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ABSTRACT

Flatness in migrated angle-domain common image gathers is an effective criterion
for measuring migration-velocity accuracy. An objective function that measures
the power of the stack as a function of residual-moveout parameters directly, and
indirectly as a function of migration velocity, can be robustly maximized by using
a gradient-based method. This paper presents a method to compute the gradient
of this objective function by wave-equation operators. The proposed algorithm
has the additional advantage of not requiring the picking of the residual-moveout
parameters.

INTRODUCTION

In this paper I build on the framework I presented in Biondi (2010). In that report
I presented a tomographic velocity estimation that aims to maximize image focusing
using wave-equation operators. In SEP 140 I developed the theory and showed the
results of numerical tests for a transmission tomography problem, because transmis-
sion tomography is simpler than reflection tomography. In this paper I extend that
theory to the broader application of migration velocity analysis (MVA).

Conventional MVA methods are often based on the maximization of the stack
power of migrated angle-domain common image gathers. However, direct maximiza-
tion of the stack power as a function of velocity by wave-equation operators has
well-known convergence problems (Chavent and Jacewitz, 1995; Biondi, 2006; Symes,
2008). To overcome these challenges, I propose to maximize stack power as a func-
tion of residual-moveout parameters, instead of directly as a function of velocity. In
turn, the residual-moveout parameters are defined as solutions of fitting problems that
maximize the correlation between the moved-out gathers and the gathers obtained by
migrating the recorded data with the given velocity. These fitting problems can be
quickly solved by using one-parameter gradient methods and thus do not require the
explicit picking of residual-moveout parameters. The avoidance of parameter picking
is an important advantage with respect to conventional wave-equation MVA methods
(Biondi and Sava, 1999; Sava and Biondi, 2004a,b; Sava, 2004).

This paper presents just the theoretical development without any numerical ex-
amples illustrating the proposed method. I plan to present the application and the
testing of this theory in upcoming reports.
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THEORY

In wave-equation migration, as for example reverse-time migration, the image is com-
puted from the back-propagated receiver wavefield, P, (¢, ¥, x,;s), and the forward-
propagated source wavefield, Ps (¢, %, zs; s), where t is the recording time, & = 2z +
x&y is the model-coordinate vector, x; is the source position at the surface, and s (Z)
is the slowness model.

The prestack image, I, (¥, xp), is computed as the zero lag of the temporal cross-
correlation between the spatially-shifted back-propagated receiver wavefield and forward-
propagated source wavefield as (Rickett and Sava, 2002):

Iy (Z,40) [Ps (t,8), Py (6, 8)] = > Y Py (6,7 — aih, ) Py (6,7 + @i, 2,) (1)
t Ts

where x5, = x,%y is the half subsurface offset, which in this paper I will assume
to be horizontal, but it does not need to be in the general case (Biondi and Symes,
2004).

The prestack image as a function of subsurface offset can be transformed to an
image as a function of reflection aperture angle, I, (Z,v) by using a linear operator
I' (Sava and Fomel, 2003). In matrix notation, if I, is a NzN), x 1 matrix and L, is
a NzN, x 1 matrix, the image transformation from subsurface offset into the angle

domain can be expressed as:
L, =T1I,. (2)

I introduce an objective function that maximizes the flatness of the angle-domain
image along the aperture-angle axis at all spatial locations Z. This objective function
aims at maximizing image flatness not directly as a function of the slowness, but
indirectly through the application of an angle-domain moveout operator M., which
depends on the column vector of N, = Nz moveout parameters pu;.

I define the application of the moveout operators M., to a prestack image com-
puted by equations 1 and 2 with a background slowness s, as

L (74 C(g) 55) = My (] 1, (7,7:5) 3)

where ¢ (py) = ¢ (pz) Zy are the moveout shifts, assumed here to be simple depth
shifts. The operator M., is linear with respect to the input image, but it is nonlin-
ear with respect to the vector of moveout parameters pz. In matrix notation, the
application of the moveout operator to the background image L can be expressed as

M., (1] L.

I further define the stacking operator S, that sums the image along the aperture-
angle axis v. I can now introduce the objective function that measures the flatness
of the image as:

., (4)

T (112 () = 5 82 M [z ()] T,
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where s is the slowness vector. This objective function is not a direct function of s,
but it depends on it indirectly through the moveout parameters pz. The dependency
of the moveout parameters from the slowness function is not defined explicitly; these
parameters are defined as the solutions of Nz independent fitting problems, one for
each spatial location in the image.

