 2010, both Intel and PGI promise to fully support these
features.

CONCLUSIONS

Iterative-based inversion maps cleanly into an object-oriented framework. Vector, operator,
and solver abstract classes can be built upon to solve nearly any inversion problem. The
hybrid-norm approach requires some modification from the standard vector class description
but can easily be accommodated. The Fortran 2003 standard contains all of the object-
oriented features needed to write an inversion library.
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A new bidirectional deconvolution method that overcomes
the minimum phase assumption

Yang Zhang and Jon Claerbout

ABSTRACT

Traditionally blind deconvolution makes the assumption that the reflectivity spike series
is white. Earlier we dropped that assumption and adopted the assumption that the
output spike series is sparse under a hyperbolic penalty function. This approach now
here allows us to take a step further and drop the assumption of minimum phase. In this
new method (what we called Bidirectional Sparse Deconvolution), We solve explicitly
for the maximum phase part of the source. Results on both synthetic data and field
data show clear improvements.

INTRODUCTION

In the previous report (Zhang and Claerbout, 2010), we introduced the spiking deconvolu-
tion problem using the hybrid norm solver (Claerbout, 2009a). Synthetic examples (Zhang
and Claerbout, 2010) showed that given a minimum-phase wavelet, it retrieved the sparse
reflectivity model almost perfectly even with a reflection series that is far from white, while
conventional L2 deconvolution did a poor job. However, if the assumption of a minimum-
phase wavelet was removed, the hybrid norm spiking deconvolution failed quickly and gave
a poor result similar to the conventional L2 deconvolution.

In this paper, we still rely on the hybrid norm solver to retrieve the sparse model, but we
use a slightly more complex formulation that avoids the minimum-phase wavelet constraint.

We start by realizing that any (mixed-phase) wavelet C(Z) can be decomposed into a
minimum-phase part A(Z) and a maximum-phase part B(1/Z) plus a certain time shift:

C(Z) = A(Z)B(1/Z)Zk, (1)

where B(Z) is also a minimum-phase wavelet (therefore B(1/Z)Zk is a maximum-phase
wavelet) and the exponent k is the order of B(Z). This Zk term makes the wavelet C(Z)
causal. In the time domain, (1) can be written as

c = a ∗ br ∗ δ(n− k), (2)

where br stands for the time reverse of series b.

Our original spiking deconvolution can find only a minimum-phase wavelet which has
the same spectrum of real wavelet c. It can be defined as an inverse problem as follows:

[d]fc = r, (3)

where [d] is the data convolution operator, and fc is the unknown filter. In this formulation,
the filter is the only unknown, the hybrid norm is applied on the residual term r to enforce
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the sparseness constraint. In theory, the residual r itself is the reflectivity model. Such a
method requires the wavelet in the data to be minimum-phase because only a minimum-
phase wavelet has a causal stable inverse.

The following bidirectional deconvolution formulation utilizes a pair of conventional
deconvolutions, trying to invert components a and b separately:

[(d ∗ f r
b )] fa = ra,

[(d ∗ fa)r] fb = rb,
(4)

in which fa and fb are the corresponding filters that corresponds to the inverses of a and b
denoted above, the superscript r means time-reverse. The operator in each equation is the
convolution operator. Again the hybrid norm is applied to ra and rb, and the reflectivity
model is simply ra plus a time shift. Notice that this is a non-linear inversion, since the
operator itself depends on the unknown fa and fb. In practice we have to solve these two
inversions alternately and therefore iteratively.

To understand the meaning of (4), let

d = m ∗ c = m ∗ a ∗ br ∗ δ(n− k), (5)

where m is the reflectivity model and the δ term is just a time shift. Assume fa and fb are
perfectly known in the operators (which is not true in reality), i.e.

fa ∗ a = δ(n), fb ∗ b = δ(n)

Substituting (5) into (4), since

d ∗ f r
b = m ∗ δ(n− k) ∗ a, (6)

(d ∗ fa)r = (m ∗ br ∗ δ(n− k))r = mr ∗ δ(n + k) ∗ b, (7)

we have
[(m ∗ δ(n− k)) ∗ a] fa = ra,
[(mr ∗ δ(n + k)) ∗ b] fb = rb.

(8)

From (8) it is easier to see what is behind the bidirectional deconvolution formulation
(4): It tries to separate the two parts of the wavelet, turning each one into a traditional
deconvolution problem in which the wavelet (a, b) is always minimum-phase.

As with all non-linear estimation, iteration is required. Convergence is assured if the
starting solution is close enough. We expect the traditional PEF for a and an impulse
function for b to be a pretty good first guess. The following section shows several examples
(complexity varies from low to high) illustrating the effectiveness and limitations of the
method.

DATA EXAMPLES

Inverting a single wavelet

To verify the bidirectional deconvolution’s ability to handle mixed-phase wavelets, we first
set the input data to be a single wavelet, to see whether the data can be compressed to a
single spike. We choose three types of wavelets as inputs:
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1. a minimum-phase wavelet used in the previous report (Zhang and Claerbout, 2010),
referred to as wavelet 1.

2. a wavelet that deviates slightly from minimum-phase: it models a simple marine ghost
– a low frequency function passing through a time derivative at the source and another
at the receiver. The low frequency function chosen is the convolution of two one-sided
triangles.

3. a zero-phase wavelet created by convolving the minimum-phase with its own time-
reverse wavelet. Such wavelet has identical a and b components, referred to as wavelet
3.

(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) Input wavelet 1 and (b) its deconvolution result. (c) Input wavelet 2 and
(b) its deconvolution result. (e) Input wavelet 3 and (f) its deconvolution result. [ER]
yang1/. minwavlet,mod-minwavlet,jonwavlet,mod-jonwavlet,symwavlet,mod-symwavlet

(a) (b)

Figure 2: For the wavelet 3 inversion, (a) filter fa; (b) filter fb. [ER]
yang1/. fita-symwavlet,fitb-symwavlet
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Figure 1(a) 1(b), figure 1(c) 1(d) and figure 1(e) 1(f) show wavelets 1,2,3, and the results
of reflectivity models respectively. In all 3 cases, our bidirectional deconvolution method is
able to compress the wavelet into a spike.

Figure 2 shows the retrieved filters fa and fb from wavelet 3’s inversion. Notice that
fa and fb given by the inversion are different from each other, while ideally they should be
the same, since a and b are the same when we create wavelet 3. This observation indicates
that the solutions fa and fb of this method do not necessarily converge to the inverse of the
initial a and b.

