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ABSTRACT

The mechanics of vertically stratified porous media has some similarities to and
some differences from the more typical layered analysis for purely elastic media.
Assuming welded solid contact at the solid-solid interfaces implies the usual con-
tinuity conditions, which are continuity of the horizontal strain components and
the vertical stress components. These conditions are valid for both elastic and
poroelastic media. Differences arise through the conditions for the pore pressure
and the increment of fluid content in the context of fluid-saturated porous media.
The two distinct conditions most typically considered between any pair of con-
tiguous layers are: (1) an undrained fluid condition at the interface, meaning that
the increment of fluid content is zero (i.e., δζ = 0), or (2) fluid pressure continu-
ity at the interface, implying that the change in fluid pressure is zero across the
interface (i.e., δpf = 0). Depending on the types of measurements being made on
the system and the pertinent boundary conditions for these measurements, either
(or neither) of these two conditions might be directly pertinent. But these condi-
tions are sufficient nevertheless to be used as thought experiments to determine
the expected values of all the poroelastic coefficients. For quasi-static mechanical
changes over long time periods, drained conditions hold, so the pressure must
then be continuous. For high frequency wave propagation, the fluid typically
acts essentially as if it were undrained – or nearly so, with vanishing of the fluid
increment at the boundaries being appropriate. The poroelastic analysis of both
these end-member cases is treated in detail.

INTRODUCTION

Traditional poroelastic analysis (Gassmann, 1951; Biot and Willis, 1957; Biot, 1962;
Brown and Korringa, 1975; Rice and Cleary, 1976; Thigpen and Berryman, 1985;
Zimmerman, 1991; Wang, 2000; Pride et al., 2002) usually progresses from assumed
knowledge of dry or drained porous media to the predicted behavior of fluid-saturated
and undrained porous media. This class of problems is characterized by a single
upscaling step, taking the homogeneous fluid and solid constituent properties and
deducing the macroscopic behavior of such systems. In recent work (Berryman, 2010),
the author has shown in detail how the poroelastic coefficients are related to the
microstructural constants of the solid constituents when the overall behavior varies
from isotropic to orthotropic. The focus of the present work is on stratified (i.e.,
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layered) poroelastic materials, which are therefore heterogeneous at the mesoscale but
fairly homogeneous within each layer. In particular, individual layers are assumed
to satisfy the same assumptions as the class of problems considered by Berryman
(2010), which is basically limited to orthotropic poroelastic media with a known set
of symmetry axes.

The main issue addressed here concerns how the interface boundary conditions
between anisotropic porous layers should be treated. For very low frequency (say
quasi-static) analysis, this issue is clear since then the boundary conditions must be
drained conditions and therefore the fluid pressure is continuous across the boundary.
However, for high frequency wave propagation, it is expected to be more appropriate
to treat the system as locally undrained, since the pressure of the pore-fluid does not
have time to equilibrate via the drainage mechanism, which can take much longer
than is appropriate to these quasi-static analyses. The most accurate way to treat
these situations is to consider the variables to be frequency dependent and complex.
This approach has been taken for example by Pride and Berryman (2003a,b); Pride
et al. (2004) for mixtures of isotropic poroelastic materials. But the problem becomes
harder for the anisotropic case, as there were simple exact results for the two-isotropic-
component case, but simple results are not available for the anisotropic problems.
And more importantly, the interest in layered media is not just for two-component
examples, but ultimately for multi-component layered media. So it is important to
consider these cases separately, as is being done here.

The analysis is restricted to anisotropic systems. The nature of the grains them-
selves composing the solid frame material will not be a focus of the present paper.
This issue does matter, but it is most important for determining the relationship
between the grain constants and the off-diagonal coefficients that are called the β’s
in this formulation. These issues have been fully addressed in the earlier contribu-
tion of the author (Berryman, 2010), and will therefore not be treated again in this
paper. Our focus here is on heterogeneous poroelastic media when the heterogeneity
is well-represented via layered porous-medium modeling.

BASICS OF ANISOTROPIC POROELASTICITY

Orthotropic poroelasticity

If the overall porous medium is anisotropic either due to some preferential alignment
of the constituent particles or due to externally imposed stress (such as a gravity field
and weight of overburden, for example), then consider the orthorhombic anisotropic
version of the poroelastic equations:

e11

e22

e33

−ζ

 =


s11 s12 s13 −β1

s12 s22 s23 −β2

s13 s23 s33 −β3

−β1 −β2 −β3 γ




σ11

σ22

σ33

−pf

 . (1)
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Throughout most of the paper, I will not introduce δ’s preceding the stresses and
strains, as is sometimes done to emphasize their smallness, since this extra notation
is truly redundant when they are all being treated as quantities pertinent to seismic
wave propagation (and therefore resulting in linear effects) as I do here, for very small
deviations from an initial rest state.