The fitting problems maximize the zero lag of the cross-correlation between the
prestack image computed for a realization of the slowness vector s and the moved-out
image computed with the background slowness s. For the sake of keeping the notation
as compact as possible, I combine the Nz independent fitting problems into one by
defining the following objective function:

i (bg (3)) = Sz (M, [1g] 1, L, (), (5)

where with the notation (x,y). I indicate the ensemble of inner products between the
image vectors x and y which spans only the aperture-angle axis 7; the result of these
inner products is a vector of length Nz. The stacking operator Sz sums the elements
of this vector to combine the objective functions into one.

The vector of moveout parameters is therefore the solutions of the following max-
imization problem:

max Jr (pz(8)). (6)

B

For velocity estimation in the angle domain, an effective parametrization of the
moveout is the ”curvature” uz, that defines the following moveout equation

¢ (pz) = pztan® . (7)

Notice that when the slowness s is equal to the background slowness s, the corre-
sponding best-fitting moveout parameters iz are obviously the ones corresponding to
no moveout; that is, ¢ (z) = 0, and consequently fiz = 0.

Gradient of the objective function

I plan to solve the optimization problem defined in 4 by a gradient-based optimization
algorithm. Therefore, the development of an algorithm for efficiently computing the
gradient of the objective function with respect to slowness is an essential step to
make the method practical. In this section I outline the methodology to compute the
gradient, and I leave some of the details to Appendix A.

The gradient is computed using the chain rule. The first term of the chain is the
derivative of the objective function in equation 4 with respect the moveout parame-
ters. The second term is the derivatives of the moveout parameters with respect to
slowness that are computed from the objective function 5.
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Derivatives of objective function (J) with respect to moveout parameters (pz)

The derivatives of 4 with respect to the vector of moveout parameters is easily eval-
uated using the following expression:

oJ oM.’ -
=SS M, L (3)
The linear operator %/:fj can be represented as a NzN, X N,_ matrix. The elements
of this matrix are given by:
oM, : a¢
_’7 y ) — M T I _»7 ;_ . 9
aﬂf(mu) My [ ]Vw(ﬂfvszauf (9)
I ~~

II

The first term (I) is given by the depth-derivative of the image 01, (Z,7;5) /0z after
moveout. This term can be numerically evaluated by applying to the moved-out
image a finite-difference approximation of the first-derivative operator. The second
term (II) is different from zero only when the spatial coordinate Z of the image element
L, (Z,7) is the same as the coordinate corresponding to the moveout parameter 1.
When they do, and for the choice of moveout parameters expressed in equation 7, we
have 9¢/0uz = tan® .

The preceding expression simplifies when the gradient is evaluated for p; = 0.
This simplifying condition is actually always fulfilled unless the optimization algo-
rithm includes inner iterations for fitting the moveout parameters using a linearized

approach. Under this condition, equation 8 becomes

/ !/
oI _oME g1, (10)
Filp=o Opz Hz=0
and equation 9 becomes
oM, ¢

(11)

Derivatives of moveout parameters (puz) with respect to slowness (s)

The evaluation of the derivatives of the moveout parameters with respect to slowness
takes advantage of the fact that we need to evaluate the derivatives only at maxima
for the objective function in equation 5. At the maxima, the objective function is
stationary and thus its derivatives with respect to the moveout parameters are zero,

and we can write:
0Jr (pz)
—_— L) =0. (12)
Hz=pz v

a'u' T =Mz

oM,
Opz

=Jr (f1z) = S£’<
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As discussed above, the derivatives in the second term (II) of equation 9 are different
from zero only when the moveout coefficient iz and the image element share the same
spatial coordinate. Consequently, for each uz there is only one & for which the inner
products above are different from zero. Equation 12 can thus be simplified into:

: oM
Je (1) =< 1 ,Iy> 0. (13)
Hz=Hg v

Opz
Using the rule for differentiating implicit functions, and taking advantage of the
fact that the fitting problems are all independent from each other (i.e. the cross
derivatives with respect to the moveout parameters are all zero), we can formally
write:

dJe (1)
a,u'f - F@s” (14)
08 |, —p  Orlug)
Hz z Ee

From equation 13 and 14, the derivative of the local moveout parameters with

respect to slowness is:
Opy _ 7 0Os
Bz=Hz
— 7, (15)

R g 9’M
Hz=pz < 8/_1,2:/ B I’Y>
T Hg=Hg o

Appendix A presents the development for the expressions to compute the terms
O*M.,/Op2 (A-3), and 9L, /0s (A-5).

ks
Js

Combining the derivatives in equation 15 with the derivatives in equations 10-
11 we can easily compute the gradient of the objective function 4 with respect to
slowness that can be written, when p; = 0, as:

16

Js 9 Os (16)

N ~~ S—— oz
I 11

oM.’ =
vy (P 0P\ p OMy ) S’S,1,
= e s all/—) 82/\/[7 ,i .