Inverting a synthetic trace

Next we try a more complex example where the data is generated by convolving each type
of wavelet with a sparse reflectivity series. Figure 3 shows the reflectivity series.

Figure 4(a) 4(b), figure 4(c) 4(d) and figure 4(e) 4(f) show the data created using
wavelets 1,2,3, and the recovered reflectivity models respectively. In all 3 cases, the reflec-
tivity model is well recovered; however the polarity of the reflectivity model from wavelet
3 case is opposite to that of the real reflectivity model; this unexpected change of polarity
shows the uncertainty of the convergence point in our non-linear formulation. We think
this polarity change is not an issue in our blind deconvolution scenario.

Figure 3: reflectivity model trace. [ER] yang1/. refl-trc

Inverting a 2D synthetic section

As in the previous report (Zhang and Claerbout, 2010), we use a 2D synthetic reflectivity
model from Claerbout (2009b). Figure 5(a) shows the starting reflectivity model. Figure
5(b) shows the data generated by convolving the reflectivity model with wavelet 3. All traces
use the same wavelet when generating the data, and all traces share the same wavelet when
we are doing the deconvolution.

Previously the traditional sparse deconvolution failed on this example because of the
symmetric wavelet; therefore, here we compare the old method and the bidirectional decon-
volution method. Figure 6(a) shows the result using the old method (equation (3)). Figure
6(b) shows the result using the bidrectional deconvolution method (equation (4)). Compar-
ing to the given model, the bidirectional deconvolution result is a spectacular improvement
over the old one. Bidirectional deconvolution is a big improvement.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a) The data trace generated using wavelet 1; (b) the recovered reflectivity model
of (a). (c) The data trace generated using wavelet 2; (d) the recovered reflectivity model of
(c). (e) The data trace generated using wavelet 3; (f) the recovered reflectivity model of (e).
[ER] yang1/. data-mintrc,mod-mintrc,data-jontrc,mod-jontrc,data-symtrc,mod-symtrc
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(a)

(b)

Figure 5: (a) The 2D synthetic reflectivity model; (b) the synthetic data generated using
wavelet 3. [ER] yang1/. refl-jon,data-syn-sym-2d
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(a)

(b)

Figure 6: (a) reflectivity model retrieved from the original method; (b) re-
flectivity model retrieved from the bidirectional deconvolution method. [ER]
yang1/. mod-sym-2d-old,mod-sym-2d
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Inverting a 2D field section

Figure 7: Input Common Offset data. [ER] yang1/. data-COF

The second example is a common-offset section of marine field data. Figure 7 shows
the input data. Figure 8(a) shows the result using the old method. Figure 8(b) shows the
result using the bidirectional deconvolution method.

The raw data in Figure 7 shows strong events like a double ghost (black, white, black).
The traditional PEF result in Figure 8(a) shows strong events like doublets (black, white).
The bidirectional deconvolution result in Figure 8(b) shows strong events like singlets
(white). Examining Figure 8(b) we notice events at about 1.85s (black), 1.95s (black), 2.3s
(white), 2.4s(black), 2.5s (mixed), and 2.8s (white). The unipolarity of individual suggests
that a causal integration would produce the step functions we associate with impedence in a
blocky model. Figure 9 is a first attempt to compute the impedence from the reflectivity in
Figure 8(b). This was done by causal integration and some horizontal smoothing. Ideally,
Figure 8(b) has only isolated white events and black events defining geologic boundaries.
Time integrating these impulsive events should yield positive rectangle functions. Actually,
the result we see in Figure 9 looks more like leaky integration of Figure 8(b). The small
events present in Figure 8(b) apparently contains low frequency energy at the opposite po-
larity of that of the isolated impulses. We could thus regard Figure 9 as a failure. Instead
we regard it as an inverse problem that we have not yet correctly posed. The failure arises
because the raw data fails to contain the required low frequencies. Were we to replace small
values in Figure 8(b) by zeros, we might have obtained a result more to our liking. We need
to formalize the inverse problem and reduce it to the usual situation which is how much to
regard the data as perfect, and how to allow imperfection to be overcome by methodology
that tends us to blocky models.
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(a)

(b)

Figure 8: Given the common offset data in Figure 7, (a): reflectivity model retrieved from
the original method; (b): reflectivity model retrieved from the bidirectional deconvolution
method. [ER] yang1/. mod-COF-decon-old,mod-COF-decon
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Figure 9: Causal time integration of the reflectivity in figure 8(b). This should be the
impedence. [ER] yang1/. sm-integ-mod-COF-decon

CONCLUSION

We demonstrate what we anticipated theoretically that we can overcome the minimum phase
assumption in blind deconvolution. Our process is non-linear, but (we claim) not extremely
so. To be successful it does require a non-Gaussian distribution of impulses. Likewise, the
iteration has a few adjustable parameters which makes its use a little more difficult, but
we do not anticipate serious difficulties in practice. One interesting phenomenon about the
bidirectional deconvolution (Figure 1(e) 1(f) and figure 2) is that it was able to compress
a mixed-phase wavelet to a spike but without obtaining the correct causal and anti-causal
parts. We do not yet understand this. In addition, it is more costly because it requires
multiple iterations.

FUTURE WORK

Having had good fortune here introducing the anti-causal PEF and earlier explicitly esti-
mating a portion of the data not fitting the convolutional model (Zhang and Claerbout,
2010) , it is natural to try introducing both at the same time. That takes into account the
fact that a part of the input data does not fit the convolution model:{[

(d ∗ f r
b ) −I

0 εI

] [
fa

ma

]
≈

[
rda

rma

]
, (9)
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{[
(d ∗ fa)r −I

0 εI

] [
fb

mb

]
≈

[
rdb

rmb

]
, (10)

in both matrices on the upper left is the data convolution operator, fa and fb are the filters,
and ma and mb are the reflectivity models. The parameter ε indicates the strength of
the regularization. We apply the hybrid norm on model residuals rma and rmb to enforce
sparseness. Although the extra parameter tuning (ε) is undesirable, we expect to get more
successful result using this more advanced formulation.
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Short note: Three dimensional deconvolution of helioseismic
data

Chris Leader, Jon Claerbout, and Antoine Guitton

ABSTRACT

This is a short note on helioseismic deconvolution. Herein results are presented by
deconvolving helioseismic data with a calculated impulse response in 3D to help deter-
mine source information in the shallow solar interior. Tentatively it can be concluded
that there the solar acoustic energy is close to uniformaly distributed throughout the
convective envelope.

