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Abstract

Two independent methods of deconvolving seismic data are presented.
The first section gives the theoretical development of each method and
the second section follows with some examples.

Power spectrum smoothing consists of estimating the bubble spectrum
by dividing a smoothed raw data spectrum by a super-smoothed raw data
spectrum. The time domain bubble is computed using the minimum phase
factorization of the resultant spectral ratio.

Parsimonius deconvolution is an iterative gradient descent algorithm.
A norm measuring the parsimony or spikiness of a trace provides the grad-
ient direction along which descent is made. The optimation process is
subject to the constraint that the observed seismic trace is composed of
random noise plus the convolution of a reflectivity series with a causal

waveform.
Theory of Power Spectrum Smoothing

We wish to decompose the seismic trace Ve s into a bubble b
and reflectivity series X, Each trace is formed by the process ill-
ustrated in equation (1) where n, is noise.

= %
Ve bt X, + n (1)
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If the bubble is considered stationary across a group of traces and if
the noise is uncorrelated with reflectivity, then adding trace spectrums

over all channels gives

Y = (BB) (XX) + NN (2)
_._1: —
where YY = N .Z (YY)ich
ich
XX =+ 3 (X%
N . ich
ich
NN = & T (NN)
N ., ich
ich

Capital letters refer to frequency domain. In deriving (2) we used the

uncorreltaed noise assumption, namely
EMX) =0

where the expectation operator is approximated by a finite sum over
channel. Excluding the noise term from (2), (implying high signal-noise

ratio), (2) is rewritten

(3)

Utilizing the same type of philosophy used in predictive deconvolution,
we want the desired reflectivity to have an autocorrelation which is a
heavily smoothed version of the seismic trace autocorrelation. Eq. (3) now

becomes

= _ YY (4)

where angle brackets denote autocorrelation smoothing and BB is an

estimate of the "true" BB
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The forward wavelet represents a physical waveform and therefore
must be finite in length (causal). The presumed length of bt is
considered a constraint and any algorithm computing bt must incor-
porate the constraint. If the denominator in (4) was smoothed so

that <<YY >> =1 , then the autocorrelation of bt would equal

that of Ve o- Reducing the amount of smoothing reduces the autocor-
relation length of bt . Alternatively, either the numerator or ratio
in (4) can be smoothed in order to reduce the length of bt . Incorpor-

ating this feature into (4), we obtain an estimate of the bubble spectrum

A_ -—> ~__ ~
BB=__<_YE______ or BB = <..__.__Y_.Y____> (5)

<<YY >> << YY >>

An alternate way of viewing (5) is contained in the following paragraph.
The average spectrum of raw field data recorded using an air-gun
array commonly exhibits sharp notches and peaks. [see figure 3]. These
features can be associated with a waveform of duration 1/Af , where
Af is the frequency separation between adjacent notches or peaks. Decon-
volved data should be free of such features yet the same trend between
raw and deconvolved data should be retained. Eq. (5) gives an estimate
of a source waveform spectrum which when used to deconvolve data will
preserve trends but eliminate gross features between raw and deconvolved
spectrums.
The complex spectrum, ﬁ can be computed from (5) using a minimum

phase factorization technique and each trace deconvolved using

(5a)

>
]
o |

A

Eq. (5a) is stable at all frequencies since a necessary condition for B

to be minimum phase is that [B] % 0 on the unit circle.
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Parsimonious Deconvolution

Theory for Single Channel

Claerbout, [SEP 13 - Parsimonius Deconvolution] has shown that mini-
mizing a spikiness norm Sn(xt) , of a seismic trace achieved a subject-

ively good deconvolution, where

2 Jx " an fx|”
Sn(x) = fa I ]xt]n - (6)
t n
z ]xt|
t

Two constraints imposed on the minimization of Sn(xt) are (considering

a single-channel, noiseless process)

i) Ve = % * bt (6a)

ii) bt is causal or finite

Previous algorithms had problems with stability and the present algorithm
was developed to solve this problem. Since we're working with forward
wavelets the algorithm had to be formulated in the frequency domain since

the computation of x , given Ve and a current estimate of bt is

t
extremely time-consuming if the system of equations in (6) is solved by

Levinson recursion. The minimization proceeds as follows.
First, transform (6a) (caps refer to frequency domain)

