next up previous [pdf]

Next: About this document ... Up: Biondi: Beam wave-equation tomography Previous: APPENDIX A

Details of gradient computation

In this appendix I present the analytical development needed to derive equations 22-23 from equations 20-21.

Equation 20 can be rewritten as

$\displaystyle {
\left.
\frac
{\partial {\boldsymbol \mu}_{\overline{x}}}
{\part...
...ol \mu}_{\overline{x}}\right)
}
{\partial {\boldsymbol \mu}_{\overline{x}}}
}
}$
    $\displaystyle =
-\frac
{
\left\langle
\left.
\frac
{\partial\mathcal M_{\overli...
...line{x}}}
,
{{\bf B}_{\overline{x}}
C\left({\tau};{s}\right)
}
\right\rangle
},$  

where,


$\displaystyle \frac
{\partial^2\mathcal M_{\overline{x}}\left[
{\theta}\left({\...
...ft({\tau};{s}_{0}\right)
\right]}
{\partial {\boldsymbol \mu}_{\overline{x}}^2}$ $\displaystyle =$ $\displaystyle \mathcal M_{\overline{x}}\left[
{\theta}\left({\boldsymbol \mu}_{...
...
\right]\frac{\partial^2 {\theta}}{\partial {\boldsymbol \mu}_{\overline{x}}^2}$  
  $\displaystyle +$ $\displaystyle \mathcal M_{\overline{x}}\left[
{\theta}\left({\boldsymbol \mu}_{...
...ht)
\right]\frac{\partial {\theta}}{\partial {\boldsymbol \mu}_{\overline{x}}},$  

and in which $ \stackrel{..}{C}\left({\tau}\right)
=
C\left({\tau}\right)\left[
{\widetilde{{P}} }\left({t}\right)
,
{\stackrel{..}{{P}}}_{D}\left({t}\right)
\right]
$ . Given the moveout parametrization expressed in 6, $ {\partial^2 {\theta}}/{\partial {\boldsymbol \mu}_{\overline{x}}^2}=0$ and the previous expression simplifies into the following:

$\displaystyle \frac {\partial^2 \mathcal M_{\overline{x}}\left[ {\theta}\left({...
...t) \right] \frac{\partial {\theta}}{\partial {\boldsymbol \mu}_{\overline{x}}}.$    

Consequently, the general expression for the gradient of the local moveout parameters with respect to the slowness model is:

$\displaystyle \left. \frac {\partial {\boldsymbol \mu}_{\overline{x}}} {\partia...
...line{x}}} , {{\bf B}_{\overline{x}} C\left({\tau};{s}\right) } \right\rangle }.$    

When $ \bar{{\boldsymbol \mu}}_{\overline{x}}=0$ , the general expression further simplifies into:

$\displaystyle \left. \frac {\partial {\boldsymbol \mu}_{\overline{x}}} {\partia...
...line{x}}} , {{\bf B}_{\overline{x}} C\left({\tau};{s}\right) } \right\rangle }.$ (A-1)

Similar derivation can be developed for the derivative of the global moveout parameters with respect to slowness. Equation 21 can be rewritten as:


$\displaystyle {
\left.
\frac
{\partial {\boldsymbol \mu}}
{\partial {s}}
\right...
...{{J_{\rm FG}}}\left({\boldsymbol \mu}\right)
}
{\partial {\boldsymbol \mu}}
}
}$
    $\displaystyle =
-\frac
{
\left\langle
\left.
\frac
{\partial
{
\mathcal M\left\...
...ht)
,{\bf B}_{\overline{x}}
C\left({\tau};{s}\right)
\right]
}
\right\rangle
},$  

where,


$\displaystyle {
\frac
{\partial^2
{
\mathcal M\left\{
{\theta}\left({\boldsymbo...
...ft({\tau};{s}_{0}\right)
\right]
\right\}
}}
{\partial {\boldsymbol \mu}^2}
=
}$
    $\displaystyle \mathcal M\left\{
{\theta}\left({\boldsymbol \mu}\right)
,{\bolds...
...ight)
\right]\right\}\frac{\partial^2 {\theta}}{\partial {\boldsymbol \mu}^2}
+$  
    $\displaystyle \mathcal M\left\{
{\theta}\left({\boldsymbol \mu}\right)
,{\bolds...
...{0}\right)
\right]\right\}\frac{\partial {\theta}}{\partial {\boldsymbol \mu}}.$  

Given the moveout parametrization in expressed in 10, $ {\partial^2 {\theta}}/{\partial {\boldsymbol \mu}^2}=0$ and the previous expression simplifies into:
$\displaystyle {
\frac
{\partial^2
{
\mathcal M\left\{
{\theta}\left({\boldsymbo...
...ft({\tau};{s}_{0}\right)
\right]
\right\}
}}
{\partial {\boldsymbol \mu}^2}
=
}$
    $\displaystyle \mathcal M\left\{
{\theta}\left({\boldsymbol \mu}\right)
,{\bolds...
...{0}\right)
\right]\right\}\frac{\partial {\theta}}{\partial {\boldsymbol \mu}}.$  

The general expression for the gradient of the global moveout parameters with respect to the slowness model is:


$\displaystyle {
\left.
\frac
{\partial {\boldsymbol \mu}}
{\partial {s}}
\right\vert _{{\mu}={\bar{{\mu}}}}=
}$
    $\displaystyle -\frac
{
\left\langle\mathcal M\left\{
{\theta}\left(\bar{{\bolds...
...ht)
,{\bf B}_{\overline{x}}
C\left({\tau};{s}\right)
\right]
}
\right\rangle
}.$  

When $ \bar{{\boldsymbol \mu}}_{\overline{x}}=0$ and $ \bar{{\boldsymbol \mu}}=0$ the general expression further simplifies into:

$\displaystyle \left. \frac {\partial {\boldsymbol \mu}} {\partial {s}} \right\v...
...{\overline{x}} {\bf B}_{\overline{x}} C\left({\tau};{s}\right) \right\rangle }.$ (A-2)

$ {}_{}$


$ {}_{}$
\fbox{\includegraphics[width=\textwidth]{/net/koko/wrk1/sep140/biondo1/Fig/filler1.pdf}}


next up previous [pdf]

Next: About this document ... Up: Biondi: Beam wave-equation tomography Previous: APPENDIX A

2010-05-19