MIGRATION IN SLANT-MIDPOINT COORDINATES

Jon F. Claerbout

Given the transformation

y = (gts)/2 (1a)
h = (g-s)/2 (1b)
' = t - p(g-s) (2)

where (g,s,t) are geophone, shot, and travel time, (y,h,t') are midpoint,
half offset, and slanted time, v(z) is velocity as a function of depth,
and p is a parameter which turns out to be the Snell's law parameter of
the ray about which we will expand. The statement that we have two dif-
ferent mathematical functions to represent the wave field depending on

whether we use (t,g,s) or (t',y,h) coordinates is

P(t,g,s) = Q(t',y,h) (3)

The chain rule for partial differentiation of (3) gives

Pt = Qt' (4a)
P.o= -pQ. + 3+ 20 (4b)
g PRy 2%y 2°h
_ 1 1
P,o= 0 + 30, - T, (40)

Let Fourier transform variables be defined by the correspondences

(t,g,s) > exp i(_w’kg’ks) (Sa)

(t',y,h) < exp i(—w"ky’kh) (Sb)
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Upon Fourier Transformation the set (4) becomes

w = (6a)
= ! 1 1
kg PWw + Eky + ikh (6b)
1 1
k = -pu' + Tk - =
s pw 2%y 2 (6¢c)

k
Y = Z_X (7a)
2w
vk
i = 3 (7b)

And with (6) we make some more definitions G,S which relate to sines of

incidence and departure angles

vk
—ag- = Y+ (H4+pv) = G+ pv (8a)
vks
—= = Y- (H+pv) = S-pv (8b)

It is evident from (8) that choice of non-zero p in equation (2) amounts
to an origin shift for incidence and departure angles and for H. We now
use the scalar wave equation dispersion relationship to define the verti-

cal wave numbers for downward continuation of geophones kz and shots

g
k
z
S
- . 1
" { (vk ) 2 2 o
k = — l - —'& = — &
z v W v (9a)
g L / ®
S |
0 {Vks\ ;2 w
z v W/ v s
8 i
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We now assert that the downward continuation of both shots and geophones,

i.e. the whole experiment can be done with

dpP  _ . _ s _ 1
Fri —1kzP = 1v(¢g+¢s)P ;@Pt (10)
where, using (8) and (9)
o = @ + @S (10a)
' r -

[ Va2 |k P Vo id

® = 1- G+pv 12 4+ 1- \S—pv// ;2 (10b)
X /] - s

It is now convenient to use (s,c,t) to denote sine, cosine, and tangent.

(These will not be used in equations involving shotpoint s, and time t.)

1/2
0, = (1-s%-25¢-G2) / (11a)
1/2
= c(1-2tG-G2/c?) / (11b)
Let 2 9 1/2
R =  (1-2tG-G2/c?) (12)

Now recall the Muir-Engquist rational expansion of square root R

2,2
3 -2tG6-G /¢
Rj+2 = 1 + T+ Rj (13)
First consider even orders
Ro = 1 (14a)
2
R, = 1-tG- —=0C (14b)
2 2
2c

More interesting are the odd orders. Rearrange (12)

R = [(-t0)% - (% +t% % (15)
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Inspection of (1lb) for very small G2 (but not necessarily very small tG)

suggests starting (13) with

Ry = 1-t6 (16)
Rearrange (13)

tG(—l+Rj) —G2/c2

Rj+2 = 1-tG + T 3 17)

To avoid algebraic clutter we develop R in the form
N.
R, = 1-tG+ =+ (18)
Inserting into (17) we get

2,2
Nj+2 tG(~tG + Nj/Dj) -G /c

D,
j+2 2-tG + N./D.
373

£GN -(c“2+t2)cznj
D, (2-tG) +N,
J( ) J

(19)

Starting with Nl=0 J D.=1 the numerator and denominator recurrences in

1
(19) give
Rl = 1 - tG (20a)
=-2,.2...2
- {c "+t7)G"
Ry = 1-1t6- (2 = t0) (20b)
) 20242 (20c)
Ry = 1-t6 - =5
4-4tG-G"/c

Now that we have completed the algebraic work we can perform substitutions.

Consider for example the third order approximant of ¢ ; let c—2+t2 = a
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a(y+) _ a(y-H)* (21)
2-t (Y+H) 2+t (Y-H)

2-2tH -

This expression becomes fourth order in H if we try to rationalize the
denominator. Thus if we intend to stick with tridiagonal schemes and

non-zero H then the highest scheme we can use is given by R2

22 = 2 om - _li' [+ 2 + (Y-H)2] (22)
2¢c

which amounts to the differential equation, from (7), (10), (22)

: 2/ )
sv, t' v t't! t't') i P (23)
2 c 28h - 4c2 (3yy +ahh /J

The case of particular interest is H=0. The zero spatial frequency in h
in the space of (h,t') clearly represents a line integral across the (h,t)
data in the h direction at each value of t' = t-p2h. These are slant

stacks of common midpoint gathers. Specializing (21) to H=0 we get

R G

2-tY  2+tY

() ¥

1.2.2
1—ZtY

=2 (24)

Neglecting the time shift term 2 this third order downward continuation is

c yy (25)

It seems that the fifth order scheme (20c) could also be used in a purely
tridiagonal framework if the z-steps were alternated between G and S. In
a constant velocity media t'=tocose where t0 is vertical incidence time.

Then at small dips

. 2y o
Pzto (s Pyy (26)
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which is like FGDP p.253 equation (11-3-18) except that sine in (26) is
like tangent in FGDP. Also in FGDP the tangent squared term, in present
notation is written as 2h/vto and the equation is interpreted as a
migration before stack equation. While the methods of the present paper
allow for the development of very accurate migration schemes for slant
midpoint stacks in velocity stratified media. The FGDP development was
done with constant velocity media and hyperbolic moveout. Thus the

neglect of H < Bh seems more realistic in FGDP provided that the dips

are modest.