Y = XB (7

Next, recall the total derivative of a function, in this case Y

dY = -— dX + — dB (8)
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Using (7) in (8) and setting dY =0

(9)

Define the gradient g, » as

_ BSn(xt)
8¢ 3
e

We wish to march dX in the direction -G , an amount do since we're

trying to minimize Sn . Letting dX = -doaG , (9) becomes
dB _ do GX (10)
Poox

Equation becomes numerically unstable if [GI remains finite as [X|+O .

To ensure stability (10) is rewritten as

dB _ da GX (10a)
Xi+e

where 0 <g <o

Now we are certain that %E- + 0 as |X| >0 . To simplify notation, define
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Now (10a) is written compactly as

B —
3 = do GX' (11)
A discussion on what values the parameter e was allowed to have is in

the section Examples.

Assuming that GX' is a slowly varying function of o and that o

is small, (11) is integrated to give:

St .
f %ﬁ =j CX' da s (aGX")E
Kk 0

Bk+l

Bk

n = (aGi')k

BT = 8K exp [(aGX")¥] (12)

where Lk refers to iteration index

Eq. (12) is the essential equation for computing a new bubble Bk+l s

given some previous estimate B

Causality of bt must still be enforced in some stable manner. It
is advantageous at this point to consider noisy multichannel data since
the presence of noise will provide some explicit stabilization in the

computation of X, given bt and Ve
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Theory for Multichamnel Noisy Data

Copying down (1) using ich to denote the channel number we have

. = * X, + n,
y1ch,t bt ich,t n1ch,t

(13)
The bubble bt is assumed stationary across a common shot gather and the
noise nich,t is assumed random from trace to trace. There are two prob-
lems to solve when noise is present on a channel.

First, assuming we have an estimate of bt , how do we compute X,
Dropping the subscript ich , temporarily, the classical approach [see

Taylor et al, 1977] is to minimize an 1-2 error norm, E , defined as

2 2
E= X nt + A Z X, (14)

where A 1s a non-negative Lagrange multiplier. Rewriting (14) in the

frequency domain, using Rayleigh's theorem gives

E = Z(Nﬁ)w + Azo&)w (15)
w w

From (13) we know that

N=Y - BX (16)

?



214

Substituting (16) into (15) and differentiating E w.r.t. X , a spec-—
ific frequency component, we obtain the result
x = BY (17)
BB+A

The stabilizing influence of A , commonly called the pre-whitening para-

meter, is evident from (17) since the denominator is positive definite

(A>0) . An estimate of the noise/signal ratio is used when choosing this

parameter. A scheme for determining X is discussed under EXAMPLES.
Replacing the term GX' by = (Gf')ich in (12) solves the problem of

k+1 g ieh

how to compute B from B for multichannel noisy data. Since (12)

was derived using noiseless data, the replacement of GX' by the channel

sum must be qualified. If channel noise is uncorrelated with reflectivity,

then it can be shown that the above replacement is approximately valid.

Summarizing the results, we have an algorithm for deconvolving multi-

channel noisy data

form B Bx+l = Bk exp a = (GX'"). h (18)
ich e
BY:ien (19)
deconvolve : Xich =
channels BB+A

By truncating Bk in the time domain after each iteration, causality

of bt is ensured.