i g

IIT

I will now examine the effects of each of the terms in equation 16 starting from
the rightmost one. The third term (III) produces a scalar for each local curvature
parameter pz. This scalar multiplies the image for each physical location after it
has been differentiated in depth and scaled by 0(/0uz, as described by the second
term (II). Notice that the phase introduced by the depth derivative of the image
in (II) is crucial for the successful backprojection into the slowness model that is
accomplished by the first term (I). In this term, first I transforms the image from
the aperture-angle domain into the subsurface-offset domain. The transformed image
is scaled, horizontally shifted, and spread across the shot axis by the application of
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P’ and 15’9. Finally, the adjoint of operators %, and %/ backproject the image
perturbations into the slowness model along the source wavepaths and the receiver

wavepaths, respectively.

Computational cost

The computational cost and storage overheads for evaluating terms II and III in the
gradient expression 16 are limited because only operations on the prestack image
are required. On the contrary, the computation of term I is computationally more
demanding. It requires the forward propagation and backward propagation of wave-
fields. The application of P, and f’; requires the storage, and retrieval, of the source

wavefield and receiver wavefield. Furthermore, to apply %, and %, we need to

correlate the source and receiver wavefields with the wavefields generated by the im-
age derivatives. In summary, the computational cost of one gradient computation of
the proposed method can be roughly estimated to be twice the computational cost of
one gradient computation of a full-waveform inversion algorithm. The factor of two
occurs because two propagations are needed to backproject the image perturbations
into the slowness model along both the source wavepaths and the receiver wavepaths.

The data-handling task could be simplified if the frequency-domain downward-
continuation migration is used instead of reverse-time migration, because computa-
tions can be performed independently for each frequency. The adaptation of the
theory presented in this paper to downward-continuation migration is fairly straight-
forward. It would only require to exchange expressions 1 and A-4 with the corre-
sponding frequency-domain expressions.

CONCLUSIONS

The theoretical framework I presented in Biondi (2010) can be extended from transmission-
tomography problems to MVA problems. The computational cost of the proposed
method can be high, though the cost of one iteration is comparable with the cost of
one iteration of full waveform inversion. Numerical tests of the gradient operator and

of the complete velocity-estimation method are needed.
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APPENDIX A

DETAILS OF GRADIENT COMPUTATION

In this appendix I present the analytical development needed to compute all the
terms in equation 16. Equations 14 and 15 provide the expression for computing the
derivatives of the moveout parameters with respect to slowness as:

) oM~ oI,
OJr (1g) opz |, .= ' 0Os
opz e 7 lps=pz ~y (A-1)
: 5
aS =Pz AJr (z) < 82/\47 >
xr T 8 R 5 I
MKz 6”_ _ 0
T I pg=Hz ~

where the elements of the matrix %/\:j are computed using either equation 9 or equa-

tion 11, and the elements of the matrix % are given by

82/\/1_, '_»_324“ ..ﬁ_@C
0;@; (T, 7, uz) = M, [pg] I, (T,7;8) By + M, [pz] I, (Z,7;8) .
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In this last expression IW (Z,7;8) = 0°L, (Z,7;8) /02*. Given the moveout parametriza-
tion expressed in 7, 0°C/0u2 = 0 and the previous expression simplifies into the
following;:

9?*M . 0C
a'ugj = M, [pz] I, (Z,7;5) E (A-2)
Furthermore, when p; = 0, equation A-2 further simplifies into:
0’ M - 0C
ng =1, (Z,7;5) e (A-3)

The derivative of the image vector with respect to slowness, 01,/0s are evaluated
by applying the conventional wave-equation tomography operator that links pertur-
bations in the slowness model to perturbations in the propagated wavefields by a
first-order Born linearization of the wave equation.

Applying the chain rule to equation 1, and taking into account the offset-to-angle
transformation 2, we can write

0s -
_ 8P5 t,q _), s _ . . 8P t7—»_ —»7 .
t Ts

(A-4)

where the wavefields P, and P, are computed with the background slowness, and the
wavefield derivatives 0P;/0s and 0P,/0s are computed by the conventional adjoint-
state methodology that is at the basis of full waveform inversion and wave-equation
tomography.

In more compact matrix notation the previous expression can be written as

oL, _ . <P 0P, Psapg) | (A5)

Os 9 Os Os

where the matrices P, and P, are composed of the wavefields for every source and
depth level, and properly shifted in space by the subsurface offset. For the computa-
tion of the gradient, we need to apply the adjoint operator that is:

oL, (opP,/_, 0P, )\

Almomin and Tang (2010) present an equivalent, but different, derivation of an
algorithm to compute the application of the operator %, (or its adjoint) to a vector
of slowness perturbations (or image perturbations).
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