The eii (no summation over repeated indices) are strains in the i = 1, 2, 3 direc-
tions. The σii are the corresponding stresses, assumed to be positive in tension. The
fluid pressure is pf , which is positive in compression. The increment of fluid content
is ζ, and is often defined via:

ζ ≡ δ(φV )− δVf

V
' φ

(
δVφ

Vφ

− δVf

Vf

)
, (2)

where V = Vφ/φ ' Vf/φ is the pertinent local volume (within a layer in present
circumstances) of the initially fully fluid-saturated porous layer at the first instant
of consideration, Vφ = φV is the corresponding pore volume, with φ being the fluid-
saturated porosity of the same volume. Vf is the volume occupied by the pore-fluid,
so that Vf = φV before any new deformations begin. The δ’s here do indicate small
changes in the quantities immediately following them. For “drained” systems, there
would ideally be a reservoir of the same fluid just outside the volume V that can either
supply more fluid or absorb any excreted fluid as needed during the nonstationary
phase of the poroelastic process. The amount of pore fluid (i.e., the number of fluid
molecules) can therefore either increase or decrease from that of the initial amount of
pore fluid; at the same time, the pore volume can also be changing, but — in general
— not necessarily at exactly the same rate as the pore fluid itself. The one exception
to these statements is when the surface pores of the layer volume V are sealed, in
which case the layer is “undrained” and ζ ≡ 0, identically. In such circumstances, it
is still possible that both Vf and Vφ = φV are changing; but, because of the imposed
undrained boundary conditions, they are necessarily changing at the same rate. The
drained compliances are sij = sd

ij, with or without the d superscript.

Undrained compliances (not yet shown) are symbolized by su
ij.

Coefficients
βi = si1 + si2 + si3 − 1/3Kg

R, (3)

where Kg
R is again the Reuss average modulus of the grains. The drained Reuss

average bulk modulus is defined by

1

Kd
R

=
∑

ij=1,2,3

sd
ij. (4)

For the Reuss (1929) average undrained bulk modulus Ku
R, undrained compliances

have replaced drained compliances in a formula analogous to (4). A similar definition
of the effective grain modulus Kg

R is:

1

Kg
R

=
∑

i,j=1,2,3

sg
ij. (5)
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with grain compliances replacing drained compliances as discussed earlier by Berry-
man (2010). The alternative Voigt (1928) average [also see Hill (1952)] of the stiff-
nesses will play no role in the present work. And, finally, γ =

∑
i=1,2,3 βi/BKd

R, where
B is the second Skempton (1954) coefficient, which will be defined carefully later in
my discussion.

The shear terms due to twisting motions (i.e., strains e23, e31, e12 and stresses
σ23, σ31, σ12) are excluded from this poroelastic discussion since they typically do not
couple to the modes of interest for anisotropic systems having orthotropic symmetry,
or any more symmetric system such as those being either transversely isotropic or
isotropic. I have also assumed that the true axes of symmetry are known, and make
use of them in my formulation of the problem. Note that the sij’s are the elements of
the compliance matrix S and are all independent of the fluid, and therefore would be
the same if the medium were treated as elastic (i.e., by ignoring the fluid pressure,
or assuming that the fluid saturant is air – or vacuum). In keeping with the earlier
discussions, I typically call these compliances the drained compliances and the corre-
sponding matrix the drained compliance matrix Sd, since the fluids do not contribute
to the stored mechanical energy if they are free to drain into a surrounding reservoir
containing the same type of fluid. In contrast, the undrained compliance matrix Su

presupposes that the fluid is trapped (unable to drain from the system into an adja-
cent reservoir) and therefore contributes in a significant and measurable way to the
compliance and stiffness (Cu = [Su]−1), and also therefore to the stored mechanical
energy of the undrained system.

Although the significance of the formula is somewhat different now, I find again
that

β1 + β2 + β3 =
1

Kd
R

− 1

Kg
R

=
αR

Kd
R

, (6)

if we also define (as we did for the isotropic case) a Reuss-averaged effective stress
coefficient:

αR ≡ 1−Kd
R/Kg

R. (7)

Furthermore, I have

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(
1

Kf

− 1

Kφ
R

)
, (8)

since I have the rigorous result in this notation (Stoll, 1974; Berryman, 1997) that
Skempton’s B coefficient is given by

B ≡ 1−Kd
R/Ku

R

1−Kd
R/Kg

R

=
αR/Kd

R

αR/Kd
R + φ(1/Kf − 1/Kφ

R)
. (9)

Note that both (8) and (9) contain dependence on the distinct pore bulk modulus Kφ
R

that comes into play when the pores are heterogeneous (Brown and Korringa, 1975),
regardless of whether the system is isotropic or anisotropic. I emphasize that all
these formulas are rigorous statements based on the earlier anisotropic analyses. The
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appearance of both the Reuss average quantities Kd
R and αR is not an approximation,

but merely a useful choice of notation.