INTRODUCTION

Deconvolution is a technique that the majority of geophysicists are very familiar with, since
the presence of a source function inherent within recorded seismic data is an issue that
permeates all areas of seismology. Deconvolution simply seeks to remove this source func-
tion from the recorded data, leaving the response of the Earth (and any other instrument
responses from the recording system.) The main problem within deconvolution is the esti-
mation of the source function, since often these are non-stationary and non-minimum phase,
and as such typical ’batch processing’ methods such as spiking and predictive deconvolution
will make these assumptions, along with several others.

Helioseismology attempts to determine certain aspects of the solar interior by studying
acoustic oscillations and disturbances on the surface of the sun. The source function for
these oscillations is attributed to turbulence within the convective envelope of the outer sun,
and as such is stochastic. Generally helioseismologists work with these source functions by
cross-correlating passively observed seismograms and calculating time-distance curves by
picking lags.

Rickett and Claerbout (2001) showed that is possible to estimate the solar impulse response
by using spectral factorisation techniques, notably by applying one-dimensional Kolmogorov
spectral factorisation theory to the 3D oberserved data by using helical boundary conditions
(Claerbout, 1998). This short note is an extension of Rickett’s work, whereby the postula-
tion is that if we deconvolve the raw data with the three dimensional solar impulse response
information about the location and separation of these solar source regions may be revealed.

The helioseismic data used was the SOHO/MDI dataset. The data was transformed to
Cartesian coordinates by projecting the high resolution data from an approximate 18 de-
gree square onto a tangent plane. Time sampling for this survey is 60 seconds, and after
pre-processing the sampling in space over the solar surface is largely regular and set at
824,800 m.
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INTRODUCTION TO HELIOSEISMOLOGY

Helioseismology is a subset of seismology and is unique in the fact that the recorded data is
not terrestrial. By recording surface solar oscillations and accounting for Doppler shifts it is
possible to constrain information - such as velocities and distances - about the shallow solar
interior. This problem is more complex than most terrestrial surveys since there are now
problems such as a spherical target, unknown source function and location, and the fact the
sun is moving at significant rate (giving a Doppler shift.) However, by using passive data
techniques such as cross-correlation and spectral factorisation it is possible to gain valuable
insight into solar properties.

Often large scale trends are delineated by decomposing the stochastic wavefields into spher-
ical harmonics (Harvey, 1995), which works well for studying macro solar trends. However
to describe small scale events, harmonics of a high order need to be computed, such as is
done with cosmic microwave background (CMB) studies, however focusing on smaller areas
using this technique is inefficient. What is often done instead is to cross correlate oscillatory
dopplergram traces, since the lags acquired from doing this can give information, such as
velocity, about ray paths travelling between the two trace locations (Duvall, 1993).

ACQUIRING THE SOLAR IMPULSE RESPONSE

The method used to acquire the solar response is described in detail in Rickett and Claer-
bout (2001). The premise is that Kolmogorov spectral factorisation is used since this is an
efficient method of constructing a minimum phase time domain function from a given power
spectrum (Kolmogorov, 1939). The theory is 1D, however as shown in Claerbout (2001) by
applying helical boundary conditions it is possible to model the dataset as a long 1D trace
by applying a sequence of lags, and then the factorisation can be applied and the 3D data
reconstructed. The raw data and the factorised impulse response can be seen in Figure 1
and Figure 2 respectively.

SOLAR DECONVOLUTION IN 3D

Deconvolution in seismology typically seeks to remove the source signature from the recorded
data. For 3D data this can be done in multiple ways: as a three way convolution integral in
time, as a three way multiplication in the Fourier domain, or as 1D Fourier multiplication
in helical coordinates. In this case the solar impulse response has been estimated using
spectral factorisation, and by deconvolving the raw data with this response we can find
information about the source - namely signature and location.

In frequency space the stochastic oscillation model can be described as the following mul-
tiplication
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Figure 1: The raw helioseismic data, with a sun spot in the centre. [ER] chris1/. shortcube

Figure 2: The solar impulse response. [ER] chris1/. kolcube
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D(kx, ky, ω) = S(kx, ky, ω)G(kx, ky, ω), (1)

where D is the raw data, S the source function and G the impulse response. The 3D de-
convolution can then be applied as a division in frequency, and then transformed to time
(Rickett, 2001).

This method suffers from the fact that by dividing the input data D by G, any small or zero
values in G will cause large perturbations in the solution for S. This is a problem addressed
many, many times in geophysics, and one solution to helping to constrain the estimation is
to add a small amount of white noise (a constant in frequency space) to the denominator,
ensuring a maximum possible value in the output (Claerbout, 2001).

S(kx, ky, ω) = G(kx, ky, ω)/(D(kx, ky, ω) + ε), (2)

Part of the usual challenge of deconvolution is choosing an appropriate value for ε such that
the final image has not been overly steered (Claerbout, 2001). To ensure the 3D Fourier
deconvolution was working correctly a synthetic model was produced, convolved with the
impulse response and transformed to the time domain. This was then deconvolved with the
impulse response, and the initial model was recovered clearly, with the exception of some
Gibbs’ artifacts due to the domain transformations and truncation of the impulse response.
Subsequently the deconvolution part of this process was applied to the raw solar data, and
a 3D volume acquired.

RESULTS AND FUTURE WORK

When using too low an ε value (or none at all) then a lot of low frequency noise was vis-
ible in the deconvolved image and this energy dominated any smaller events. When using
ε = 0.01 Figure 3 is produced. This initial deconvolved image is noisy and no discernible
areas of high amplitude contrast are noticeable, with the exception of the sun spot, as was
visible in the raw data. A potential conclusion from this is that source regions are too
poorly separated in time and space to be visible, or that all shallow source regions operate
at a similar power giving no conclusive separations after deconvolution.