EXAMPLES
Parameters Needed

L. Power Spectrum Smoothing

Smoothing the raw data spectrum is done by multiplying a
symmetrical triangular window with the autocorrelation of the data.
The length of the triangle must be specified and therefore two para-
meters are required, Kshort= l--1ength for super-smoothing and

2

1 . . .
Klong= E——length for either ratio or numerator smoothing. Kshort
equals the number of points to the second zero crossing of the auto-

correlation function.
2. Parsimonius Deconvolution
A summary of the parameters needed are

n = norm coefficient (6)
¢ = perturbation stabilization (10a)
A = pre-whitening coefficient (17)
o = length to march along gradient (18)
nb = allowed length of bubble

tO = starting value for b(t) = &(t-t

0’
With the exception of the first example, the parameter n was
initially set to 2.5 for a prescribed number of iterations and then

reset to 2.0. The iteration was halted when either all channels had

a convergent norm or when some norms were diverging and others converg-

ing. In all cases, the norm was reset from 2.5 to 2.0 when each

channel norm (with the exception of one or two channels) had converged.
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Two values for € were used.

largsst(Xﬁ) - smal%est(Xﬁ)
1 10

(ii) e, » =

The practical implementation of €, consists of recognizing that

(X§432)+62 . Then (10a) is rewritten as

B _ da GX . du GX _ (400 ox
XX+e €2

2

where the constant da/e2 has been reset to da Empirically it

was observed that £l and €, sgave similar results, but €, 8gave
quicker convergence. All examples shown use ¢=¢

+
The parameter, o 1is chosen so that ]Bk l[ is allowed a

. - . k . . X
fixed maximum excursion from IB | at each iteration. This means

max k] = fact (20)

where 0 < fact <1

By substituting (18) into (20) a relation between o and fact can
be deduced. Selecting a value for fact fixes «o
A scheme for selecting A follows. Essentially, we provide

some mathematical equivalents for the statement "X is small compared

to BB" . Using (16) we define noise/signal ratio as
r(o) = W (B0 (-BX) (21)
XX XX

Now use (17) to eliminate X from the righthand side of (21), giving

V]

r(w) = (22)

=11
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By demanding that a high percentage of r(w) be small, say equal to
0.001, A is determined. In practice, (1/BB) was sorted and the value
corresponding to the index=120 (for 128 data points) or index=490 (for
512 data points) was multiplied by 0.001 to yield XZ . If a large
number of BB > 0 , however, XA - 0 according to this scheme and (19)

becomes unstable. Either a lower index value must be chosen or a new

scheme used.
Synthetic Data

Five channels of synthetic data, each 128 points long are shown
in Fig. 1. By convolving the true wavelet bt (23 points) with the

true reflectivity x the traces y, were synthesized. The estimated

>
reflectivity and bubEle using parsimonius deconvolution (PD) are shown
in Fig. la and 1b.

Fig. la represents 11 iterations with n=2.0, whereas Fig. 1b
represents 21 iteratioms, the first 11 with n=2.5 and the latter 10 with
n=2.0. One explanation of the disparity between results is illustrated
in Fig. lc. The gradient is plotted as a function of y for both
n=2.5 and n=2.0. The lower norm not only attaches a larger gradient to
small data values (which tends to drive them to zero) but attaches a
gradient of the same sign to more large data values (which tends to
increase their magnitude).

Spectrum smoothing deconvolution (SSD) is shown in Figs. 1d and le.
Both cases used Kshort=6 and Klong=50, however, Fig. 1ld used numerator
smoothing to implement Klong whereas Fig. le used ratio smoothing. One
explanation for the poor results is that in SSD, one assumes g is

t
minimum phase whereas in fact bt wasn't minimum phase.

Common. Shot Gather

Fig. 2a is the same original common shot gather that Claerbout
(SEP 13) used. The average amplitude spectrum is shown in Fig. 3a.
Fig. 2b shows the SSD of the gather using Kshort=15 and no numerator

smoothing. The areas labeled bubble in Fig. 2a have been largely removed
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but a faint resonance parallel to the sea floor is evident. Fig. 3b
illustrates the smoothed appearance of the deconvolved average amplitude
spectrum.