Determining off-diagonal βi coefficients

I will now provide several results for the βi coefficients, and then follow the results
with a general proof of their correctness.

In many useful and important cases, the coefficients βi are determined by

βi = sd
i1 + sd

i2 + sd
i3 −

1

3Kg
R

. (10)

Again, Kg
R is the Reuss average of the grain modulus, since the local grain modulus

is not necessarily assumed uniform here as discussed previously. Equation (10) holds
as written for homogeneous grains, such that Kg

R ≡ Kg. It also holds true for the
case when Kg

R is determined instead (Reuss, 1929; Wood, 1955; Hashin, 1962) by

1

Kg
R

≡
∑

m=1,...,n

vm

Km

, (11)

where vm is the volume fraction (out of all the solid material present, so that
∑

m vm =
1). However, when the grains themselves are uniform but anisotropic, I need to allow
again for this possibility, and this can be accomplished by defining three directional
grain bulk moduli determined by:

1

3K
g

i

≡ sg
i1 + sg

i2 + sg
i3 = sg

1i + sg
2i + sg

3i, (12)

for i = 1, 2, 3. The second equality follows because the compliance matrix is always
symmetric. I call these quantities in (12) the “partial grain-compliance sums,” and
the K

g

i are the directional grain bulk moduli. Note that the factors of three have
again been correctly accounted for because∑

i=1,2,3

1

3K
g

i

=
1

Kg
R

, (13)

in agreement with (5).

I can also simplify and symmetrize our notation somewhat by introducing a similar
concept for the drained constants, so that

1

3K
d

i

≡ sd
i1 + sd

i2 + sd
i3 = sd

1i + sd
2i + sd

3i, (14)

for i = 1, 2, 3. Then, the formula for (10) is replaced by

βi =
1

3K
d

i

− 1

3K
g

i

. (15)
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If the three contributions represented by (12) for i = 1, 2, 3 happen to be equal, then
clearly each equals one-third of the sum (13).

The preceding results are for perfectly aligned grains. If the grains are instead
perfectly randomly oriented, then it is clear that the formulas in (10) hold as before,
but now Kg

R is determined instead by (5).

All of these statements about the βi’s are easily proven by considering the situation
when σ11 = σ22 = σ33 = −pc = −pf , where pc is uniform external confining pressure,
and pf is the internal fluid pressure. Because then, from (1), I have (since by my
assumption pc = pf ):

−eii =
1

3K
d

i

pc + βi(−pf ) = (sg
i1 + sg

i2 + sg
i3) pf ≡

pf

3K
g

i

, (16)

in the most general of the three cases discussed, and holding true for each value of
i = 1, 2, 3. This is a statement about the strain eii that would be observed in this
situation, as it must be the same if these anisotropic (or inhomogeneous) grains were
immersed in the fluid, while measurements were taken of the strains observed in each
of the three directions i = 1, 2, 3, during variations of the fluid pressure pf . I consider
this proof to be a thought experiment for determining these coefficients, in the same
spirit as those proposed originally by Biot and Willis (1957) and Biot (1962) for the
isotropic and homogeneous case.

The βi coefficients and effective stress

Making use of the previous definitions, it is easy to see that the coefficients βi are
closely related to different sort of effective stress coefficient, for the individual principal
strain coefficients:

eii = − 1

3K
d

i

(pc −Dipf ), for i = 1, 2, 3, (17)

where

Di = 3K
d

i βi = 1− K
d

i

K
g

i

, for i = 1, 2, 3, (18)

and −pc = σ11 = σ22 = σ33 in the case of uniform applied confining pressure pc. Then
clearly, the Di’s are completely analogous to the usual Biot [or Biot and Willis (1957)]
coefficient αR = 1−Kd

R/Kg
R, as commonly defined for isotropic poroelasticity.

Coefficient γ

The relationship of coefficient γ to the other coefficients is easily established because
I have already discussed the main issue, which involves determining the role of the
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various other constants contained in Skempton’s second coefficient B (Skempton,
1954). This result is

B =

(
1

Kd
R

− 1

Kg
R

)[(
1

Kd
R

− 1

Kg
R

)
+ φ

(
1

Kf

− 1

Kφ
R

)]−1

(19)

From (1), I find that

−ζ = 0 = − (β1 + β2 + β3) σc − γpf , (20)

for undrained boundary conditions. Thus, I find again that

pf

pc

≡ B =
β1 + β2 + β3

γ
, (21)

where pc = −σc is the confining pressure. Thus, the scalar coefficient γ is determined
immediately and given by

γ =
β1 + β2 + β3

B
=

αR/Kd
R

B
= αR/Kd

R + φ

(
1

Kf

− 1

Kφ
R

)
. (22)

Alternatively, I could say that

B ≡ αR

γKd
R

. (23)

I have now determined the physical/mechanical significance of all the coefficients in
the poroelastic matrix (1). These results are as general as possible without considering
poroelastic symmetries that have less than orthotropic symmetry, while also taking
advantage of my assumption that I do typically know the three directions of the
principal axes of symmetry.