The next stage for this concept will be to further tune ε and experiment with smaller sections
of the data and also to test with balancing the data and the impulse response. One way
could be to window the impulse response and use a smaller section for the deconvolution,
and also to focus on smaller time windows.
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Figure 3: The deconvolved data. [ER] chris1/. decon
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Implementing implicit finite-difference in the time-space
domain using spectral factorization and helical deconvolution

Ohad Barak

ABSTRACT

The method of modeling wavefield propagation with an implicit finite-difference ap-
proximation to the two-way acoustic isotropic wave equation, using spectral factoriza-
tion and helical deconvolution, exhibits instability of the propagating wavefield as the
time step is increased. In this study, I test several potential sources of the instability
problem: the implicit finite-difference scheme itself, the precision of the floating point
representation of the filter coefficients, the number of filter coefficients, and the spectral
factorization method. None of these issues is the cause for the apparent instability.

INTRODUCTION

Implicit finite-difference methods are inherently more stable than explicit ones. This at-
tribute enables us to increase the time step size (and consequently decrease computation
time) while retaining stability of the wavefield. In the previous SEP report (Barak, 2010)
I showed that by using spectral factorization and the helix transform, the propagation of
a wavefield using an implicit finite-difference approximation of the two-way acoustic wave
equation can be achieved by a set of deconvolution operations of filter coefficients applied to
the wavefield. Through testing, I have found that despite the theoretical stability advantage
of the implicit finite-difference scheme which I used for propagation, the resulting wavefield
becomes more dispersive as the time step increases (to the point that the wavefield is no
longer useful), and also that beyond a certain time step size - the wavefield diverges.

The increased dispersion of the implicit finite-difference scheme in comparison to an explicit
scheme is an attribute of the scheme itself. This is not a fundamental problem, since some of
this dispersion can be alleviated simply by using a higher order approximation. However, the
causes of the instability of the wavefield beyond a certain time step size remained unclear.
In order to understand the reasons behind the instability, I tested several hypotheses for its
causes. These were:

1. The implicit finite-difference approximation itself.

2. The precision of the floating point representation of the filter coefficients.

3. The number of filter coefficients.

4. The spectral factorization method.
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First I will review the method by which wave propagation can be done by deconvolutions
with spectrally factorized filters of a finite-difference approximation, and then I will go over
the various tests I carried out to try and determine the causes for the instability problem.

REVIEW OF METHODOLOGY

The two-way acoustic wave equation in one dimension reads:

∂2P

∂t2
= C2 ∂2P

∂x2
. (1)

The central implicit finite-difference approximation I used for the propagation tests was 2nd
order in time and 2nd order in space:

P t+1
x − 2P t

x + P t−1
x

∆t2
=

C2

4∆x2
[
(
P t+1

x+1 − 2P t+1
x + P t+1

x−1

)
+ 2

(
P t

x+1 − 2P t
x + P t

x−1

)
+

(
P t−1

x+1 − 2P t−1
x + P t−1

x−1

)
], (2)

where P is the pressure wavefield, t and x are the time and space coordinate indices, and
∆t and ∆x are the temporal and spatial step sizes. Note that this approximation is based
on the Crank-Nicolson method, and so the spatial derivative is balanced between the three
time steps: t − 1, t, and t + 1, where the central time index t has twice the weight of the
other two time indices.
In order to propagate the wavefield, the pressure values at time t + 1 must be equated to
the values at times t and t− 1. The linear system which must then be solved has the form:
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0 U1 U0 U1

0 0 U1 U0
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For simplicity, we can combine all the constants into one: α = C2∆t2

4∆x2 . The matrix coeffi-
cients in equation 3 (the finite-difference weights) are then:
U0 = 1 + 2α, U1 = −α;
V0 = 2− 4α, V1 = 2α;
W0 = −1− 2α, W1 = α.

In shorter notation, equation 3 reads:

UP t+1 = V P t + WP t−1. (4)

The solution of this linear system is:

P t+1 = U−1
(
V P t + WP t−1

)
. (5)

To solve this system, we must perform polynomial division. The system is tridiagonal (and
easily solvable) only for one dimension. For multiple dimensions, matrix U is block diagonal.
Additional non-zero elements appear at a certain offset from the diagonal, making the solu-
tion process more complicated. However, using spectral factorization, the finite-difference
weights of matrix U (which pertain to time t+1) can be factorized into a set of causal filter
coefficients u and its time reverse u

′
. Using the helical approach to deconvolution, equation

5 can be recast as:
P t+1 = (u

′
u)−1

(
V P t + WP t−1

)
; (6)

P t+1 = u−1(u
′
)−1

(
V P t + WP t−1

)
. (7)

Polynomial division is comparable to deconvolution. This means that the polynomial di-
vision in equation 5 can be achieved by a set of two deconvolutions of the data by the
spectrally factorized coefficients u of matrix U . One deconvolution is done along the data
in the reverse direction (application of the adjoint of the filter):

yk = xk −
Nu∑
i=1

u′iyk−i, (8)

where u′ is the time reversed filter coefficients of u. The other deconvolution is done in the
forward direction:

xk = yk −
Nu∑
i=1

uixk−i. (9)
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I used the SEPlib module polydiv, which uses the helical coordinates to perform the
deconvolutions (the polynomial division) in equations 8 and 9.
The wavefield propogation is done by the following sequence:

1. Spectrally factorize the coefficients of matrix U .

2. Multiply the saved wavefield at time t− 1 by the coefficients of matrix W .

3. Multiply the saved wavefield at time t by the coefficients of matrix V .

4. Sum the results of the previous 2 steps into a result vector.

5. Deconvolve the result vector by the time-reversed factorized filter coefficients u
′
(eq.

8).

6. Deconvolve the result vector by the factorized filter coefficients u (eq. 9).

Steps 2 - 6 are repeated for each time step. The inputs of the spectral factorization are
the finite-difference weights of the matrix U (in Eq. 3), and the outputs are coefficients of
a minumum phase filter u. Since I used a constant velocity in all propagation tests, the
finite-difference weights are constant, and the filter is stationary.

IMPLEMENTATION OF METHODOLOGY WITH INCREASING
TIME STEP SIZE

Figures 1(a)-1(f) show how wave propagation in one dimension using the implicit scheme
from Eq. 2 and spectral factorization fails when the time step size is increased beyond a
certain limit. The horizontal axis is time, and the vertical is distance. On the left the
propagation is done using a linear equation system solver, and on the right is the result of
deconvolving the wavefield with the filter coefficients obtained from spectral factorization.
At smaller time steps, the two solutions are similar. The increasing dispersion with increas-
ing time step size is apparent in both solutions. However, once the time step exceeds 5ms,
the wavefield propagated by deconvolution diverges, whereas the wavefield propagated by
the ”standard“ linear system solver exhibits additional dispersion, yet remains stable.