Fig. 2c shows the PD of the gather using 11 iterations of which
the first 6 used n=2.5, followed by 5 with n=2.0. Other parameters
are as follows: fact=0.3, nb=200 and to=50. Reducing the lag tended
to rid the gather of the faint water bottom precurssor evident in Fig. 2c.
Again, the areas labeled bubble have been removed but the resonance men-
tioned above persists. The high frequency present in the bubble (Fig. 3c)
from 62.5 Hz onwards is a computational artifact that results because the
raw data was absent of energy in these frequencies.

Finally, Fig. 2d is the same gather deconvolved using a technique
being studied by Will Gray (see report in SEP 14). All three deconvolved
gathers are also shown in variable area format in his report.

All three methods give very similar results and since spectrum smooth-
ing ism't an iterative type algorithm, we conclude that it's the preferred

method of deconvolution for this particular data set.
Earthquake Data

The final example is a set of earthquakes originally deconvolved
by R. A. Wiggins (1977) using minimum entropy deconvolution (MED). Fig. 4
shows both the original earthquake suite and the result using PD. Ten
iterations were used with the first five having n=2.5 and the last five,
n=2.0. The deconvolved data is of much lower frequency than the raw
data, in common with MED. Wiggins was able to show how a refracted and
reflected wave were resolved better on traces 9 and 10 using MED, however,
PD hasn't accomplished this.

SSD was also attempted on this data but the results were character-

istic of that for the synthetic data and are omitted here.
Conclusion
When parsimonius and smoothed spectrum deconvolution are tried on

synthetic data, the former method gives a better result. When the methods

are applied to one particular common shot gather, however, the results are
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qualitatively very similar

An explanation of the last result is that the field data contained
a minimum phase bubble and therefore spectrum smoothing should work well.
To test this hypothesis, an air-gun source signature, obtained from
Robert Brune of the USGS, was factored and the resultant minimum phase
wavelet closely approximated the original signature. This wavelet was
then used to construct some synthetic data using a uniform probability
density function to determine reflection coefficients and arrival times.
Parsimonius deconvolution again performed better than spectrum smoothing
although the disparity between results wasn't as pronounced as in earlier
synthetics. The effects of using other probability distributions hasn't
been studied yet.

Data recorded using a non-minimum-phase wavelet (e.g. maxi-pulse)
would provide a good test of the deconvolution methods. Parsimonius
deconvolution is favored simply because of the minimum phase assumption
required in spectrum smoothing. On the other hand, the results above
are inconclusive on what to expect from data recorded using a minimum-

phase wavelet.
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Fig la: Xt is the deconvolved estimate of M Yt was formed by convolving bt

with X, - Eleven iterations with n=2.0 were used to give X The computed
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bubble, bt is shown underneath bt
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Fig 1b: Same as la, except X was found by using 11 iterations with p=2.5

followed by 10 iterations with n=2.0
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Fig. lc: Illustrates how different norms "see" y_ differently. The abscissa of the
g t

two plots on the right is y and the ordinate is g . ©Note: on all plots,

positive ordinates point down the page.
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Fig. 1d: Deconvolving Ve using spectrum smoothing.
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Fig. le: Same as Fig. 1ld except that ratio smoothing was used.. Both results are

poor compared to parsimonius deconvolution.
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Numerator smoothing was used.
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A common shot gather plotted after spherical
divergence correction and relative amplitude

scaling have been applied to the data.
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the sea-floor and is interpreted as source

waveform

Fig 2a:
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Fig. 2c:
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Vrv

Fig 3a: Average amplitude spectrum of Fig. 2a
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Fig. 3b: Top figure shows amplitude spectrum and shape of bt computed using SSD.

Bottom figure shows average amplitude spectrum of Fig. 2b.
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Fig. 3c: Top figure shows amplitude spectrum and shape of bt computed using PD.

Bottom figure shows average amplitude spectrum of Fig. 2c.
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Fig. 4: Parsimonius deconvolution of earthquake data [see Wiggins]. The PkP phase
is the dominant event. :
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