Inverting poroelastic compliance

Being in compliance form, the matrix in (1) has extremely simple poroelastic behavior
in the sense that all the fluid mechanical effects appear only in the single coefficient
γ. I can simplify the notation a little more by lumping some coefficients together,
combining the 3× 3 submatrix in the upper left corner of the matrix in (1) as S, and
defining the column vector b by

bT ≡ (β1, β2, β3). (24)

The resulting 4× 4 matrix and its inverse are now related by:(
S −b

−bT γ

)
=

(
A q
qT z

)−1

, (25)
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where the elements of the inverse matrix can be shown to be written in terms of
drained stiffness matrix Cd = C = S−1 by introducing three components: (a) scalar

z =
[
γ − bTCb

]−1
, (b) column vector q = zCb, and (c) undrained 3 × 3 stiffness

matrix (i.e., the pertinent one connecting the principal strains to principal stresses)
is given by A = C + zCbbTC = Cd + z−1qqT ≡ Cu, since Cd is drained stiffness
and A = Cu is clearly undrained stiffness by construction. This result is the same
as that of Gassmann (1951) for anisotropic porous media, although his results were
presented in a form somewhat harder to scan than the form shown explicitly here.

Also, note the important fact that the observed decoupling of the fluid effects
occurs only in the compliance form (1) of the equations, and never in the stiffness
(inverse) form for the poroelasticity equations.

From these results, it is not hard to show that

Sd = Su + γ−1bbT . (26)

This result emphasizes the remarkably simple fact that the drained compliance matrix
can be found directly from knowledge of the inverse of undrained stiffness, and the
still unknown, but sometimes relatively easy to estimate, values of γ, together with
the three distinct orthotropic βi coefficients, for i = 1, 2, 3.

There are clearly many measurements required to determine all these various
poroelastic coefficients. Furthermore, the strategy for finding the coefficients depends
on available data sets, and whether the porous media of interest are constructed
from a homogeneous or heterogeneous set of solid materials, and whether the indi-
vidiual grains are isotropic or anisotropic. It also makes some difference if the pores
are approximately rounded (for granular media) or flat (for fractured media). All
these issues have been discussed previously at length, and this discussion will not be
repeated here.

The remainder of the paper will concentrate on making use of the general poroe-
lastic equations in situations where at least two and possibly many distinct layers of
porous materials obeying these equations are under stress (either quasi-static or dy-
namic as would occur in a wave propagation scenario). As will be shown, the layered
poroelastic equations behave somewhat differently from layered elastic equations be-
cause there are two distinct additional boundary conditions (drained and undrained)
that can occur depending on the details of the excitation itself.

AVERAGING RESULTS FOR ALL DRAINED OR ALL
UNDRAINED BOUNDARY CONDITIONS

The two most common boundary conditions to consider in poroelastic media are the
drained and undrained conditions. Drained conditions imply that the fluid pressure
change is zero while the increment of fluid content in the individual layers may be
considered arbitrary. Of course, the total amount of fluid present needs to be properly
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conserved in the analysis to be presented, but the usual idea for drained conditions
is that the poroelastic systems is immersed in an infinite reservoir of fluid so that
pore fluid is freely available to move in and out of the region of interest. For present
studies, this situation implies that the layer increments ζ can take arbitrary (small)
values, but the fluid pressure is constrained to be a constant value pf everywhere. So
changes in pf always vanish for drained conditions.

Undrained boundary conditions place the hard constraint on the fluid increment
ζ, requiring no flow at the boundaries, so ζ = 0 at all boundaries. These conditions
ensure that the fluid pressure pf does change, since as the boundaries move in or out
the pressure on the confined fluid is increasing or decreasing.

Both of these conditions must be approximations to conditions in a generally
realistic earth model. It is easy to imagine situations where some boundaries between
layers (the vertical direction) are plugged, so undrained boundary conditions ζz ≡ 0
might be correct while neighboring layers (horizontal direction) might be open to
fluid flow (so ζx and/or ζy 6= 0). I will consider these more general situations in later
work, but for now limit the analysis to that for either all drained conditions or all
undrained conditions. All undrained conditions are also appropriate, as mentioned
previously, regardless of the physical boundary conditions if the probe changing the
physical variables is a passing high frequency acoustic or seismic wave train or pulse.

General analysis for layered poroelastic systems

I will next formulate the layered porelastic earth problem in a way so that both
of these standard boundary conditions can be imposed, as needed in any particular
modeling problem.