Figures 2(a)-2(f) show the same kind of comparison as Figures 1(a)-1(f), except that here
a small ε value was added to the central finite-difference weight (U0) which was sent as an
input to the spectral factorizer:

U0 = 1 + 2α + ε, U1 = −α.

This results in a filter with slightly different coefficients, and with this filter the propagation
is stable (with added dispersion). The value of ε required to maintain stability increases as
the time step size increases. So far I’ve been unable to determine the relation between the
value of the time step and the value of ε, but I know it is not arbitrary. If ε is too large,
the result is a low-frequency dispersion which seems to initially precede the wavefield, as
shown in Figure 3. Afterwards, the wavefield loses amplitude until eventually it disappears
altogether.
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While the addition of some ε value does stabilize the wavefield, the flip side is that it causes
wrong propagation kinematics. This is a direct result of the artificial increase of the central
finite weight. The incorrect kinematics can be seen in Figure 2(d) when looking at the
wavelet as it reaches the edge at the 4 second mark. The arrival time of the wavelet is
retarded as ε increases.

A similar phenomena occurs in 2D. In Figure 4 the effect of increasing the time step size from
∆t = 5ms to 10ms is shown. The increase causes the wavefield to diverge. Adding ε = 0.005
to the central finite-difference weight, as in Figure 5, alters the filter coefficients obtained by
spectral factorization, and enables stable propagation, with a slight time retardation of the
wavefront. If ε is too large, then an unusual dispersion pattern appears. As the time step
is increased further (Figure 6), the value of ε required for stable propagation increases as
well, as does the time retardation of the wavefront. With too large an ε value the unusual
dispersion pattern appears.

Summary of current implementation

An increase in the time step size causes the wavefield to diverge after a certain number of
propagation steps. This divergence can be avoided - by artificially increasing the value of
the central finite-difference weight. This correspondingly increases the zero-lag coefficient of
the factorized filter, making it more dominant in comparison to the other filter coefficients.
The result is stable propagation, albeit with much dispersion owing to the finite-difference
approximation itself. The exact minimum value required for ε which ensures stable prop-
agation is difficult to ascertain. Too large a value and an odd dispersion pattern unlike
that of standard numerical dispersion begins to appear. The addition of ε to the central
finite-difference weight also has the rather unfortunate effect of ruining the propagation
kinematics.

EFFECT OF FLOATING POINT PRECISION

As a result of the tests shown in the previous section, I concluded that the reason for the
unstable propagation at large time step sizes had to do with the spectral factorization,
and not with the finite-difference approximation. One of the characteristics of the filter
coefficients produced by the spectral factorization algorithm I used (SEPlib module wilson)
is that they are very small. The smaller ones can reach 10−20. Biondi and Clapp (pers.
comm., 2010) suggested that I attempt to use double precision variables instead of single
precision, in order to see whether the precision of the representation of the filter coefficients
is indeed an issue. Ronen (pers. comm., 2010) also suggested trying to do the opposite -
reduce the precision and see whether that would have a degrading effect on the propagation.

To achieve double precision, both the spectral factorization algorithm and the helical de-
convolution module had to be rewritten to include double precision variables. The wavefield
itself was also composed of double precision variables. Furthermore, I used a 4th order in
space, 2nd order in time approximation for this test. Figures 7(a)-7(d) show the comparison
between propagation with single precision (left) and double precision (right). For the top
Figures I used ε = 0, and for the bottom ones ε = 0.01. The time step ∆t was 10ms for
all Figures. The results for single and double precision are identical for this time step, and
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(a) (b)

(c) (d)

(e) (f)

Figure 1: 1D Implicit (left) vs. Helical Implicit (right) finite-difference with constant ve-
locity = 1000m/s. Horizontal axis is time, and the vertical axis is distance. Source is a
Ricker wavelet with central frequency = 12.5Hz. The time step size is ∆t = 1ms for the
top Figures, 5ms for the center Figures, and 10ms for the bottom Figures. ∆x = 10m.[ER]
ohad1/. impA-a,impA-b,impA-c,impA-d,impA-e,impA-f
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(a) (b)

(c) (d)

(e) (f)

Figure 2: 1D Implicit (left) vs. Helical Implicit (right) finite-difference with constant ve-
locity = 1000m/s. Horizontal axis is time, and the vertical axis is distance. Source is
a Ricker wavelet with central frequency = 12.5Hz. The time step size is ∆t = 10ms
for the top Figures, 15ms for the center Figures, and 20ms for the bottom Figures.
Top right ε = 0.001; center right ε = 0.01; bottom right ε = 0.02. ∆x = 10m.[ER]
ohad1/. impB-a,impB-b,impB-c,impB-d,impB-e,impB-f
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Figure 3: 1D Helical implicit finite-
difference propagation with constant
velocity = 1000m/s. The time
step size is ∆t = 10ms. ε =
0.001 for the top Figure, ε =
0.009 for the bottom Figure.[ER]
ohad1/. imp-vs-helimp-1d-bigeps

Figure 4: 2D helical implicit finite-difference with constant velocity = 1000m/s. Wavefields
are after 2 seconds of propagation. Source is a Ricker wavelet with central frequency =
12.5Hz. The time step size is ∆t = 5ms for the left Figure, and 10ms for the right Figure.
∆x = ∆z = 10m.[ER] ohad1/. helimp-2d
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Figure 5: 2D helical implicit finite-difference with constant velocity = 1000m/s. Wavefields
are after 2 seconds of propagation. Source is a Ricker wavelet with central frequency =
12.5Hz. The time step size is ∆t = 10ms. ε = 0.005 for the left Figure, and ε = 0.02 for
the right Figure. ∆x = ∆z = 10m.[ER] ohad1/. helimp-2d-eps

Figure 6: 2D helical implicit finite-difference with constant velocity = 1000m/s. Wavefields
are after 2 seconds of propagation. Source is a Ricker wavelet with central frequency =
12.5Hz. The time step size is ∆t = 20ms. ε = 0.04 for the left Figure, and ε = 0.08 for the
right Figure. ∆x = ∆z = 10m.[ER] ohad1/. helimp-2d-eps2



120 Barak SEP–142

from other tests with many different time step sizes I can say that the behaviour is always
identical, and so is the response to varying value of ε. The similarity in the wavefield values
extends to the statistics of the wavefields - the mean, average, RMS and min/max values
are nearly identical as well. In summary - I could not find a set of parameters for which
propagation with double precision variables is better (or at all different) than propagation
with single precision.