Now I assume throughout the rest of the paper that the porous layers are stacked
vertically (3- or z-axis) and for this geometry it is easy to see that the three horizontal
strains e11, e22, and e12 must be continuous if the layers are in solid-welded contact.
Furthermore, the vertical stress σ33, and rotational stresses involving the vertical
direction σ13 and σ23 must also be continuous. These conditions are equivalent to
an assumption of welded contact between layers. If contact is not welded, then the
system can have more complicated behaviors than those being considering here.

Appendix A summarizes the Backus (1962) and/or Schoenberg and Muir (1989)
approach to elastic layer averaging. The method I present here provides a small
generalization of this approach, taking the presence of the pore-fluid into account. For
the drained situation, the influence of the fluid on the system mechanics is minimal
(as will be shown). But I should nevertheless have this result available to compare it
with the more interesting case of the undrained layers.

Although the shear moduli normally associated with the twisting shear compo-
nents e23, e31, and e12 usually do not interact with the pore-fluid itself in systems as
symmetric or more symmetric than orthotropic, I nevertheless need to carry these
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terms along in the poroelastic formulation for layered systems because of possible
boundary effects due to welded contact at interfaces. To accomplish this goal, I
will generalize the form of equation (44) from Appendix A. In compliance form, the
equations will relate the strains

ET ≡

 e11

e22

e12

 , and EN ≡

 e33

e32

e31

 , (27)

and fluid increment ζ to the stresses

ΠT ≡

 σ11

σ22

σ12

 , and ΠN ≡

 σ33

σ32

σ31

 , (28)

and the fluid pressure change pf .

The required general relationship is: ET

−ζ
EN

 =

 STT −g12 STN

−gT
12 γ −gT

3

SNT −g3 SNN

 ΠT

−pf

ΠN

 , (29)

where, for example, in the orthotropic media considered here I have:

STT ≡

 s11 s12 s16

s21 s22 s26

s61 s62 s66

 =

 s11 s12

s21 s22

s66

 , (30)

SNN ≡

 s33 s34 s35

s43 s44 s45

s53 s54 s55

 =

 s33

s44

s55

 , (31)

and

SNT ≡

 s31 s32 s36

s41 s42 s46

s51 s52 s56

 =

 s31 s32

0
0

 , (32)

with STN = ST
NT (the T superscript indicates the matrix transpose). Here all these

expressions for elastic compliance refer specifically to drained compliances sij = sd
ij,

for all i, j = 1, . . . , 6 within each poroelastic anisotropic layer.

All the poroelastic contributions to (29) are determined by γ, g12, and g3. The
scalar γ within the 7×7 matrix in (29) was defined earlier in (8), and is the only term
in the 7 × 7 matrix that includes fluid effects directly through Kf . The remaining
pair of vectors contained within the 7× 7 matrix in (29) is defined by:

gT
12 = (β1, β2, 0) (33)

and
gT

3 = (β3, 0, 0), (34)
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where the β’s were defined previously following (1).

I now consider two examples of special uses of the general equation (29) for dif-
ferent choices of boundary conditions. These two physical circumstances covered in
the cases considered are distinct end-members. For relatively high-frequency wave
propagation, it is appropriate to consider that the fluids do not have time to equili-
brate, and therefore fluid pressures can be different in distinct layers, while the fluid
particles do not have time to move very far during wave passage time, so the fluid
increment ζ = 0 essentially everywhere. This situation is called the “undrained”
condition. An alternative condition is the fully drained condition, in which the fluid
particles have as much time as they need to achieve fluid-pressure equilibration, so
that pf = constant. These two limiting situations are clearly connected physically via
Darcy’s law, which provides the mechanism to move fluid particles, and ultimately
to guarantee that the fluid pressure reaches an equilibrium state. Bringing Darcy’s
law actively into oplay in the equations would result in Biot-style equations which
are beyond my current scope. So I consider only the end-member conditions for the
present contribution.

Drained scenario (pf ≡ 0)

Now, recall that, in the drained scenario, changes in pore-fluid pressure are assumed
to be zero (or at least negligibly small), so pf ≡ 0 in these equations. Accounting for
this condition, the results should (and do) recover the Backus (1962) and Schoenberg
and Muir (1989) results for the elastic parts of the system (found in Appendix A)
exactly. Also, I find the additional (expected) result for the poroelastic case that the
average fluid increment is:

〈ζ〉 = 〈β1σ11〉+ 〈β2σ22〉+ 〈β3〉σ33, (35)

if σ33 is nearly constant. Or, if σ33 is not uniform from one layer to the next (as might
happen due to weight of solid overburden pressure), then the third expression in (35)
should be modified, by moving σ33 inside the averaging operator. So then I have

〈ζ〉 = 〈β1σ11〉+ 〈β2σ22〉+ 〈β3σ33〉 , (36)

whenever σ33 taken constant is a poor approximation. The results shown in (35) and
(36) are easy to reconcile with the definitions of the β’s, and the meaning of averaging
operator 〈·〉 across all layers. When pf vanishes everywhere, the final results for the
averaging and the various stresses and strains are identical to the results in Appendix
A. For the drained scenario, the only difference is the addition of equations (35) or
(36).

Undrained scenario (ζ ≡ 0)

Now consider that the fluid pressure might vary across the stack of layers (as should be
expected to happen either because of hydrostatic overburden, or due to fluid injection



Berryman 12 Stratified poroelastic rocks

or extraction at certain chosen depths). Then I can treat this case as well, assuming
undrained circumstances, by averaging the fluid pressure itself via 〈pf〉. In this case,
some knowledge of the fluid-pressure distribution along the stack of layers would be
required, as well as some information about whether the undrained condition applies
at every interface, or just at some interfaces. Variations might occur if a sealing layer
were present to close off flow at the top, or bottom. Both ends might be sealed for
some range of porous layers forming a heterogeneous, layered anisotropic reservoir
including cap rocks. For this undrained case, the fluid pressure in each undrained
layer is free to vary compared to all the others; so there is no constancy of pf for this
scenario. The averaging condition resulting from the formulation for such a reservoir
according to (29) is:

〈pf〉 = −
〈

1

γ
(β1σ11 + β2σ22)

〉
+

〈
β3σ33

γ

〉
. (37)

Proper choice of the range of depth for averaging will clearly depend on the details
of each reservoir, and the type of physical probe being used. For example, either
quarter- or half-wavelength for seismic waves, when used as the probe, would be
typical choices of the averaging depth in this case.

While the preceding part of the averaging for undrained boundary conditions was
straightforward, I still need to check what happens when averaging the remainder of
the equations. I show the work in Appendix B leading to the general undrained result
(63), but just quote the final answer here – being valid for each undrained layer in
the overall system:

(
ET

EN

)
=

(
Su

TT Su
TN

Su
NT Su

NN

)(
ΠT

ΠN

)
, (38)

where

Su
TT ≡

 su
11 su

12

su
21 su

22

s66

 , (39)

Su
NN ≡

 su
33

s44

s55

 , (40)

and

Su
NT ≡

 su
31 su

32

0
0

 , (41)

while Su
TN = (Su

NT )T . Once these definitions are used for the undrained matrices, the
layer analysis for the system follows exactly the same steps as in Appendix A. Note
that I arrived at these results in another (step-by-step) way in Appendix B in order
to prove that this is the right answer for the undrained problem. Fortunately, the
intuitive answer is also the same as the right answer.
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SUMMARY AND CONCLUSIONS

This paper has presented a method of generalizing the elasticity-based methods of
Backus (1962) and of Schoenberg and Muir (1989) to poroelastic systems, having
additional dependencies on pore-pressures and pore-fluid physical properties. The
approach taken is very close in spirit to that of Schoenberg and Muir (1989). The
results are necessarily a little more complicated due to the presence of the pore-fluid,
which permits different types of elastic-poroelastic behavior to occur than can appear
in simply elastic stratified systems. The drained results agree completely with the
elastic results, as they should. The undrained results permit studies of complicated
layered poroelastic systems to proceed in an analytical framework that should be
helpful for better understanding of a wide range of problems in oil and gas reservoir
exploration.

APPENDIX A: THE SCHOENBERG-MUIR METHOD

The quasi-static elasticity equations are often written in compliance form using the
Voigt 6× 6 matrix notation as:

e11

e22

e33

e23

e31

e12

 =


s11 s12 s13 s14 s15 s16

s21 s22 s23 s24 s25 s26

s31 s32 s33 s34 s35 s36

s41 s42 s43 s44 s45 s46

s51 s52 s53 s54 s55 s56

s61 s62 s63 s64 s65 s66




σ11

σ22

σ33

σ23

σ31

σ12

 ≡ S


σ11

σ22

σ33

σ23

σ31

σ12

 , (42)

where S is the symmetric 6×6 compliance matrix. The numbers 1,2,3 always indicate
Cartesian axes (say, x,y,z respectively). The z-direction is usually chosen as the
layering direction, which could be oriented any direction in the earth. But, in many
geological and geophysical applications, the 3-axis (or z-axis) is also taken to be the
vertical direction, and I conform to this convention here. The principal stresses are
σ11, σ22, σ33, in the directions 1,2,3, respectively. Similarly, the principal strains are
e11, e22, e33. The stresses σ23, σ31, σ12 are the torsional shear stresses, associated with
rotation-based strains around the 1, 2, or 3 axes, respectively. The corresponding
torsional strains are e23, e31, and e12, where the torsional motion is again a rotational
straining motion around the 1, 2, or 3 axes. The compliance matrix is symmetric, so
sij = sji, and this fact could have been used when displaying the matrix. The axis
pairs in the subscripts 11, 22, 33, 23, 31, and 12, are often labelled (again following
the conventions of Voigt) as 1,2,3,4,5,6, respectively.