The next step was to attempt to reduce the precision of the spectrally factorized coefficients
one decimal point at a time, and see when propagation with a certain set of parameters
is destroyed as a result of this loss of precision. This should give an indication as to how
important the floating point precision actually is for stable propagation. The precision
reduction was done by running the regular wilson spectral factorization subroutine, and
then reducing precision by the following two lines of code:
noindent IntFilter = CutFactor * FloatFilter
FloatFilter = IntFilter / CutFactor

CutFactor is a power of 10. Multiplying by this factor and then casting to integer effec-
tiveley removes decimal precision from the filter coefficients. Example:
10000 * 1.23456 = 12345
12345 / 10000 = 1.2345

The purpose of this test was to see how many decimal precision digits can be removed
from the filter coefficients before wavefield propagation using those coefficients is altered, in
comparison to propagation with standard floating point precision. Results can be seen in
Figures 8(a)-8(c). On the left is the result of propagation with single precision coefficients,
with parameters which have shown stability (∆t = 5ms, ε = 0). The center Figure shows
propagation with coefficients which have had their precision truncated to 3 decimal points
only. The wavefield exhibits a phase shift in comparison to the single precision wavefield,
and yet it remains stable. Only when precision is truncated to 2 decimal points (right) is
propagation severely affected.
The wavefields in Figures 7(a)-7(d) and 8(a)-8(c) were generated using factorization of the
finite-difference weights of the 4th spatial order approximation (A-1). The values of these
weights when using the specific set of propagation parameters were:
U0 = 1.3125, U1 = −8.3333343E − 02, U2 = 5.2083340E − 03.

Since ∆x = ∆z, the weights are identical for both dimensions. These weights are fed
to the spectral factorization routine, which is supposed to produce a causal set of filter
coefficients, such that their cross-correlation will reproduce the finite-difference weights
(Claerbout, 1997). This suggests that one way of testing the sensitivity of propagation to
the floating point precision of the filter coefficients is to correlate the filter coefficients and
compare the result to the finite-difference weights.

I used 21 filter coefficients to produce Figures 8(a)-8(c). For single precision propagation,
the values of the correlation of the filter coefficients were (Only the first four values of the
correlation are displayed. The rest are in A-2 to A-4):

1.312500 −8.3333343E − 02 5.2083335E − 03 2.9154580E − 12
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For the propagation where precision was reduced to 3 decimal points only, the correlation
was:

1.312500 −8.3329208E − 02 5.2077500E − 03 0.0000000E + 00

For the propagation where precision was reduced to 2 decimal points only, the correlation
was:

1.312500 −7.8187048E − 02 0.0000000E + 00 0.0000000E + 00

Note that the correlation products are arranged in order of lags, so that the first coefficient
corresponds to the central finite-difference weight U0, the second to U1, and the third to
U2. Note also that only after reducing precision to the 2nd decimal point, the weight U2 is
effectively erased, and the weight U1 is considerably altered.

This comparison proves that the wavefield divergence shown in the previous sections is not
the result of inadequate representation of the filter coefficient’s floating point values when
using single precision. If it were, then propagation with reduced precision would not have
been possible. However, this result raises another question: If propagation is stable with
so little precision, how come a small value of ε added to the central finite-difference weight
(and by that also to the zero-lag filter coefficient) causes the wavefield to stabilize, when
the effect that this slight addition has on the filter’s correlation is so much less pronounced
than the precision reduction?
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(a) (b)

(c) (d)

Figure 7: 2D helical implicit finite-difference using single (left) and double (right) pre-
cision. Velocity = 1000m/s. Wavefields are after 2 seconds of propagation. Source is
a Ricker wavelet with central frequency = 12.5Hz. The time step size is ∆t = 10ms.
ε = 0 for the top Figures, and ε = 0.01 for the bottom Figures. ∆x = ∆z = 10m.[ER]
ohad1/. double-vs-single1-a,double-vs-single1-b,double-vs-single1-c,double-vs-single1-d

(a) (b) (c)

Figure 8: 2D helical implicit finite-difference using single precision (left), precision
reduced to 3 decimal points (center), and precision reduced to 2 decimal points
(right). Velocity = 1000m/s, ∆t = 5ms, ε = 0, ∆x = ∆z = 10m.[ER]
ohad1/. single-vs-half-a,single-vs-half-b,single-vs-half-c
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EFFECT OF NUMBER OF SPECTRALLY FACTORIZED
COEFFICIENTS

I had initially assumed that the number of filter coefficients would be the most dominant
factor in determining the accuracy of the propagation. I had supposed that the more filter
coefficients used in the spectral factorization, the closer would be the value of their correla-
tion to the finite-difference weights. Indeed, the instinctive response I had to the divergence
problem was to increase the number of coefficients in the spectral factorization parameters.
This, unfortunately, had no effect. Furthermore, the correlation of the filter coefficients
created by the spectral factorizer (the Wilson-Burg algorithm) produced accurate finite-
difference weights even when very few filter coefficients were present.

An example of the lack of the effect of number of coefficients on the propagation is shown
in Figure 9. This 1D example shows how propagation using 2 spectrally factorized filter
coefficients is basically identical to propagation when using 50 filter coefficients. Another
indication comes from observing the filter coefficients themselves. This example was pro-
duced by a 2nd order scheme, which means that there are only 2 finite-difference weights.
When factorizing using only 2 filter coefficients, the Wilson-Burg algorithm (for the propa-
gation parameters used in Figure 9) yielded:

1.000000 −5.5728100E − 02.

The coefficients are displayed in order of lags, so the 1.0 is the zero-lag filter coefficient.
Correlating these coefficients, we get:

1.125 −6.2500007E − 02

at lag 0 and lag 1, which are equal to the floating point representations of the finite-difference
weights for Figure 9.

Factorizing using 50 filter coefficients produced (only the first four coefficients are shown,
the rest are in A-5 and A-6):

1.000000 −5.5728100E − 02 −2.7755576E − 17 1.7347235E − 18.

After lag 20, the coefficients are all zeros. Note that the first two coefficients are identical to
the ones produced by the factorizer when requesting only two coefficients.The correlation
of this filter is:

1.125000 −6.2500007E − 02 −3.1236769E − 17 1.9455218E − 18

This correlation again shows the accurate representation of the finite-difference coefficients
at lag 0 and lag 1. In addition, the correlation produces a set of other values at later lags,
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which are much smaller than the weights themselves.

The fact that two filter coefficients were sufficient to produce the finite-difference weights
by correlation was interesting, but what is more important is to test what effect the change
in the number of coefficients might have on the deconvolution process. Correlating the
coefficients is like convolving them over a spike, once in the forward direction and once in
reverse order. In order to test the exact effect that a change in the number of coefficients
had on the deconvolution, I tested the result of deconvolving the coefficients over a spike.
Here as well, the result was identical. I shall spare displaying the numbers themselves for
this case.

In summary, I could not a find a combination of parameters (of propagation or of fac-
torization) for which wavefield propagation was more stable if more filter coefficients were
used.

Figure 9: 1D helical implicit finite-
difference with 2 spectrally factor-
ized filter coefficients (top), and 50
coefficients (bottom). Velocity =
1000m/s, ∆t = 5ms, ε = 0, ∆x =
10m.[ER] ohad1/. helimp-ncoeffs

WILSON-BURG VS. KOLMOGOROFF SPECTRAL FACTORIZATION

Last on the checklist was the spectral factorization algorithm itself. In Rickett (2001) the
Kolmogoroff spectral factorization method is shown to be successful for modeling seismic
activity on the surface of the Sun. I used the SEPlib ccrosskolmog module, and compared
wavefield propagation when the spectral factorization was done by the Kolmogoroff method
vs. the Wilson-Burg method. The comparison is shown in Figure 10. On the left are
wavefields propagated with Wilson factorization, and on the right - Kolmogoroff. The
time step is ∆t = .5ms in the top Figures. When the time step is increased to 1ms,
the propagation with Kolmogoroff coefficients diverges. However, if ε = 10−4 is added to
the central finite-difference coefficient prior to factorization (bottom right), propagation is
successful and appears similar to propagation by Wilson factorized coefficients.

This result indicates that the Kolmogoroff factorization method is even less suitable than
the Wilson method for this finite-difference scheme, since the addition of a small value to
the central FD coefficient when using Wilson is necessary only at greater time step sizes.
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The ten Wilson filter coefficients used to create the center panels in Figure 10 were:

1.0 −2.4875777E − 03 0.0000000E + 00 −6.7762636E − 21
−2.6469780E − 23 5.1698788E − 26 0.0000000E + 00 −3.9443045E − 31
0.0000000E + 00 −1.5046328E − 36 .

The Kolmogoroff coefficients were:

1.002494 −2.4938183E − 03 4.7695384E − 08 1.3291222E − 08
−3.6223135E − 08 4.7327675E − 09 8.5023713E − 09 8.8970848E − 09
−9.8089106E − 12 4.9380566E − 09 .

Other than the zero-lag coefficient not being equal to 1, a striking difference is that the
Kolmogoroff coefficients do not drop off quickly as do the Wilson coefficients. This has a
degrading effect on the filter correlation. The Wilson filter’s correlation is:

1.005 −2.5000004E − 03 1.6940662E − 23 −6.8100374E − 21
−2.6602097E − 23 5.1956968E − 26 9.8607629E − 34 −3.9640020E − 31
0.0000000E + 00 −1.5121468E − 36

The Kolmogoroff’s filter correlation is:

1.005 −2.4999434E − 03 8.8091141E − 08 7.9071558E − 09
−2.9466412E − 08 −1.4710333E − 10 3.0997090E − 11 3.9199342E − 09
−6.6459863E − 12 −2.8234270E − 09

The finite-difference coefficients for the parameter set of the wavefields in Figure 10 are
U0 = 1.005, U1 = −2.5E − 03. The Wilson filter’s correlation recreates these weights
precisely, while the Kolmogoroff filter’s correlation does not. Also, the drop-off in the
magnitude of the filter correlation at lags which do not represent finite-difference weights
(i.e. not lag 0 or lag 1) is much better for the Wilson filter.

CONCLUSION AND FUTURE WORK

After conducting the aforementioned tests, I still cannot say why wavefield propagation
by the proposed methodology does not function beyond a certain time step size. I can
only conclude that for some reason the spectral factorization fails when the finite-difference
weights, which I wish to factorize, are not dominated by the central finite-difference weight.
Since the entire purpose of attempting to use the combination of implicit finite-difference and
spectral factorization for propagation was to increase the time step size (thereby decreasing
the total computation time, but also decreasing dominance of the central finite-difference
weight), this failure makes the method unuseful. At the time step sizes for which this
method does work, explicit methods will function better and faster.
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Figure 10: 1D helical implicit finite-difference with Wilson-Burg spectral factorization (left),
and Kolmogoroff spectral factorization (right). ∆t = .5ms (top), 1ms (center and bottom).
ε = 1e−4 only on the bottom right Figure, otherwise ε = 0. Velocity = 1000m/s, ∆x =
10m.[ER] ohad1/. wil-vs-kol
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There is one possible avenue in which to continue research of this method. The central
weight of the finite-difference scheme which I used does decrease in dominance as the time
step size is increased, but I am not bound to use this scheme only. It is possible that an
alternate implicit finite-difference scheme will not have this attribute, and will thus be more
amenable to factorization when the time step size is increased.

One source of such a scheme could be the pseudo-Laplacian discussed in Etgen and Bransdsberg-
Dahl (2009).
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APPENDIX A

The 4th order in space and 2nd order in time implicit finite difference scheme used to create
Figures 7(a) and 8(a) was:
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]. (A-1)

The correlation of the 21 filter coefficients used to create Figure 8(a) for single precision
propagation was (I apologize for having the temerity to show raw numbers, but I couldn’t
find a suitable graphic representation):

1.312500 −8.3333343E − 02 5.2083335E − 03 2.9154580E − 12
5.4817577E − 09 −4.2199644E − 09 −2.5573333E − 12 2.8602476E − 13
3.4990573E − 11 −4.1297177E − 10 −8.3333343E − 02 −2.3679786E − 12
2.3124791E − 15 −1.7574841E − 13 −3.4801828E − 10 3.0937783E − 10
5.6366680E − 15 −1.0001472E − 13 0.0000000E + 00 −3.7887658E − 11
5.2083340E − 03 .