The important contribution made by Backus (1962) [also see Postma (1955)] is
the observation that, in a horizontally layered system, there are certain strains eij and
stresses σij that are necessarily continuous across boundaries between layers, while
the others are not necessarily continuous. I have been implicitly (and now explicitly
by calling this fact out) assuming that the interfaces between layers are in welded
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contact, which means practically that the in-plane strains are always continuous: so
if axis 3 (or z) is the symmetry axis (as is most often chosen for our layering problem),
I have e11, e12 = e21, and e22 are all continuous. Similarly, in welded contact, I must
have continuity of the all the stresses involving the 3 (or z) direction: so σ33, σ13 = σ31,
and σ23 = σ32 must all be continuous.

Then, following Backus (1962) and/or Schoenberg and Muir (1989) but — for
present purposes considering instead the compliance (inverse of stiffness) matrix — I
have rearranged the statement of the problem so that:

e11

e22

e12

e33

e32

e31

 =


s11 s12 s16 s13 s14 s15

s21 s22 s26 s23 s24 s25

s61 s62 s66 s63 s64 s65

s31 s32 s36 s33 s34 s35

s41 s42 s46 s43 s44 s45

s51 s52 s56 s35 s54 s55




σ11

σ22

σ12

σ33

σ32

σ31

 . (43)

Note that this equation, although similar to (42) is nevertheless quite different be-
cause of the rearrangement of the matrix elements and the reordering of the strains
and stresses. The expression in (43) is general for all elastic media. In the main text
I restrict the discussion to orthotropic media. Assuming then that I am using the
correct set of axes as the symmetry axes in the presentation, all off-diagonal com-
pliances having subscripts 4, 5, or 6 in (42) vanish identically. The diagonal shear
compliances s44, etc., generally do not vanish however.

Expression of (43) can be made more compact by writing it as:(
ET

EN

)
=

(
STT STN

SNT SNN

)(
ΠT

ΠN

)
, (44)

where

STT ≡

 s11 s12 s16

s21 s22 s26

s61 s62 s66

 =

 s11 s12

s21 s22

s66

 , (45)

SNN ≡

 s33 s34 s35

s43 s44 s45

s53 s54 s55

 =

 s33

s44

s55

 , (46)

and

SNT ≡

 s31 s32 s36

s41 s42 s46

s51 s52 s56

 =

 s31 s32

0
0

 , (47)

with STN = ST
NT (with T superscript indicating the matrix transpose). Also I have

ET ≡

 e11

e22

e12

 , and EN ≡

 e33

e32

e31

 , (48)
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and

ΠT ≡

 σ11

σ22

σ12

 , and ΠN ≡

 σ33

σ32

σ31

 . (49)

It is important to distinguish between “slow” and “fast” variables in this analysis,
since this distinction makes it clear when and how averaging should be performed.
The “slow” variables, i.e., those that are continuous across the (here assumed horizon-
tal) boundaries and also essentially constant for the present quasi-static application,
are those contained in ET and ΠN . So, after averaging 〈·〉 along the layering direction,
I have: (

ET

〈EN〉

)
=

(
S∗TT S∗TN

S∗NT S∗NN

)(
〈ΠT 〉
ΠN

)
, (50)

where S∗TN = (S∗NT )T , and all the starred quantities are the nontrivial average compli-
ances I seek. They are defined in terms of layer-average quantities where the symbol
〈·〉 indicates a simple volume average of all the layers. By this notation I mean that
a quantity Q that takes on different values in different layers has the layer average
〈Q〉 ≡ xaQa +xbQb + . . .. The definition is general and applies to an arbitrary number
of different layers where the fraction of the total volume occupied by layer a is xa,
etc. Total fractional volume is xa + xb + . . . ≡ 1.

Of the three final results, the two easiest ones to compute are:

S∗TT =
〈
S−1

TT

〉−1
, (51)

S∗TN = (S∗NT )T =
〈
S−1

TT

〉−1 〈
S−1

TTSTN

〉
= S∗TT

〈
S−1

TTSTN

〉
, (52)

where 〈·〉 is the layer average of some quantity. These results follow from this equation:〈
S−1

TT

〉
ET = 〈ΠT 〉+

〈
S−1

TTSTN

〉
ΠN , (53)

which also followed immediately from the formula

ET = STT ΠT + STNΠN (54)

multiplying through first by the inverse of STT , and then performing the layer average.
[Note that STT and SNN are both normally square and invertible matrices, whereas
for most systems the off-diagonal matrix SNT is not invertible. But, this fact does
not cause problems in the analysis, because I do not need to invert SNT in order
to solve the averaging problem at hand.] These averages are meaningful because,
when the matrix equations presented are multiplied out, there never appear any cross
products of two quantities that are both unknown. [From this view point, Eq. (53)
is an equation for 〈ΠT 〉, just as the unaveraged version of (53) is an equation for
ΠT in each layer.] So simple layer-averaging suffices (thereby providing the main

motivation and value of this method). Multiplying (53) through by
〈
S−1

TT

〉−1
then

gives the results (51) and (52).
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The remaining result is more tedious to compute, since it requires several inter-
mediate steps in its derivation. But the final result is given by the formula:

S∗NN = 〈SNN〉 −
〈
SNTS−1

TTSTN

〉
+ S∗NT (S∗TT )−1 S∗TN . (55)

To provide some clues to the derivation, again consider:

ΠT = S−1
TT ET − S−1

TTSTNΠN , (56)

which is just a rearrangement of (54). The point is that 〈ΠT 〉 is then given immediately
in terms of the quantities ET and ΠN , which are both “slow” variables and therefore
essentially constant. An intermediate result that helps to explain the form of this
relation (55) is:

S∗NT (S∗TT )−1 S∗TN =
〈
SNTS−1

TT

〉 〈
S−1

TT

〉−1 〈
S−1

TTSTN

〉
=
〈
SNTS−1

TT

〉
S∗TN . (57)

Substituting for ΠT from (56) into

EN = SNT ΠT + SNNΠN (58)

and then averaging, I find that

〈EN〉 =
〈
SNTS−1

TT

〉
ET +

〈
SNN − SNTS−1

TTSTN

〉
ΠN , (59)

an expression that completely determines the remaining coefficients. After some more
algebra, the formula giving the final result is:

〈EN〉 =
〈
SNTS−1

TT

〉 〈
S−1

TT

〉−1 [〈ΠT 〉+
〈
S−1

TTSTN

〉
ΠN

]
+
[
〈SNN〉 −

〈
SNTS−1

TTSTN

〉]
ΠN

= S∗NT 〈ΠT 〉+ S∗NNΠN .

(60)

Equation (60) contains all the information needed to produce the third and final
result found in (55).

Another check on these formulas is to compare them directly to those found by
Schoenberg and Muir (1989). However, direct comparison is not so easy, since their
analysis focuses on the stiffness version of these equations. My treatment makes use
of the compliance version instead. Since the symmetries of the two forms of the
equations nevertheless are nearly identical, cross-checks and comparisons will be left
to the interested reader.

APPENDIX B: POROELASTIC FORMULAS FOR
UNDRAINED BOUNDARY CONDITIONS IN LAYERED

SYSTEMS

Using equation (29) as our starting point, I next treat the boundary condition ζ = 0
for undrained layers (meaning that the fluid is actually physically trapped in the
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layer, or the physical process is so fast – such as high frequency wave propagation –
that the fluid inertia prevents rapid movement of fluid particles over non-infinitesimal
distances). Depending on the application scenario, this boundary condition might be
applied to all layers, or only to just one or a few layers.

I consider first a single layer having the undrained boundary condition. For this
case, the condition from Eq. (29) becomes

0 = gT
12ΠT + γpf + gT

3 ΠN , (61)

within the layer. Next, the equation can be solved to express the fluid pressure pf

strain dependence in each undrained layer (the layer labels are suppressed here for
simplicity) as

pf = −1

γ

(
gT

12ΠT + gT
3 ΠN

)
. (62)

Then, substituting this condition back into the expressions for ET and EN from (29),
I find that (

ET

EN

)
=

(
STT − γ−1g12g

T
12 STN − γ−1g12g

T
3

SNT − γ−1g3g
T
12 SNN − γ−1g3g

T
3

)(
ΠT

ΠN

)
. (63)

To understand the significance of (63), I next consider that it is straightforward
to show that each of these composite matrix elements corresponds exactly to the
undrained version of the Schoenberg-Muir matrices. So that,

Su
TT ≡ STT − γ−1g12g

T
12, (64)

Su
NN ≡ SNN − γ−1g3g

T
3 , (65)

and
Su

TN ≡ STN − γ−1g12g
T
3 = (Su

NT )T . (66)

All these expressions follow directly from the form of (63).

Thus, I arrive at a result that might have been anticipated, which is that the
undrained layers respond according to the usual undrained conditions in each indi-
vidual layer. The part of the result that is new concerns the forms of the undrained
matrices Su

TT , Su
NT = (Su

TN)T , and Su
NN , in the now modified Schoenberg-Muir for-

malism.

This analogy can be pushed somewhat further to include the effective values for the
undrained moduli Su∗

TT , Su∗
NT = (Su∗

TN)T , and Su∗
NN , with formulas entirely analogous to

(51), (52), and (55), and undrained constants replacing drained constants everywhere.
Since there is nothing subtle about this step, I will therefore leave these details to be
filled in by the interested reader.
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