(A-2)



128 Barak SEP–142

For propagation where precision was reduced to 3 decimal points only, the correlation was:

1.312500 −8.3329208E − 02 5.2077500E − 03 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 −2.0831001E − 05
5.2077517E − 06 4.1662315E − 05 −8.2350150E − 02 −2.0831001E − 05
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 2.0831001E − 05 −3.3329602E − 04
5.2077500E − 03 .

(A-3)

For propagation where precision was reduced to 2 decimal points only, the correlation was:

1.312500 −7.8187048E − 02 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 4.6912231E − 03 −7.8187048E − 02 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00
0.0000000E + 00 .

(A-4)

The correlation products are arranged in order of lags. Since the finite-difference operator
is two dimensional, the weights for U1 and U2 reappear at lags corresponding to the wrap-
around of the 1D filter around the edges of the 2D grid (in helical coordinates). Therefore
the 11th coefficient is equal to the 2nd coefficient, and the 21st is equal to the 3rd.

The 50 filter coefficients used to produce Figure 9:

1.000000 −5.5728100E − 02 −2.7755576E − 17 1.7347235E − 18
0.0000000E + 00 −6.7497938E − 21 8.2718061E − 25 7.7548182E − 26
8.2718061E − 25 2.6315262E − 28 1.4603365E − 29 2.0273725E − 28
6.7288147E − 32 3.7618776E − 33 −2.4442825E − 32 1.1651518E − 35
6.4931696E − 37 3.5264831E − 38 0.0000000E + 00 −2.3509887E − 38
0.0000000E + 00 .. .. ..

(A-5)

After lag 20, the coefficients were all zeros. The correlation of these coefficients was:

1.125000 −6.2500007E − 02 −3.1236769E − 17 1.9455218E − 18
4.2186216E − 22 −7.5700597E − 21 9.2285031E − 25 3.5272806E − 26
9.2768060E − 25 2.9421741E − 28 3.7068419E − 30 2.2736905E − 28
7.5229681E − 32 5.7466863E − 33 −2.7413771E − 32 1.3026792E − 35
7.2821997E − 37 3.9550105E − 38 0.0000000E + 00 −2.6366737E − 38
0.0000000E + 00 .. .. ..

(A-6)
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Short note: GPU accelerated 3D wave propagation and
continuous coil shooting

Chris Leader, Robert Clapp, and Biondo Biondi

ABSTRACT

This short note discusses how continuous coil shooting for a synthetic VSP survey could
lead towards more azimuth rich data whilst keeping the survey time below that of a
conventional towed streamer survey.

INTRODUCTION

Throughout the history of reflection seismology, particularly since the large scale inception
of 3D surveys, there has been a simultaneous desire to both improve acquisition geometries
and also to reduce survey cost. At first glance these goals appear to be contradictory, and
for the most case they are; however, this short note postulates that recent innovations in
simultaneous source acquisition and in coil shooting could lead toward these stipulations.

Areas that exhibit complex salt geology, such as the North sea, the western Gulf of Mexico
and offshore West Africa, are extremely petroleum-rich making the production of detailed,
high resolution 3D images of these areas key in understanding and appraising such fields.
Over the last 10 years there has been a proliferation of survey techniques that differ from or
augment the usual single source streamer towed cable geometry. Methods such as multiple
azimuth surveys (MAZ) (Manning, 2007) and wide azimuth surveys (WATS) (Verwest and
Lin, 2007) are common. When compared to equivalent, traditional narrow azimuth surveys
these images exhibit better illumination, more consistent amplitudes along reflectors and
sub-salt coherency. However, whilst these methods improve image illumination they also
greatly increase the cost the survey.

More recently, coil shooting has gained interest as a technique of acquiring more azimuth
rich data without increasing survey costs as much as MAZ and WATS. It has been shown
with synthetic data that over complex geologies coil shooting can provide more illumina-
tion and fill in gaps in 3D angle gathers (Buia (2009); Moldoveanu and Kapoor (2009)).
Also recently the concept of simultaneous shooting (Aaron and Fromyr (2009); Ayeni and
Biondi (2009); Tang and Biondi (2009)) within surveys has gained momentum, since this
technqiue reduces acquisition time, which is generally considered to be 80% of a survey’s
cost. The problem with the latter technique is that when cable towed streamers acquire
simultaneously shot data, the waves recorded tend to be conical, rather than spherical, due
to the motion of the source vessel. This gives reduced angular illumination compared to
an equivalent, conventionally shot survey. We suggest that combining continuous shooting
with coil shooting will help to both reduce acquisition costs and fill in illumination holes

129
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seen in 3D angle gathers.

PROPOSED METHOD

In order to simulate this problem synthetic data was produced using a 3D subsection of
the SEAM velocity model. Initially a 2D VSP dataset was simulated using a parallelised,
variable-density, two-way modelling CPU code. A VSP survey was chosen since reciprocity
can be used to simulate the relevant surface geometries and this would require far fewer
shot simulations. A total of 32 shots were simulated. To extend this to 3D modelling a
constant density 3D GPU propagation kernel was written, and is in the process of being
adapted to simulate a dataset of this size at an acceptable speed

SEAM DATASET AND 2D DATA

The model used to create the data was the latest iteration of the SEAM model, and for
the 2D case a variable density two-way wave propagation algorithm was used. For the 3D
modelling a constant density 3D GPU code was used, with the view of extending this to
variable density. The SEAM model itself is extremely large, with over 20 billion samples,
and so a small section of the data was windowed. A representative view of this windowed
section can be seen in Figure 1.

Figure 1: A cubeplot of the windowed section of the SEAM data. [ER] chris2/. 3dslice

Within this section, a salt body with an allochthonous arm extends into the sediments.
Above the salt there is a carbonate layer, and the sediments are finely layered with an
increasing velocity with depth.

Figure 2 shows an example of a simulated shot from the SEAM dataset.
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Figure 2: A subsurface shot at 1km depth. [ER] chris2/. 2dshot

3D GPU MODELLING AND FUTURE WORK

The next step in this concept is to extend the modelling to 3D. Thirty-two VSP shots are
in the process of being modelled, with the entire surface wavefield saved every several time
steps (such that the survey time sampling is 4ms.) From these densely sampled wavefields
both continuous linear towed streamer and continuous coil shot streamer surveys will be
modelled. These data can then be migrated (reverse time) and their images and 3D angle
gathers analysed to see if better offset sampling per azimuth is observed, and if the survey
type changes are noticeable in the final images.
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